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1. Let
a, a, 1 ]
a, a a; 1
1 a a, a 1
(1.1 B, =

a,
1 a aq

denote a five diagonal Symrﬁetric Toeplitz matrix with real elements. Our pur-
pose is to give a rapid method for the determination of its exgenvalues and
eigenvectors.

The determination of the eigenvalues will be reduced to the computation
of the roots of easily expressible polynomials. The components of the eigen-
vectors are simple functions of the corresponding eigenvalues. Our method
is more simple than that can be achieved by a direct recursion formula for the
characteristic polynomial of B,.

It is obvious that, if B, has the eigenvalues 4,, ..., 4,, then the eigen-
values of B, +hl are A,+h, ..., A, +h, and the corresponding eigenvectors
remain unchanged. Therefore we may translate a, as we want.

We choose
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ai+8
(1.2) ay = IT
2. If 1 is an eigenvalue and xT = (x,, ..., x,)T a corresponding eigen-

‘vector, then the following equations are satisfied:

(2.1) {xi—2+al Xi—1+(@Go—A) X+ X; 11+ X4, =0
i=12,...,n,
‘where
(2.2) [ X%o=%1 =0,
Xps1 = Xpez = 0.
Then we can extend the sequence x_;,Xg ... X1, X, SO that (2.1)

hold for every integer i.
Conversely, if the difference equation

[Xira+ @ Xio1 + (Ao —A) X;+ 8, Xi 11+ X4 = 0

@3 li=...,-1,01,...
has a non-trivial solution {x;} with the conditions (2.2), then 2 is an eigen-
'value and (x,, ..., x,)T a corresponding eigenvector of B,,.
3. Let
(3.1) P@)=1+a,z+(ay—A)2+a, 3+24
be the characteristic poiynomial of (2.3). We have
(3.2) (p(w)i?=w2+alw+(ao-2—}.),
‘where
w=z+1]z.

Let W, W, be the roots of ¢(w). Observing (1.2) we have
{(3.3) W= -4yz, w=-%_y1.

2 2
Let ©,,071,0,, ;! be the roots of P(z). Then
(3.4) 0,+0;1 =W, (i=12)
hold. Let 0,( = (s,(A)) denote the hth powersum of the roots of P(2), i.e.
(3.5) o, =01+07"+05+0;1.
We have the recursion relation
{3.6) (.)fiz+1 + @i_(h+1) =W, [@? +07" - [@liw—l + @i—-(h—l)] .

Now we define the polynomials g;(K) by
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gir1(K) = [—%+K]gj(K)—gj—1 (K),
3.7)
Bo(K) =2, g, (K) = =L +K.

‘Comparing (3.6), (3.7) we have
(3.8) on(A) = g, (VY2) +2,(-V2).

4. Let J denote the reverse transformation in the n-dimensional space,
i.e. transforming (yy, ..., y,)" to (V. ..., y)7. From the symmetry of (2.1),
(2.2) immediately follows that, if 1 is an eigenvalue and x 1s a corresponding
-eigenvector, then Jx is an eigenvector, too. Let L denote the subspace of the
eigenvectors of B, that correspond to a 2. We have that JL< L. It is obvious
that the dimension of L is at most two, since the values x,, x, (with x, =
= x_, = 0) determine all the other components x, in (2.3). We shall prove
that for all eigenvalue 4 corresponds only one eigenvector, apart from some
special a,. If the eigenspace L is of dimension one, and Xx€ L, then Jx = ax,
and from J2? = [ it follows that « = 1 or — 1. We shall use this property for
the investigation of the solution of (2.1).

5. Let us suppose that for the eigenvalue 2, there exist two independent
eigenvector. Assume that the roots of P(z, 4,) are distinct. The general solu-
tion of (2.1), (2.2) has the form

(5.1) Xp =€ 08+¢,07"+¢,08+c,0;",

where ¢;, ¢,, 3, ¢4 are suitable constants. Since there are two eigenvectors,
we have that the rank of the matrix

ot 0, ;1 0,
1 1 1 1

@rlz+1 @1_("+1) @g+1 @2—(n+1)
@iu+2 @l—(n+2) @rzwz @2—(n+2)

is two. Let T, T, T, rT denote the corresponding row vectors of it. It is
obvious that r,, r, are independent, and so

(5.2) r; = Ar, +Br,,
(5.3) r, = Cr,+Dr,,
where A, B, C, D are suitable constants. From (5.2) we get that
(5.4) Optl= AO;'+B, 07"V =A0,+B (i=12),

whence, by multiplying these equations,
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1=(A0;1+B)(AO,+B)= A2+ B2+ ABw, (i=1,2)
follows. Consequently (si\nce W = W,)
A2+B2—-1=0, AB=0,

that has the solutions (A4, B) = (0, —1), (0, +1), (=1, 0), (+1,0). Subs-
tituting this into (5.4), we get the corresponding relations:

ort2= -1 (i=1,2); or2=+4+1 (i=1,2);

Ortl= -1 (i=1,2); ortrt= 41 (i=1,2).
Similarly, (5.3) has the solutions (C,D)= (0, —1), (0, +1), (-1, 0)
(+1,0) and the relations @73 = —1, O3 = 41, 2= —1, OP*2 =
= +1 hold respectively. The equations (5 2), (5.3) hold snmultaneously

only if @}72=1(j=1,2), or 0} = — .
In the first case

k;
(5.5) O; = exp [2:11 —+2—] (=12,

where k,, k, are integers satisfying the conditions:

(56) O<lymnt1, ky=hy kythy=n+2, k="T2

(G=12).

