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Abstract. A method for obtaining a spline function approximation for
the solution of the non-linear differential equation y” = f(x, y), where feCr,
is presented. The existence, uniqueness and convergence of the approximate
solution are investigated.

1. Introduction and description of the method

The problem of approximating the solution of the non-linear first order
differential equation with spline functions has been solved by Frank R. Los-
calzo and Thomas D. Talbot [2], [3]. The method described by them produ-
ces convergent quadratic and cubic spline approximations, but when applied
with higher degree splines, their method is divergent as it is observed from
their following theorem.

Theorem 1.1: (See [3] page 444). The solutions S, (x) are divergent as
h—0 for m=4.

Their method is applicable only if fe C?, C3 (while the method does not
succeed for fe C° and C*) and under the restriction that the step h must be
smaller than 2/L and 3/L consequently, where L is the Lipschitz constant
satisfied by f. The main convergence theorems in their method are as follows.

Theorem 1.2: (Loscalzo and Talbot). If f(x,y)€C2?in T, then there exists
a constant K such that for all h<2/L,

1S, () —y()| <Kk, |S;(x)—y ()| <K, Sy (x)—y” ()| <Kh,
if x€[0,b], provided S;’(x,) is given by:
1 1 1
SM(x,) = —|S™|x,—— h|+S™|x,+— k||, k=1,...,(n—1
030 = 5 [ 57 [y 1)+ 5t (1)

with m = 2.

3*
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Theorem 1.3: (Loscalzo and Talbot). If f(x,y)€C® in T, then there
exists a constant K such that for all h<3/L,

1S5 () —y()| <Kh,  [S3(x)—y ()| <Kh?,
1S5 () —y” ()l <Kh?, |85 (x)—y"”" (x)| <Kk,
if x€[0, b], provided S;” (x,) is given by

1 1 1
Sm(x,) = —|S™|x,—— h|+8™|x,+—h
) 2[ [“ 2 ]+ ["+2 ”
with m = 3.

More details about these theorems are found in [3].

In this paper, following the same method presented in [4] and [5] we
are going to approximate the solution of the problem y” = f(x, y) where
f€Cr and r may be any finite positive integer or zero. Also by this method
we avoid the restrictions in the above theorems and we construct spline
functions of degree =3 which approximate the solution of the problem and
converge faster to the exact solution.

For this purpose, consider the Cauchy problem in the nonlinear ordinary
differential equation

(1.1) Y () =S(xy(x)) with  y(0) = yo,

where feC" ([0,b] xR) and r is finite positive integer or zero.
If S(x) is the spline function approximating the solution of (1.1), it
satisfies

(1.2) S(x)eCrt1[o, b]

(1.3) S(x)€m,, in each subinterval [x,, x,+,],
k=0,1,...,(n=1)

where we define the knots by

(1.4) 0=xg<x;<...<X,=0b

and in our case we shall deal with equal subintervals and in this paper
we denote '

(1.5) Xep1—Xe=h, k=0,1,...,(n—-1).
Here &, denotes the set of all polynomials of degree =m,and m = 2r+3.
Furthermore, in what follows, c,, ¢, ¢, ... shall denote constants inde-

pendent of h and consequently independent of n.

In this paper too, as in our previous papers, we assume that (1.1) rep-
resents a single scalar equation, but nearly all the numerical and theoretical
considerations in this paper carry over to systems of first order equations,
where (1.1) could be treated in vector form. Moreover we shall use the Lip-
schitz condition on f to guarantee the existence of a unique analytical solu-
tion of (1.1).
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Following the same steps as in [4] and [5], our method to approximate
the solution of (1.1) will be divided into two main approximation processes,
the first of which is to obtain, numerically, the approximate values y,, y;, . . .,
yir+h, which are the approximate values of y(x),y’(x), ..., "D (x) at
X = Xx,, where k=0, 1, ..., n. Here y(x) is the exact solution of (1.1). The
second approximation process contains the construction of the spline func-
tion which approximates the solution and also contains theorems regarding
the convergence of this function to the exact solution.

Thus we start with the following.

2. The first approximation process

This chapter contains some assumptions concerning the functions f

and a method for obtaining the approximate values ¥, y;, . . ., ¥+, where
k=0,1,...,n, and also we discuss in this chapter the convergence of these

values to the exact ones.
2.1 Assumptions and procedure of the method. If

T ={(x,y)|0=x=0},
then we assume that f satisfies the following conditions
(2.1.1) f(x, y(x))eCr in
D:|x—x,| <o |y—yol<B where TcD
together with the Lipschitz conditions
(2.1.2) |f@ 0, y) =P % y) | =L |y1— el

for all (x, y,) and (x, y,) in D, where L is some Lipschitz constant and ¢ =0,
1, r

' .l'{’eré f@(x, y) denotes the g-th total derivative of f(x, y) w.r.t x using
the following algorithm:
y(n)(x):f(n_l)(x’y(x))’ n:1!2)---rr+1)

where the functions f¢™ can be calculated by means of the recurrence rela-

tion
f(o) :f’ f(m+l) :fém)_*_f\gm)f’ m=0,1,....

