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1. Introducing the problem

The problem arises in modern computing. There are a great many
problems which involve linear systems of large size. It seems to be required
for many different applications — solving large systems of linear equations,
linear programming, solving systems of differential equations — to perform
operations on matrices and to store them.

Consider the following system of linear equations

Ax =0

where A is an Nx N matrix, sparse and symmetric. If the non-zero elements
in A are placed in a narrow band near the main diagonal, then the number
of operations, hence the computer time and storage required for A, are decre-
ased in comparison with a general case. So before performing the operations
it seems to be advisable to convert the matrix into such-a band form.

This paper describes a new method for reducing the bandwidth of sparse
symmetric matrices. A version of this material was presented at:IFIP CON-
GRESS 71 in Ljubljana.

Definition
Let A(a;;) be an arbitrary square matrix; then
8(A) = max |i—j| (1)
a;€ A
a;#0
is called the bandwidth of the matrix (see Figure.1).-
Our aim is to minimize 8(A); that is, to find a suitable rearrangement of the
rows and corresponding columns of A so that (1)'will take its least value.

The problem can also be approached from the pomt of view of graph theory.
This is what we have chosen in our work. -
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Figure 1.

Let A(a;;) be a non-singular NxN matrix for which all the elements:
in the main- dlagonal are non-zero. Then A may be associated with a con-
nected, undirected graph G(X, E) (denoted by G(A), X is the set of nodes, E
the set of edges in the graph) as follows:

X ={x;,%5, ...,Xy}, where N is the number of rows in A;
This is a special correspondence between the matrix and the graph that is,

for every undirected, connected graph we may uniqualy specify its ,,connec-
tion matrix”.

Definition
Consider an undirected, connected (these properties will be assumed in
what follows) graph G(X, E); X = {x;, X,,. . ., Xy}. To identify the nodes de-

note them by the numbers 1 to N; this is called a numbering of the graph.
In other words, an assignment

w X={1,2,... N—1,N}

yields a numbering of the graph.
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Definition
Let « be a numbering of the graph G(X, E); then
6, = max |a(x;)— a(x;)| (2)
o X))

i Xj

is the bandwidth of the graph associated with the given numbering «. Notice
that

6. = 0(A.)
where A, is the connection matrix of the graph numbered by «. It may, of

course, happen that a new numbering induces a change in the bandwidth.
‘Our object is to find a numbering «, for which (2) takes its minimum value

6 = d,, = min §,
We present some very simple estimates for the minimum bandwidth é:

Let d; be the degree of the node x;€ X; that is, the number of edges converg-
ing at node x;. Then

dmax = mMax d;, dmin = min d;
1sisN 1si=N

are the values of the maximum and minimum degree respectively. It is

clear that
s 2[ dmax ]
2
is satisfied. It may also be seen easily that
0=dmin
is also true.
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If D is the diameter of the graph, then
5 2[ N-1 ] ’
D
where N is the number of the nodes. (The diameter of the graph is

D = max o(x;X;)
xi,ijX

where o(x;, x;) means the distance between nodes x; and x;.)

2. Comprehensive survey of methods for reducing the bandwidth

2.1 Types of methods and their main properties
The methods may be broken into two types:

1. Iterative methods.
2. Constructive methods.

The main characteristic of the first type is that it improves the bandwidth
of a given matrix. Starting with a given bandwidth (numbering) the method
attempts to produce a better one. Using these methods alone tends to be
rather more slow and probably somewhat less effective than using other
methods. Constructive methods have some advantages over iterative methods..
They produce a bandwidth independent of the original or previous numbering..
They require rather less computing time in general, and the results are in
fact nearer to the minimum. So it is more efficient and more economical to
apply them.

2.2 Brief survey of some prev10us methods

1. R. Rosen’ s method'[3]
The basic idea is to make an interchange among the rows and corresponding
columns of a given matrix sufficient to cause a decrease in bandwidth. At
first interchanges are made which directly cause the bandwidth to become
smaller; later it is allowed toimake.some interchanges which do not change
the bandwidth, but which lead to a structural change in the matrix, which
in turn makes it possible to decrease the bandwidth further. This is a typical
iterative method, which 1s not-very efficient and requires too much comput-
ing time.

2. G. Alway and D. Martin’s method [4]
This is also an iterative method whose efficiency is not too great.

3. E. Cuthill and J. McKee’s method [1]
This is the constructive method most well-known in the literature. Cuthill —
contrary to Rosen — approaches the problem from the point of view of graph
theory.

