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This paper presents a game-theoretical model of a multiproduct eco-
nomy, where the production costs of producer groups and the price functions
are linear. First an existence theorem is given for the Nash-equilibrium point
of this game, and in a further special case also the uniqueness of the equilib-
rium point is proven. In this case a computational procedure for finding the
equilibrium point is proposed.

1. Introduction

Let N denote the number of groups of producers, and let the number

of the members of the group k (1=k=N) be denoted by i,. Assume that the
number of different products is M.
Let x{™ denote the production level of the product m (1=m= M) manufac-
tured by the i player of group k and assume that the production levels
x{™ are bounded by capacity limits L{™. It is also assumed that the price
functions of the products depend on the total amounts of the different
products. Thus the set of strategies of group k is given by

i M
(1.1) S.= x x [0,LE],

i=1m=1

and the pay-off function of this group can be expressed as
(1.2) Pp (X1 -y XN) = mg'l s f(sW L., s — K (%),
where f,, is the price of product m, K, is the cost of group %,

x, = (xf ..., x7 .. .,xf,-‘,) .. .,x%”) (I=I=N),

m _ & m : 3 m
sk = D x and sM™M= g7 (I=m=M).
i=1 =1
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Definition 1. A Nash equilibrium point of the game defined by the sets

of strategies (1.1) and pay-off functions (1.2) is a vector x* = (x¥, ..., x¥)
such thatfork = 1,2, ..., Nx}¥€S§, and
(1.3) P (XY, xRz (XE X - XE) XES,.

In the special case of M = 1,i, =1 (k =1, ..., N) an existence and

uniqueness theorem can be found in Burger’s book [2], where the price func-
tion is strictly monoton decreasing and concave, the cost functions are strictly
increasing and convex. It is also assumed that the cost functions are identical
to each other, and both the price function and the cost function are twice
differentiable. With dropping the symmetricity assumption of the game
Szidarovszky proved the existence and uniqueness of the equilibrium point
and in his paper [7] an iteration algorithm is introduced for computing the
equilibrium point. The existence of the equilibrium point in the special case
of concave pay-off functions can be proven by using the Nikaido—Isoda
theorem, but the proof is based on fixed point theorems and does not provide
on effective procedure for finding the equilibrium point. Also in the concave
case the existence of the equilibrium point was proven by Frank and Quandt:
[3]and the uniqueness was shown by Opitz [5]. The group equilibrium prob-
lem in the strictly concave case was solved in the paper [8]. The results
of paper [6] give the connections of the noncooperative N-person games with
mathematical programming problems.

2. The existence theorem

Let us introduce the notation

i N
Lw= 3L, L™= SLM, (1=k=N, l=m=M)

i=1 k=1
and let us make the following assumptions:

A) For u=1,2,... M and (sW, ...,sM)¢D, f(sD,...,sM) =0,
where D RM is a convex, closed set.

B) For p=1,2,...,M and (s©, ...,sM)eD,

M
(2.1 Fus®, o, sM) = 51 g sm 1 p, .
m=1
C) For abitrary (s, ...,s™M)eD and
0=§M=<sm (I1=m=M), (sW,...,sm=D  gm gm+y  MycpD
D) The cost functions have the form
L m m
(2.2) Ki(xp)= > > Aki xxi +B, (k=12,...,N),
i=1m=1

where the coefficients A{™ are positive numbers.
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It is easy to verify that the above assumptions are not sufficient for the
concavity of the pay-off functions.
First we prove the following theorem.

Theorem 1. Let A = (a{™)M__,, and assume that A+ AT is a negative
semidefinite matrix. Than the game has at least one equilibrium point.

Proof. The proof consists of several stages.

a) First we prove that ¢, is concave in x,,.

Simple calculation shows that the Hessian of ¢, is equal to A+AT, which
implies the assertion.

b) Letx* = (x¥, ..., x%) be an equilibrium point, where
1 1)% M)x
XF = (0%, xR, kY, LX) (I=k=N).

We prove that
N iy iy
s*=[2 >apr L, 3
k=1i=1 k=1i=1
Assume that s*¢ D, and let

x&j}“*] eD.