We also assume that f@(x, y(x)), as a function of x only in the case
of the existence of a unique solution y(x), has a modulus of continuity
o(f0), h) = w, (h).

Let y(x) be the exact solution of (1.1) with the initial conditions y(0) =
=y, and y’(0)=y,. Then by integrating (1.1) from x, to x, where x, =x=x,,,
andk=0,1, ..., (n—1), we get

(2.1.3) Y = yi+ [ St yO)at
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and by putting x = x,,, we get

Xk+1
(2.1.4) Y(Xer1) = Vier1 = Vit f J(t, y()) at
Xk
and we assume that this may be approximated by the following formula:
Xk+1
(2.1.5) Yit1 = Vit f At yk@®)at,
Xk

where y¥ (f) is defined by the expansion
. r+1 ) j,}(j)

(2.1.6) yE) = 3 (t—x)V=—, xSt=Xp4,
j=0 J!

and this expansion corresponds to the Taylor expansion

Ly AR () .
2.1.7 ) = ZE (x4 LK f oy YL
( ) y(®) jZ=0 i (t—x) (r+ 1! (t—x)
Xpe<Ep<Xpiq-

Finally, knowing that the derivatives of f(x, y) are also functions of x
and y we can define

(2.1.8) YD = F9 Xy 1 Yierr)
and
(2.1.9) YD = fD (X1 Vgr1) s

where ¢=0,1,...,rand k=0,1,...,(n—1).

We can start our calculations by using the substitutions y, = y,,
Yo=Y -, Y™ =y§™ and so we can proceed to the convergence
theorems as the following.

2.2 General convergence processes. In this paragraph we prove theorems
concerning the convergence of the approximate values ¥, 1, ¥rrq1s - - - Y
to the exact values Y(xy-1), ¥ (Xpxr1)y - - -» YV (Xi41), Where k =0, 1,
(n—1). Before proving these theorems wé start with the following lemma

Lemma 2.2.1 The inequality

Vi1 = Vet S V=Yl (L + o) + ¢y w, (R) 72
is true for all k=0,1,...,(n—1).

Proof. Using equations (2.1.4) and (2.1.5) together with the Lipschitz
condition (2.1.2) we get

Xk+1

Verr=Verr| S V=Vl +L [ ly(@®) —yi (O] dt
X
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and by using equations (2.1.6) and (2.1.7) for y¥(f) and y(f) respectively
this becomes

=|Ve—Vil +
Lk+1 roy () YD (E,) (—xy- r+ly§(j)t | at
+ I (t—x )+ — 2 (t—x) = > T (t—x
./ g:) Jj! ' (r+1) " ]é, il (=,
Xk
s s AR AP
élyk—ykluz—j——f(t—xk)fdw
j
0 Xk+1
( ;_(1;‘ f(t )r+1dt
] _ r+1 L r+2 I
= [ - + r
Ve— Vil + ,é;)( ) Vi Jkl r+2) w, (h)
(@)
=il + LA |y~ + L 3 LI =SP0G0 YN pra
q=0 (g+2)
h
iz ®

applying the Lipschitz condition (2.1.2) once more this will be

hat2
=YYl t LA |y =Yl + L% |y — yklz( o) w, () 2
q=0 :

==l A+ +e o () HF2
which is the required result.

Theorem 2.2.1 The convergence of the approximate value y,., given
by the formula (2.1.5) to the value of the exact solution of (1.1) at x,,,

is given by the inequality
|Vis1— Vi1 Sz 0, () B2
which holds for all k=0,1,...,(n—1).
Proof. By successive substitutions for |y;—¥;| from the lemma 2.2.1,

where [ takes the values k+1,k,k—1,...,3,2,1 respectively we get

‘yk+1;}_1k4-1| =|y— ykL(l +¢o h) +¢; w, (h) b2

196l (140 ) Vi =Tl (1 coh?+cy o, () I+ (1 +¢0 )

Vi1 yk | (Lo hP = 1Yo = Vil (1o 1)* + ¢y o, () T2 (1 + ¢, h)?