Theoretically the method consists of wo different parts:

1. Determining a spanning tree of the graph, and arranging the nodes
into levels.
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2. Numbering the levels.
In practice the two steps are carried out at the same time.

1. Starting from a node of minimum degree x;€ X, determine a spanning
tree of the graph. The nodes are arranged into disjoint subsets called levels
{(denoted by L;) so that the nodes the same distance from x; belong to the
:same level.

Using the distance function g(x;, x;), we may then define levels as follows:

L, = {x;}

L, = {xj|x;€X; o(x;x;) = 1}
Ly = {x;|x;€X; o(x;x;) = 2}
: (3)
Ly = {x;|x;€X; o(x;,x;) =t-1}

[Ly = {x;1x;€X; x;¢L,_y; o(x;,Li—y) =1}]

In the case of a connected graph, after a finite number of steps an index k
may be found for which

k
L,., = 0; this is equivalent to y L, = X
1=1

2. The numbering of nodes takes place level by level in the order they

happen to be found. The sterting node x; is numbered 1.
Denote the numbering by «

a(x) = {h =1}
oLy) = {2, 3, ... 1)
o(Ly) ={ly+1, [,+2,...13} (4)

a(Lk) = {[k—1+l! lk—1+2, oo "lk = N}

‘The numbering of every level is carried out on the basis of the numbers assig-
ned to the previous level. When the nodes in L, have already been numbered,
we consider in increasing sequence of node number those nodes in L,, which
are joined to L4 4

Yy + 1), @Yl +2), - aY(l).

First we select nodes in L, ; adjacent to «—1(/,,_,+ 1) to be numbered [, +1,
L,+2,1,+3,... respectively, in order of increasing degree. This numbering
system has to be applied for every node in L, ,,. Continuing the process,
after finite number of steps all the nodes in the graph will be numbered. At
the same time we are making sure the bandwidth remains as small as possible.

10%
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The method described here gives a numbering corresponding to one starting
point. Cuthill-McKee suggest repeating the procedure using every node of
minimum degree as a starting point, and selecting the numbering for which
d is the least. This is fast method giving good results in many cases.

A modified Cuthill — Mckee method is also known. This differs from
the original method in the selection of the starting nodes: all nodes of mini-
mum and ,,near-minimum” degree are used as starting points. Nodes of near
— minimum degree satisfy

dmin=d;=dmin+——" dmax

where Cuthill-Mckee suggest chosing N = 1, M = 2.

A disadvantage of the method is that it is based on the starting point
and hence does not consider any structural properties of the graph. In some
cases (Figure 3) the bandwidth given by the Cuthill-McKee method is consi-
derably larger than the theoretical minimum (which is 5 here).

Cuthill — McKee’s nunbering Our numbering
Figure 3.

3. Theoretical basis of our method: description of the algorithm

3.1 Introduction

Using the Cuthill-McKee method the nodes are separated into hierarchical
levels by determining a spanning tree. This is a partial ordering of the nodes,
and it is this ordering which is the real basis of the numbering. Thus the
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spanning tree is only a tool for the creating of these levels which avoids using
other properties of the graph.

We — like Cuthill — approach the problem from the point of view of
graph theory. The essential difference is that we make use of other struc-
tural properties of the graph in order to determine the levels.

Our method consists of two important steps:

1. Separating the nodes into disjoint levels.
2. Numbering the nodes.

Before describing the method we provide some theoretical background mate-
rial:
3.2 The level structure and its basic properties

Definition
For a given graph G(X, E) consider
{Ly, Ly, - - Ly} )
a sequence of subsets of nodes such that
L,cX; i=1,2,...,k
LNL;=0; i,j=12,...,k i#]};
k
uL,=X.
j=1

If for arbitrary x;, x;€ X; (x;, X;)€ E implies x;€ Ljx; X;€ L;»; such that |i*— j*|
=1, then (5) is called a level structure (denoted by LS), and the L, are its le-
vels.

In other words the level structure is a separation of the nodes into disjoint
levels such that every edge is connected only to nodes in the same or neigh-
bouring levels.

Levels L, and L, are the extreme levels and the other levels, L,, Ls,..., L—
are intermediate levels.

According to the definition every intermediate level is itself a cut set of the
graph.

