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1. We shall consider the problem of finding the determinant of symmet-
ric band Toeplitz matrices with five non-zero diagonals. Matrices of this
structure occur in many fields of numerical analysis. Our method is simple
quite enough and has the advantage that the time of computation is short,
especially for matrices having large order.

2. Computation the determinant of general five
diagonal band matrices

Let A, denote the following square matrix:

a, b, () T
2, a, b, Co 0
341 2 as by C3
(2.1 A, = .
Ch—2
bp—1
_0 Yn—2 Zn—1 dn |

Allgover [1] derived the following recursion formula for the computation
of the determinant of A,.

Let D,, = det A,, B,_, and C,_, denote the minors of b,,_, and c,_, in
A, respectively. Let Y,,_, be the minor of y,_; in B,_,. Similarly, let X,
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be the minor of y,_, in C,,_,, E,_, be the minor of ¢,_,in X,_,. We get the
following relations:

D,=a,D, 1—b, 1By st¢,2Cpy
B y=2,1Dp =Y 2Yn
Vi o=0byn oDy 35— 3B, 5
Chor=2-1Bp 2= Y2 Xpn—s
Xno=0, 1Dy 3—¢, 3E, 4
E, 3=Yp3Dpy.

These relations hold for n=1, if we define b,, ¢, 2,, a,, y. to be zero for non-
positive ». Let V, denote the vectorial

(2.2) V.= [D, B, C,, Yy, Xp,, ESTT,
and M(n) be the matrix
a, —bn_y Chs 0 0 0
2, 0 o —Yo1 O 0
0 z, O 0 —Yp—r O
@3)  Mm=1, _. o 0 0 0
A, 0 O 0 0 —Chy
Y 0 O 0 0 0 _

Then, by taking V, = [1, 0, 0, 0, 0, O]” and all the undefined coefficients
to be equal zero, we get

(2.4) Vo = M(m) V.,

for n=1.

We remark that the relation (2.4) gives a possibility to compute D,
with O(log n) operations in a computer having as many as need parallel pro-
cessors. Without parallel computation we can determine D, with O(n) opera-
tions.

3. Simple recursion for the determinant of symmetric Toeplitz matrices

Let
-a() al al 7
a, a, a, a,
a, a, a, a, a,
R, =
(¢
a
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be our matrix of order n. Observing that B,_, = Y,_,, from the relations
(2.3), (2.4) we get the following recursion formula. Let

a, —a,a, O 07
a —a, 0 0 O
3.2) N=]0 a0 —a, O
aQ 00 0 —a
a 00 O 0

and

3.3) Uy = [Dps B, Cpy Xy E,]T.
Then

(3.4) U,=NU,_,

for n=1. We set U, = [1,0, 0,0, 0]7, and get

(3.5) U, = N U,.

In what follows we shall assume that a, = 1.

4. Substitution of N* by another polynomial of N

Let

4.1) S(2) = det (N—AI)

be the characteristic polynomial of N. By an easy computation we get
(4.2) S2) = (1-1)Q(4),

where

4.3) Q) = 1+(2—ag) A+ (24 a3 —2a,) A2 + (2 —ay) A3+ A1,

Observing the symmetry of the coefficients of Q(A), we can determine its
roots easily.
Putting

w=A1+21"1
we get

(W) = % = W2 (2—ag) w+ (@ —2a,).

Let w;, w, be the roots of p(w) = 0O:

@a)  wy - —CTWEVCo MG ) ()
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Then the roots of Q(4) are ©;, O (j = 1, 2), where

o _ it ywi—4 ’
I 2
4.5 ———
(4.5) w2—yYw2—4
07_1 — J J .
] 2
Divide 2" by S(z). We get
(4.6) 2" = k(z) S(R)+r(2),

where r(2) is a polynomial of degree at most 4.
From the Cayley-Hamilton theorem we get that S(N) = O, whence N" =
= r(N), and so

4.7) U, = r(N) U,.
After we have found the coefficients of r(2),
(4.8) rR) = Ag+ Ajz+ A%+ A3+ A,
we get
(4.9) D, = Ay+ AD,+ A,Dy+ AD. + AD,.
We can compute that
D, = q,
4.1 D, = a2—a?

D; = a}—a,+2(1 —a,)a3
D, = a, Dy—a3[a3— a3 +2(1 — a,)]+ (1 — a3).
First we decide the cases in which S(z) has multiple roots.
A) wy = w, = 2. Then a, = 6, a, = +4, S(A) = (1—2)5.
By w, =2,w,= -2 Then a, =2,a, =0, S(A) =
= (1-2)-(1+2).

2
C) wy =2, wy# 12, Then a, = .a4i+z, a,#6,2,

S@A) = (1-27 (A= 0,)(A— 05 Y).
D) wy = =2, w,= +2. Then a,=0,a,=+2,
S@) = (1= A+ 1)2(A-- O)(2— O3 Y).
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E) w; = wy=# +2. Then a,= + , Qg %6, a,# — 2,

S0) = (1=1)(A— 0,2 (A— O 2.
F)y w,=w, = -2 Then a,= —2,4a,=0,
S =(1-2-GA+ 1),

In another choosing of q,, a, all of the roots of S(z) are distinct. We compute
r(z) as an interpolation polynomial. For a root @ of S(z) we get: " = r(0),
and a similar formula holds for the derivative, if @ is a multiple root of
S(2).