[IA 1A

= +

= +

. = +
\J’x—yll(l‘*‘coh)k =

[Yo—¥ol (L4 co ¥ +ey e, () hF2 (1 +¢o B)*
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and the result will be

K
[Vit1 = Vir1l = [Yo—Yol (1 +coA)¥ T +¢; o, (R) A72 3 (14coh)]

j=0
and by taking into consideration that y, = y, we get
k
[Vir1 =Vl = o (A2 3 (1+¢oh)
j=0
h)k+1 —1

(h) hrte (1 +CO

= Cl w,

coh
= o (W {1+ 1)

0

and by knowing that
n
(I+coh)ktt = [1 + bc0] [1 +ﬂ] =e¢b% = constant
n n

we get the required result which completes the proof.

Theorem 2.2.2 The error of YD given by the formula (2.1.9) is
estimated by the inequality

YD -y = o, ()R, ¢=0,1,...,r
which holds for all k=0,1,...,(n—1).
Proof. From the equations (2.1.8) and (2.1.9) we get
YD =YDl = 1P Kier 1o Vir 1) =@ K1 Vi) |
applying the Lipschitz condition (2.1.2) this will be
=L |Yis1— Vil
and by theorem 2.2.1 this becomes
=¢ L o, (h)h+?
=c, w,(h) "

and thus the proof is complete.

3. The second approximation process

We have obtained, as we have seen before, the sets of the approximate
values

YO 30,50, .. 39 g=0,1,...,r+1

which are corresponding to



SPLINE FUNCTIONS AND THE CAUCHY PROBLEMS, III. 41

Y@y y@ 9@ g=0,1,...,r+1

respectively. In this chapter and on the bases of those sets of approximate
values we are going to construct a spline function S,(x) interpolated to the:

set ¥ on the mesh 4 and approximating the solution of (1.1) and also we
shall discuss the convergence of this function to y(x).

3.1 The construction of the spline function. In this paragraph we in-
troduce the spiine function which approximates the solution of our diffe-
rential equation and so we introduce the following theorem.

Theorem 3.1 For a given mesh of points
A:0 = Xg<Xy<...<Xp<Xpy1<...<Xp,=Db,
Xpy1— X = h
and for given sets of values
Y@:5@, 9@, ..., 59 q=0,1,...,r+1

there is a unique spline function S,(x) interpolated on the mesh 4 to the-
set Y and satisfying the following conditions

(3.1.1) S4(Y,x) = S4(x)eC 1[0, 0]

(3.1.2) SD(x) =y, SD,(x,) =¥ ¢=0,1,...,r+1,
k=0,1,...,(n—1).

For x,=x=x,,, and k=0,1,...,(n—1)
r+1 =(j) r+2

(3.1.3)  Sa(x) = S (x) = 2 y]k| (x—x ) + 2 a;k) (x—x,)ptret,
j=0 4 p=1

Proof. From the continuity condition (3.1.1) and by using (3.1.1) for-
X = X,,, we get

(3.1.4)  SP(xp41) = S (4r1) = Y1y k=0,1,...,(n—1),
=0,1,...,r+1.

Substituting from (3.1.4) in (3.1.3) we get the system of equations

r+2
p=

rel—t ~(j+t)
(3.1.5) = pi-r2 [ﬂ”ﬂ -3 X hf] = F®,
j=o !
where £ =0, 1, ...,r+1 and this system of equations (3.1.5) has a unique:

solution for the unknowns a'®,(p = 1,2, ...,r+2), since its determinant is.
p P
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D, =
1 h hp-1 hrr
(r+2]1! [’+3] 1 h ...{’“”)1!1#7—1 T en

1 1 1 1
.
T2, (r+” an TP e ...[2r+3]2!h’+1
2 2 2 2

r+2 r+3 r+1+p 2r+3]
+ 1) MWn... + 1D hP-1 [, 1) AT+t
[rJ,—l](r )(r+1)(’+ hh [ r+1 ](' ) (r+l,(r+ )

1 r+1
=h——(r+1)(r+2) J] 1,
2 =0
which is different from zero for h>0. If we replace the p'* column in D,
by the column (F®, F®, ..., F%)) and denote the determinant results

by D7, then the solution of the system (3.1.5) will be

D?

(3.1.6) @ = 5

, p=1,2,...,r+2

r

and after factorizing DY in terms of F{®, F®, ..., F%) the solution (3.1.6)
will take the form

1 r+1
(3.1.7) ald = pre S FR, p=1,2,...,r+2

i=0

and this solution, as we have said before, is unique. The uniqueness of this
solution guarantees the uniqueness of the spline function S,(x) and conse-
quently the existence of such a function and thus the theorem is proved.