1 1 M .
S = {(X‘n), xR ) 0= =LEP Yk, i m;
' N i N i
(2.3) [2 S, S Zx,‘,’,-”)]eD}.
k=1i=1 k=1i=1

Obviously S is convex. For S = (J it is easy to verify that ¢, (X) = — K, (X;)

, N

|x€ X Sk], consequently x = 0 is the only equilibrium point. Let us now
! k=1 7

assuine that S = @. Then ¢) implies that 0€S, and therefore at least one
component x{™* of s* is positive. Let x be the vector obtained from x* rep-

N
lacing x{M* by x{™, where 0=xJt <xt* and x¢D, X€ X S,. Then we have

k=1
(2.4) P (X) = —K, (Xﬁll)*, S .,xff,}f{)*)>
= —Kk (Xﬁ])*, .. ,x;{,n)*, .« . ,ngll\;l()*) = (Pk (x*)’

which contradicts to (1.3). .

¢) Consider next an oligopoly game with pay-off functions of the origi-
nal game and set of simultaneous strategies S. We will now prove that if
x* is an equilibrium point of this game, then it is an equilibrium point of the
original oligopoly game.

Assume first that x = (X¥, ..., X, ...,X§)€S (where x* = (x¥, .. .,vk)),
than (1.3) is true obviously and for x4S we have

(2.5) P (XF X L XR) = — K (X)) <
< —Ki(0) = g (x5 .., 0, .., X}) =@, (X*),
because (x¥,...,0,...,X%)€S.
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d) Since g, is continuous and concave in x,, on the set S, the generalized
version of the Nikaido — Isoda theorem implies that the game with reduced set
of simultaneous strategies has at least one equilibrium point, and the previous
step implies that all of these equilibrium points are equilibrium points also
of the original oligopoly game.

Remark. The parts b) and ¢) are valied also dropping the condition ac-
cording to matrix A +AT, therefore in the general linear oligopoly game it
is sufficient to consider the reduced game.

3. Reduction to quadratic programming

In this section we will assume that
E) (LD, ..., L™)¢D.

Then assumption ¢) implies that S; X S,X ... XSyc D. Let us assume
further that A+AT is negativ semidefinite. Since ¢, is concave in x,, a

vector x* = (x{P*, ..., xiP%, Lo a%, . xR is an equilibrium point
if and only if
M M
(3.1) > s aR + 3 s 4
m=1 m=1
]é , if X% =0
+b.— A1 =0, if xi* =Ly, (Vk j,u)
l 0, if 0<x&W*<L{
where

syO* = Zx('")* stm* — Z siP* (1=k=N, l=m=M).

k=1

Introduce the following slack variables:
(u)[ 0, if x(")>0

1>0 otherwnse
(=0, if xif <L

! l =0, otherwise

(3.2) wi) = LY —x=0;

Vi

’

then (3.1) is obviously equivalent to the equations

Mmoo, Y () () .
(33) > s am’ + 3 am s™F b, — Ak +vig +2 = O(Vk, j, 1)

m=1 m=1

Let us now introduce the following hypermatrices

C=(Copa-1» B=®B)ng=1>
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where C,, is an szzq matrix with unit elements, for p % g, B,, = 0, and

Defmztwn 2. Let G (g, Pi-1, H=(h)ij-1 two matrices with
constant elements. The direct product of matnces G an H is the hypermatrix:

guHg.H ... g H
(3.4) GxH=[ 82H gH ... g, H

\gplﬂ gpzﬂ .. gqu
Simple calculation shows that equations (3.3) with complementary slack-
ness can be rewritten in the form
Px+b—-a-v+z=0
x+w=1

(3.5) xTz=viw=vlz=0

X,V,z,w=0,
where P = CxX A+BX AT, and the components of x,a, v,z, w, 1 are

x;"?)’ A;(rln)) v;(’ln)) z;crtn)y wkl i L(M)

respectively, furthermore
b = (bly . "bM’ .. "bl’ . "bM)'

Observe that the form of equations (3.5) is the same as the one in the paper of
Manas ([4]).

Thus we proved the following theorem.