It is easy to see that the following statements are true:

a) Every graph consisting of at least two nodes has a level structure.
Consider x,€X; {x;}=X then

{{x), X\{eo}} (6)
is in fact an LS.

An LS having no intermediate levels, such that (6) is a trivial LS.

b) For every non-complete graph having at least three nodes there exist
a non-trivial LS.
In this case there exist x;, x;€ X such that (x;, x;)4 E; then

), XU ()]
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satisfies the definition of LS.
Obviously, no complete graph has a non-trivial LS.
Definition

For a given LS denote by W(L;) the number of nodes in L.
Then

W(LS} = max W(L,) (7

1sisk

is called the width of LS.
Let W, be the width of the LS for which (7) takes its minimum value:

W, = min W(LS)
LS

Definition
A numbering « is called compatible with an LS if for every
X;, X;€ X(x;€Li» and x;€Ljx), then
i*<j* implies a(x;) <a(x;). (8)
Obviously, the correspondence between the numbering and the LS is not
unique, because for every LS a veriety of compatible numberings may be
obtained; and conversely, for every numbering we may find several diffe-

rent level structures satisfying (8).
We wish to prove several important results:

a) Let « be a numbering compatible with LS and 4. the corresponding
bandwidth. Then

S.=2-W(LS)—1 ©9)

is true.
Consider (x,X)€E such that . = «(X)—a(x). Then if x€L; we have X € L«
such that i*= {l X It follows therefore that
[+
8. = a(X)—a(x)= max a(x;)—min o(x;) = W(L)+W(L;4;)—1 (10)
i€L; xI'QLi

a
xleL,*

from which (9) follows immediately.

b) For every LS there exists a numbering « compatible with LS. We see
that every numbering will suffice for which x;€ L;« implies

> Wp<a(x)= 3 W(L)

j<i* j=i*

A numbering created in such a way will ensure that the bound given in (9)
is satisfied.



MINIMIZING THE BANDWIDTH OF SPARSE MATRICES 137

No better general estimate of the bandwidth than (9) has yet been
found. We know therefore that for every LS we can always find a number-
ing for which '

de=2-W(LS)—1

be satisfied.

For a given LS consider a numbering «, compatible with LS and such that
the minimum bandwidth of the graphis attained. Notice that the upper bound
on & may be decreased in some measure for the most important practical
cases. So

8, =C-W(LS)

is true, where ¢<2. A suitable value of ¢ has not yet been determined, but
the graph in Figure 4 indicates

v,

: 3.
c=—.
2

In the greater part of the graphs found in practice
0., = W(LS)+K

where K<«<W(LS), and often K = Oor K = 1.
c) Let « be an arbitrary numbering; then it is possible to find an LS
with which « is compatible and such that

6. = W(LS)
is also true.

Consider (x;,,x;,) €E where 8, = a(X;*) —a(Xx).

Create
L= {ij“ (xj¢)< « (xj)$°‘ (x>
and then
W(Lt) =0,

Other levels of the LS may be determined from the following recursion rela-
tions:

Lt = {2 (x) <a(x) = max o (x))

€Lty o e(Ltyg_1,x)=1
L = {x; ]oc(x)>oc(x )= min «(x;)}
Xi€Lt-1+2 e(Ly-prv xj) =1

Now consider x"€ X such that «(x") = max «(x;); then o(Ls,-;, X') =1

X;€Lgy
and there exists x”€ L4 ,—, such that (x’, x”)tej:“.
Then

W (L) = be=c (x') —a(x") =0 (X)— max a(x;) = W (L)

xj € Lyyp-1
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from which it follows, in conjunction with a similar result for L,_, that
W(L;) = W(LS).

d) Let 6 be the minimum bandwidth. Then as an immediate consequen-
ceof a) and ¢)

We=06=2.Wy,—1 (11).

Note that (11) does not guarantee that any numbering compatible with any
LS of minimum width will yield the minimum bandwidth.

In view of the above results, for the application of the method we restrict
ourselves to the numbering of LS, and moreover to LSs of small width.

The number of possible level structures is very large, so we deal only with a
a narrow class of LSs; level structures having a defining level.

Definition
In a level structure
{Ly, Ly, ..., L}
L, is called a defining level if for every x;€ Ljs; (j*# i);
if j*>1i, then there exists x7€ Lj»_, for which (xy,x))€E;
if j*<i, then there exists xj-€ L+, for which (xj, x;)€E.