5. The case of simple roots

Suppose that all roots of S(z) are simple. From (4.6) we have

1 =r(l),
(5.1) {@jin =rOf") (=12).

These relations determine the coefficients of r(z). We put it in the form

(5.2) {’(z) = (z—1) H@2)+ AQ(2),
' A = 1)Q(1).
Let
(5.3) H@E) = ZE, y,-2i.
From (5.1) it follows that
0"

—L _ —H@O}") (=12),
0]:_{:1_1 (J ) (.’ )

whence the relations
10, 6 6} Yo 1(0,)
1 671 672 072 || G

(5.4) _
10, 6 6} Y f(0,)
1 031 052 0;° 1Ly, (Cr)
and
(5.5) f@) ==
T—1

must hold.

2 ANNALES-Sectio Computatorica—Tomus I1.
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Let K denote the matrix at the left hand side of (5.4). Let furthermore o,
denote the h’-th powersum of the roots of Q(z):

op= O +0O7T"+ O+ O,

We multiply the relation (5.4) by the transpose of K, we get

Yo 1(0,)
kT k| Y| = gr | 7O
Ya f(6,)
Ya (Che)

We can see easily that
Gy O, Oy Oy
def
0, 0y O3 0y ( )
KTK = =T),
0y 03 04 Oy

O3 04 05 Og

and so that
Yo 1(0,)
(5.6) Yo por gr| O
Ya f(@z)
3 ©:1)

We can compute T-! as a rational function of a,, a;, by using the Newton-
Girard formulas for o,. The computation of y; by (5.6) is more stable than
by (5.4).

By the relations (5.2), (4.8), (4.9), (4.10) we can compute D, immediately.

6. The case of multiple roots
A) a, = 6, a, = 4. Then S(z) = (1—2)*, and from (4.6) we get

r) _

r [n](k=0, 1,2, 3, 4).

k

By using the representation

@ =3 'UZ(!”- (=1,

k=0
and that (see (4.10): D, = 6, D, = 20, D, = 50, D, = 105,
D, = Ay+6 A, +20 A,+50 A, +105 A,,
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where
n n n n

A, =1- - + ,
0 [1J+[2] 3 [4]
VI N ) e I —4[”J,

1 2 3 4
A2= n _3 n +6 n

2) 13 4
Ay =|"]-4"].

3 4

n
A, = 4].

B) a, = 2, a, = 0. Then §(2) = (1-2)3(1+2)?%,

430 [f)e-oa

r(=1) = (=17, r(=1) = =n(=1)".

(6.1)

Now we have
D =2D,=4,D,=6,D, =9.

Putting
rR) = A+ B(z—1)+C(z— 12+ (@ —1)*[a(z+ 1)+ 8],

we get
D, = A+ B+C+4a—8.

Furthermore, from (6.1) we get
A=1,B=nC= [g] (= 1y = A—2B +4C—8p,

n(—1)y"! = B—4C+ 128 —8a.

Hence

)

8
128—2n—n[1—(—1)"]
8

|ﬂ _ 2m+[1-(=1y]
(6.2)

2%
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So we get

2 —(—1\
Dn:1+n+ rl]+n_+ i_n] !_L'
2 4 4 2

2
C)a, = a7‘1+2, a,# +4,0. Then S2) = (1-2)*(z—O)(z2—O~1), O= + 1.

Now we take r(z) in the form
2

rz) = zzl%gﬂ4z—1y+4z—1y(az+ﬁy

k=0

We have

y=1, ray=n, ) _ [n],

O =r(0), O =rOY).

From the last two relations we get
.= HO)—1H(O1) P O-H(O0~1)—071-40O)

0-0-1 ' 0-0-1 ’

where

@n—l—n(@—l)—[;](@—1)2

1®) = ©@—1y

After we have computed 0, #0), {O~1), «, B, by (4.10), (4.9) we obtain D,,.
D) a, = 0, @, +£2. Then S(z) = (1 —2)(z+ 1)? (z— O)z— O 1)
Now we take

r@) = r(=1)+r' (= DE+ 1)+ @+ 1)?[a+ g2+ y22].
Observing that
(==L r(-H=()y1nrd)=1
r@) =0nr(O1H)=0"" (0= +1),
the coefficients «, §, y are easily computable.

E) q, = + 00;2 , 4y #6, —2. Then S(2)=(1-2)(z—0)2(z—O71)2, O= +1.

In this case
r(l)=1,r(®) = 6" r(O"1) =0T,
r'(®) = nO*-4, r'(O@-Y) = n.O- -y,
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The coefficients A,, A,, A,, A;, A, of r(2) in (4.8) can be computed from the
linear equation

1 1 1 1 1 A, 1

1 6 02 @3 6t A, on

1 &1 02 O3 O+ A, l=|o

0 1 20 302 4603 A, n-@n-1

0 1 2071 302 40-° A, n-@-(n-1
F)a, = —2, a, = 0. Then S(z) = (1 —2)(z+ 1)~

We take

r’/‘/(

r’( -1) s
T(z+l) +

r@) = r(—1)+r(— 1)+ 1)+T—‘1)(z+ et

+x(z+1)4.
Now we have
ré(—1) n
—— L = (—=1)"k k=0,1,2,3),
= - [k] ( )
r(l) = 1.

Hence we get

e {2 o )

Furthermore D, = —2,D, =4, D, = —6, D, = 9, and so
D, =(=1nf1 ="+ " =" ||+ 2.
1 2 3
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