Theorem 2. Assuming A), B), C) , D), E) any equilibrium point of the
linear oligopoly game satisfy the equations (3.5). In the further special case
when A +AT is negativ semidefinite, each solution of equations (3.5) is also
equilibrium point.

Next we will prove two lemmas.

Lemma 1. The matrix B+ C is positive semidefinit and in the case of

i, =i, = ... = Iy =1 the matrix B+C is positive definite.
Proof. Let u = (uyy, ..., Uyiy,. .., Uny,- - -, UNiyy) be any vector. Then
N ik 2 N ik 2
(3.6) uT (B+C)u = [2 % uk,-] + 3 [2 uk,.] =0,
k=1i=1 k=1\i=1

and for i, =1 (k=1,2,...,N), u (B+C) u=0 if and only if u,; =0
(1=k=N).

Lemma 2. Let U and V be positive definite matrices.
Then UX V is also positive definite.

Proof. Let 2, .. oAy and py, .. -r Mg be the eigenvalues of U and V, res-
pectively.
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Then the theorem of Stephanos and Egervary (see [10]) implies that the eigen-
values of U X V are the values 4, u; (1=i=p, 1 =j=¢), consequently the eigen-
values of U X V are positive numbers. The matrix U X V is obviously symmet-
ric, which implies the assertion.

The following theorem will be proved next.

Theorem 3. Assume that A), B), C), D), E) are satisfied, and matrix
A is symmetric and negative semidefinite. Then all of the equilibrium

points of the linear oligopoly game are optimial solutions of the quadratic
programming problem:

(3.7)

%XTPX+(b—a)Tx—»max

Proof. Since the assumptions of theorem 1. are satisfied, the oligopoly
game has of least one equilibrium point, which, according to theorem 2,
fulfils (3.5). If we do not take account the condition v7z = O in (3.5), we can
easily verify that remaining relations give the Kuhn-Tucker conditions for
the concave quadratic programming problem (3.7).

Let us now consider the special case, if i; = i, =... =iy = 1.

Theorem 4. 1f assumptions A), B), C), D), E) are satisfied and i, =1
(1=k=N), furthermore matrix A is symmetric and negative definite, then the
linear oligopoly game has a unique equilibrium point, which can be obtained
as the unique optimal solution of the quadratic programming problem (3.7).

Proof. The assertion of the theorem follows immidiately from Theorem 3
and from the fact, that the quadratic programming problem (3.7) is strictly
-concave.

REFERENCES

[11 Aoki, M.: Introduction to Optimization Techniques. Fundamentals and Applications
of Nonlinear Programming. The Macmillan Comp., N.Y. 1971.
[2] Burger E.: Einfiihrung in the Theorie der Spiele. Walter de Gruyter and Co., Berlin,
1959.

[3] Frank, Jr.C. R., Quandt, R. E.: On the Existence of Cournot Equilibrium. Interna-
tional Economic Revxew Vol. 4., No. 1., 1973. pp. 92— 96.

[4] Manas, M.: A Linear Oligopoly Game. Econometrica, Vol. 40, 1972, pp. 917 —922.

[5] Opitz, O.: Spieltheoretische Aussagen in Oligopolproblem. Zeitschrift fiir National-
okonomie, Vol. 30, 1970, pp. 475 —482.

[6] Rosen, J. B.: Existence and Uniqueness of Equilibrium Points for Concave n-Person
Games. Econometrica, Vol. 33, 1965, pp. 520 —534.

[7] Szidarovszky, F.: On the Oligopoly Game. K. Marx Univ. of Economics, Budapest,
Tech. rep. 1970—1.

[8] Szidarovszky, F.: On the Group-Equilibrium Problem of the Oligopoly Game. Thesis
presented for the degree ‘‘Cand. for Math.”, Budapest, 1974.

[9] Szidarovszky, F.: On the Concave Oligopoly Problem. K. Marx Univ. of Economics,
Budapest, Tech. rep. 1976 — 1.

[10] Szidarovszky, F.: Numerical Methods of Linear Algebra (in Hungarian), Tankonyv-

kiadd, Budapest, 1972,

University of Agriculture Dept. of Computer Science
1113 Budapest, Villanyi ut 29 —35.