In other words, L, is a defining level of the LS if there exists a chain from
any node of the graph to L, such that each node in the chain belongs to a
unique different level.

For an LS having a defining level, whenever a node and all its neighbour no-
des belong to the same level, then that level must be the defining level.

To illustrate the meaning of the above definition we give some examples.

() () () () (e ()

G T3 B U9 B U B U5 I )
3 L‘ Lr l‘
Figure 5.



140 I. ARANY, W. F. SMYTH, L. SZODA

For the graph shown in Figure 5, L, is the defining level of the given LS.
No other level can be a defining level, because all the neighbour nodes of
X, also belong to L,.

For a similar reason the LS in Figure 6a has no defining level.

The LS in Figure 6b is a very special one because all the levels are defining
levels of the LS.

X Xe X () ()

) GJ &) g G

L":P s ‘ %
¢)

Figure 6.

It is easy to see that if L, is a defining level of an LS and « an arbitrary num-
bering compatible with the LS, then

Wo=08.=2W;—1,



MINIMIZING THE BANDWIDTH OF SPARSE MATRICES 141

where
W5 = max W(L))
J#I

The Cuthill-McKee method leads to the creation of a very special LS, for
which the defining level is a starting node on which the other levels depend.
For an LS such that as this the value W§ may be larger than necessary, be-
cause it often happens that if j<j” then W(L;)=W (Ly). As a result the con-
nection matrix associated with a numbering « based on the LS has a very
special form (see Figure 7): W§ and é, have become larger in the righthand
lower corner of the band. To compensate for this distortion it seems to be
reasonable to create an LS for which the defining level is an intermediate one.

Figure 7.

3.2 Survey of our algorithm
I. Determining the level structure

a) Determining the defining level
b) Constructing the LS generated by the defining level

I1 Numbering system
I Determining the level strucure

a) Our aim is to determine an LS for which the defining level D is an
intermediate level. We wish therefore to cetermine a cut set of the graph
which includes a selected starting node x;, (which we choose to be a node
of maximum degree). The cut set separates x,, x, neighbour nodes of x; into
disjoint classes, X, and X,, which are not in connection with each other. We
may write then

11 ANNALES — Sectio Computatorica — Tomus I.
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X =X,UDUX,
where
Xi € D; xX€X5; X6 X, .

The procedure consists of the following steps:
1. Determining the starting point (that is, find a node of maximum
degree) and initialize:

= {xio}; Xl: = ¢, XZ:: @.
2. Assign a “type” number 7 to each node in the graph as follows:
wx)=%k i=12, ..., N;

where k may take the values 0,1,2,3.
At the beginning

7(x;) = 0; i=12,...,N; 7(xi,): = 3.
3. Determine a point-pair x;, x, satisfying the following conditions:
() = 0; (%) = 0;
e(xy, D) = 1 o(xyy D) = 1; and (x;, X,)¢ E
Then make the following changes:
7(x) = 1; X, = {x)
(%) 1= 2; Xy 1= {x,).
4. Consider all the nodes x; which neighbour? :
if 7(x;) = 0, then set 7(x;) := 1 and X, = _)FIU{XJ-},
if r(x) = 2, then set r(x )= 3 and D := DU{x;}

if 1(x ) = 3, then no action.

5. Consider all the nodes x; which negihbour Xy
if 7(x;) = 0, then set 7(x;) := 2 and X, := X,U{x};
if 7(x;) = 1, then set 7(x;) := 3 and D := DU{x;};
if r(xj) = 3, then no action.

If during steps 4. and 5. we find no nodes whose type was changed, then the
procedure is continued at step 6.; otherwise, we return to step 4.

6. X, = X,UX,;; X, = X,UX,.

If there are any remaining points of type 0, then the procedure is continued
at step 3.; otherwise, D is the defining level.

It is clear that after a finite number of steps every node of the graph is
marked by type 1, 2, or 3; and
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D = {x;|7(x;) = 3}

is a cut set of the graph.
Figure 9 shows the essence of this procedure.

b) Having found the set D we proceed to construct the corresponding
LS. Starting from D separate all nodes into disjoint levels as follows: Given
level L;, the next level L;,, (or previous level L;_,) consists of the neighbour
nodes of L; not yet a551gned to any level. Denoting

| = maxo(x;,D)+1,

x;€X1

the levels have the form:

I{Y|x €X:; o(x,D)y=1-t}, ift<l;
, ift=1;
]{x |x;€X5; o(x;,D)=t=1}, ift=1;

Notice that the computer program actually determines only the set D. The
determination of the LS itself is done as part of the numbering process. Fi-
gure 8 shows LS configurations both for Cuthill-Mckee method and for ours.
It makes clear the significant differcnce between the two methods.