3.2 Convergence of the spline function to the solution. In this paragraph
we prove the essential theorem concerned with the convergence of our spline
function constructed in theorem 3.1 to the exact solution of (1.1), and also
we prove that this function satisfies this differential equation as n— oo

Theorem 3.2.1 Let y(x) be the solution of the equation (1.1) and let
f€CT([0,b]xR). If S4(x) is the spline function constructed in theorem 3.1,
then there exists a constant E independent of & such that

1Y@ (x) = SP ()| =E w, (h) 174

for all x¢[0,b]and ¢=0,1,...,r+1.
For the proof of this theorem we are in necd to prove the following
lemma.

Lemma 3.2.1 The following inequalities are true
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AP
gl ==T o (h), p=1,2,...,r+2,

where A, are constants independent of h.

Proof of the lemma. For the proof of this lemma we deduce at first
some inequalities concerning the absolute value of F®¥(t =0,1,...,r+1).
They are calculated as follows.

From (3.1.5) we have

r+1—t 5(j+t)
P pu Vi
ROl = R = 3

j=o !

and if we define the Taylor expansion of y® (x) for x, =x=x,,, to be

hi

y(]f (r+1)(§ ) 1
(B.2.1) yOx) = Jgo i (x— x)f+( +l_;‘;! (x —x,)rti-t

and x, <&, <x;4,, then we get for x = x,,,

r—t Y+ (r+1) (£
(3.2.2 0 = sV gy i) preii—t
( ) Yi+1 Jé') i r+1—1)
where t =0,1, ...,r+1.

Using the last identity (3.2.2) together with (3.1.5) we get for
t=0,1,...,r+1

=2yl + 3

+ Iy('+1)(§/t) y(r+1)| hr+1—t]
(r+1-1t) '

Using theorems 2.2.1, 2.2.2 together with the definition of the modulus of
continuity this will be
|E®| = h-r+2 {cf w, (h) 1Y,

where ¢f((=0,1,...,r+1) are constants independent of 4 and so we
have the result that

i+t _ i+
! 1Yk y | iy

(3.2.3) |F,(")|§c,*w’T(h), t=0,1,...,r+1.

Now after obtaining the last inequality, we go on to prove the lemma
3.2.1, and for this purpose we combine equations (3.2.3) with (3.1,7) to get

r+1 h
]a(pk)[ 2 Cpl Ct ( )
h
=A wr(h) ,

=4
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where A, (p=1,2,...,r+2) are constants independent of & and thus
the proofxs complete

Proof of theorem 3.2.1.
By using equations (3.2.1) and (3.1.3) we can get

@ -5p@l = |3 W oy 220G e gyana

j=o J! (r+1-9)
r— Qy(]+q)

yir+1)
(x—x) = L (r—xy e
=T (r+1-9)

_ rg g [p+r+ 1 ] alh (x — x,)p+r+1=a
q

_ gl Iy(1+q)__y(1+q)[ it |y (Eig) —yir 9| fr+i-a 4
P ! r+1—g¢g)
N r§q! [p+r’+ l] ]a;k)] hpHri—q
p=1

Using theorem 2.2.1, and 2.2.2 together with the definition of the modulus
of continuity w,(h) and the lemma 3.2.1 respectively this will be

=c* o, (W),
Taking E = max c}*, where ¢=0,1,...,r+1, we get
Y@ x) - SF ()| = E o, (W) Ir+1-4

and thus the proof of the theorem is complete.

At the end we shall estimate the error by which the constructed spline
function, approximating the soiution, S,(x) fails to satisfy the differential
equation. Hence, we introduce the following theorem:

Theorem 3.2.2 If S’ (x) denotes the function
Sa(x) = f(x, S4(x))»

where S, (x) is the spline function introduced in theorem 3.1, then for any
x€ [0, b] we have

[Sa) - Ss)| =M o, (B I,
where M is some constant independent of h.
Proof. We have

S4(x)—S4(x)| =S — 84 (%)
= /(% Sa () =1 (% y())| + 1y’ (x) = S4(x)] »
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applying the Lipschitz condition on f this will be
=L[Ss() =y + 1y (x) = Sa ()] »
applying theorem 3.2.1, this becomes
=LE o, (h) P 1+ E w,(h)h"
=Mow,(h)h,
where M is some constant independent of h, and thus the proof is complete.

Remark: In the case when fcC= [0, b] we can choose r to be finite in
such a way that the error will be in the allowable range, because as we have
seen in the convergence theorems, the error is O(h"**). Also in practical appli-
cations if f€ CT [0, b], where r is large finite number, it is enough to choose a
suitable smaller r in the sense that the error will be in the allowable range.
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