Cuthill — McKee method Our method

Figure 8.

1%
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Determining the defining level corresponding to starting point x, in Figure 9.

%, XA_ L]
Xy ¥,
X3
X, xr
X3 Xio
Y, X Xy
Figure 9a.

The defining level is {x,, X,, X3}

L. (x;) =0,
i=12...,13.

Select two points xg, X,
which neighbour x, and
which are not in con-
nection with each other.
Then

(%) :=3; (%) =1,
T(Xg) 1= 2.

2. Noces of type O
which neighbour x; be-
come type 1. Similarly,
nodes of type O which
are neighbour x; be-
come type 2:

(x;) 1= 2,
i=3,5,10,13.

3. Nodes of type O
which neighbour nodes
of type 1 become type
1; and nodes of type 1
having any neighbour
node of type 2 become
type 3:

w(x):=1, i=212
(x) =3, =212

Choosing other neighbour nodes it may lead to another defining level.
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1. (x;) =0,
i=1,2,...,13;
7(X):=3; (%)= 1,
T(X;) 1= 2.

~—) Fj

2. w(x):=1,
i=6,11,12
(X)) := 2,
i=238.

3. (x;): =1,
i=1,4,10,13;
(x;) 1= 3,
i=1,4,10,13.
D = {x;, x4 X3, X310 X33}

Figure 9b.

IT Numbering system
We number the graph as if it consists of two disjoint graphs, making use
of the numbering system described above for the Cuthill-McKee method
(4):

1. We have already seen how to separate the nodes into three classes,
so that

X = X,UDUX,

Now we are going to assign the nodes in D either to X, or to X,, depending
on the number of connections between them.

For arbitrary x, € D, denote by s;, and s;, the number of edges starting at x;
having their end-points in X, and X, respectively.
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The assignment is made according to the following rule:

if s;;>s;, then X;: = X, U{x;};

if 5;; <s;5 then X,: = X,U{x;};

if s;;=s;, then X;: =X, N{x;}, [(=1,2,1,2,1,...;
This then yields the form

X =X,UX,

we go on now to number X, and X, separately, then fit them to each other
by means of a suitable transformation.

2. Numbering X,.
First of all, number the nodes in X,ND in order of increasing value of s;,,
then the other nodes level by level using the numbering system detailed be-
fore. So all the levels L,_,, L,—,,. .., L, are numbered as follows

o {xil’xi2! . -,X,-,,,}—>{1,2, .. .,m},
where
x(xy) =1, x,€X,UD,
a(xim) =m, ximE Ll ’
3. Numbering X,.
We start by numbering the nodes in X, D in order of increasing value of

S;p using the numbers from m+1to N. Ly, Lys»,. .., L, are thus numbered
just as before we got:
«: {le,sz, .. .,xjn}—-{m+ 1,m+2,...,N},
where N
oc(le)=m+1y xﬂEszD:
«(x;,) = N, Xjn€Ly.

4. Figure 10 illustrates the results obtained from steps 2. and 3., show-
ing also the direction of the numbering.

X

%2
—

Lt Ly, th Leg| - - Lo | L

R mi4 — N

3

A
A\ 4

Figure 10.
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The numbering of X, must now be reversed in order to satisfy the conditi-
ons:

ifa(x)=1, then x,€L,;
if «(x;)) =m, then x,€ X, ND.

That is, we need to apply a tansformation
a:{Xi, Xy -y Ximp—~{m,m—1, .. .,2,1}

Notice that for certain special graphs we can find an LS such that every
level may be regarded as a defining level, so that the numbering of X, may
proceed directly from 1 to m in the order L,, L,,. .., L,—;, X;ND. In general,
however, this will not be possible.

The algorithm described in sections I and 11 provides a numbering which
corresponds to a specific point-pair neighbouring a specific starting node. In
practice our method tries out all the nodes of maximum degree as starting
nodes, along with all their suitable neighbouring pairs. Finally we select the
optimum numbering for which § takes its minimum value. Our method is
illustrated by the flowchart in Figure 11.

4. Brief review of the computer program; computer results

The program is written in FORTRAN for the ICL 1905/E.

Our aim — apart from simply trying out the method — was to compare it
with other methods (Cuthill—McKee, Modified Cuthill-McKee, Rosen) in
terms of efficiency and time required. In all cases, the methods themselves
and their important computational aspects that is, the determination of
points of minimum or maximum degree, the selection of suitale neighbour
point-pairs, the determination of the defining level, and so on are placed is
separate subroutine segments. The MASTER segment is concerned only
with control functions. First the paramter list is read. This list in effect cont-
rols the course of the program; for example, which methods will be applied to
each graph. It is thus possible to apply every method to every graph and
even combinations of methods as well.

Figure 12 shows the computer results of a comparison of 13 graphs rela-
tively different in size and geometrical structure. Since using the Rosen’ s
method alone has been found to be inefficient and expensive in terms of
computing time, we apply the constructive methods first, and then Rosen’ s
method on the result.

We consider therefore the following methods:

Cuthill-McKee (CM)

Modified Cuthill-McKee (MCM)
Our Method (OM)

Rosen’s Method (RM)
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Draft of the algorithm

Determine the nodes of maximum degree

(xl’ Xgy oeey xk)

e

T

Arrange the suitable neighbour pairs of x;

into avectorv(vj:i =12 ..., 2n)

I =i+1

Determine defining level D for v;, v;4,

1

Construct LS and number it on the

basis of D.

!

Determine the bandwidth.

Output the new numbering.

yes
i<2n-1

i=1i+2

n,

Figure 77.

STOP
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applying them as follows:

CM, CM followed by RM,;
MCM, MCM followed by RM,;
oM, OM followed by RM.

From Figure 12 we see the computing time fluctuates widely.
For example:

Graph 2 (45 nodes; 85 edges) 1,65 secs (CM), 0,98 secs (OM);
Graph 7 (42 nodes; 81 edges) 0,24 secs (CM), 1,30 secs (OM).

These and other examples illustrate that the time depends on the structure
of the graph.

CM seeme to be an efficient, fast method in cases when there are few points
of minimum degree in the graph.

Our method produces more nearly optimum results, but it requires so-
mewhat more time. In certain cases, such as the graph shown in Figure 3,
OM is markebly better than CM.

To get a really objective comparison of the methods, we have tried to
apply them on random graphs (given the number of nodes and edges, the
connections are created by a random number generator). The results are
shown in Figure 13: OM seems to be the best simple methos.

We should remark that the results are obtained by a slight modification of
the original methods: namely, by modification of the condition

W0< 6,

Let §, be the bandwidth obtained for the kth LS. If during the construc-
tion of the (k4 1)th LS we find a level L, for which

8, < W(L))

then the procedure returns to step 1/3; that is, starts again to construct the
next (or (k+2)th) defining level using the next pair of points. We thus en-
sure that we are looking only for a better 6 than has already been obtained.
Similarly, this midification has been made to Cuthill-McKee method. A sig-
nificant decrease in computing time was obtainad as a result for both met-
hods.

Referring to Figure 12, the original bandwidth of graph 1 was also
exactly the minimum possible bandwidth, so of course, no methods could
improve it. It would be very useful to find a method which whould give ex-
actly the minimum possible bandwidth.

Here again further experimentation is required.
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Random graphs

l cM MCM i oM
| T
£ £ ? s 2 E 0
T 58 | 58 | 5% kS g 3 2 g g
S | g2 g% |52 % | ¢ 3 2 3 2
x 3% Sy | 58 g E 3 E 3 E
o z° | zo | g= a | F m [ a | &
1 20 60 19 12 0,094 11 0,578 ' 9 ’ 1,210
2 20 60 17 13 0,046 10 0,554 | 9 0,912
3 . 40 100 35 21 0,180 17 1,284 15 2,696
4 i 40 100 37 22 0,084 17 1,032 15 1,024
5 50 162 47 29 0,134 1 26 2,118 24 2,612
6 50 162 48 28 0,214 | 27 1,974 26 2,718
7 60 150 57 29 0,324 27 | 3,188 22 3,324
8 60 150 57 32 0,152 26 | 3,004 25 4,028
9 80 216 79 38 0,728 36 | 6,018 35 8,428
10 ! 80 216 77 40 0,626 35 i 7,210 34 9,526
! I I
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