On these conditions

a, = —(wy+w ‘=—2[cos2n +cos 2w —2 4,
[1 (0 +ws) \ n+2 n+2 |

2
A =|cos 2% ky —cos 27 ky ] }
n+2 n+2

In the second case

(5.7)

(5. 8) 0, = exp [an 1,2),

l E
2(rz+2)] U=

where [, [, are integers satisfying the conditions

(5.9) L+ 1,2 (n+2),

{11,12 odd ..

On these conditions
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a, = — 2{cos 27 1714- cos 27

ly
(5.10) 2(n+2) 2(n+2) }

2
A= [cos 27:—11*— cos 2w i—] .
2(n+2) 2(n+2)
The determination of the corresponding eigenvectors is almost straighforward.

" 6. Let now suppose that 4, is an eigenvalue having only one eigenvector
X. Then JX = ax (e =1 or —1). Suppose that the roots of P(2) = P(z, 4,)
are distinct. Then x, has the form

(6.1) Xp=6004+¢, 07"+ ¢, 0% +¢, 0,1,
where ¢y, ¢,, €3, ¢4 are not identically vanishing Suitable constants. Observ-
ing that x,.,_, = aXx, for every h, we get
€3 =ac, O, ¢, =ac, OFFL.
So we have
X = 0 [0] +a 0717 46, [ 0]+ OF 1]

If x=x, =0, then x,,; = x,4+, = 0. The conditions x, = x, = 0 hold if
and only if the determinant
-1 n+2 —1 n+2
D, (0,, 0,) = det Ot +a0; O;"+a06;
l+a@pt? l1+a@pt?

is zero. \ .
Furthermore, taking 6, -0;!, 0,~60;' we get that the conditions
Xo = Xy = 0thold if and only if o
D.(67%,6;1) =0,
or if and only if

62) R.() = D.(0, 0,)-D. (07", 67

is zero at A = A,.

So we have proved the following assertion. If for a 4, the roots of
P(z, 4,) are distinct and the corresponding eigenspace is one-dimensional,
then 4, is an eigenvalue of B, if and only if R.(4,) =0 for « =1 or —1.

By an easy calculation (multiplying the determinants by the row by
row rule) we get:

(6.3) R.(A) = (4+a0,ip) (4 +ag,yy)—(0ytxa,,).

7. Now we discuss the cases, when P(z, 1) has a multiple root.
A) Wo=W,=2. -
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In this case a, =0, a,’= 2, 2 =4 and the corresponding difference equa-
tion has the form:

Xpp0—2%X,+X,,,=0 (r=1,...,n)
Xo=X_1=0, X,4;=%X,4,=0.

Considering this separately for odd and even indices, we see immediately
that this has no non-trivial solution.

B)W=W,=2or -2.
In this case A=0, a, =6 and a, = F4. Then P(z, ) has the root 6 =

= 41 with multiplicity 4, the general solution of the corresponding dif-
ference equation is

(7.1) Xy = [e+Ca h+cy 2+, 1] OF

To the fulfilment of x_;, = x, = x,,,; = X4, = 0 it needs that the third-
degree polynomial on the right hand side of (7.1) vanished at h =0, —1,
n+1, n+2. Consequently x, vanishes identically, there is no eigenvalue.

C)W =W, (# £2).
Now the general solution of (2.3) has the form
Xp=(c1+c3h) O+ (c+¢c, ) O,

0+1/0 =W,.
There is an eigenvector if and only if the determinant
6t -0 () -6
1 0 1 0

D(®) = det
@n+1 (n+1)Or+1  @-+n (n+1)@-+D)

On+2 (n+2)@r+z @-(n+2) (n+2)@—(n+2)
is zero. After an easy computation we get |
D(O) = 04+ O-Crt) —(n+2)2[0%24+ 0 2]+2(n+ 1) (n+3).

o a, . .
Since in our case W, = ——51- is real, therefore ® must be real or unimo-

dular.
Let @ be real. Observing that D(®) = D(—®) = D(1/60), we may
assume that @= 1. By the substitution ©2 = ¢*(z=0) we have

D(©) = (n+2)t)—(n+2)2I(z),
where
l(x) =e+e7—-2.
Considering the power series expansion at 7 =0 of /(r), we get the in-
equality
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((n+2)7)>(n+2?(r) (v=0).

So all the real solutions of D(@) =0 are ©® = £+ 1. Let now O = €% (¢
real). We have

D(ef®) = 2(n+2)*[1 —cos 2p] —2[1—cos (2n+4) ¢]
= 4(n+2)?sin2p—4sin?(n+2) ¢,
and so
D(e'?)=0

for 0.
There is no eigenvalue.

D)W, =2,W= +2.

In this case
2
W,= —a,—-W, = —a,—2, ag—4 = —2(l +a,), 2=4+2a1+%.

Now the general solution of (2.3) has the form
(7-2) xh=Cl+03h+02@h+C4@"h (@'{'1/@:%).

Suppose that there are two independent eigenvectors. Then the rank of th
matrix

1 -1 e 0
1 0 1 1
1  n+4l @rtr @Gty
1 n+2 @7tz @-(n+2)

is two. Let 8T, 8T, 9T, 8T denote the row vectors of it. It is obvious that
9, #, are independent. Suppose that

193= A191+B'02.

Considering the first two components, we get A = —(n+1), B = (n+2).
Furthermore, by substituting the last two components, we have

Ortl= AO1+B, O-0tD = AO+B,
whence, by multiplying them, 1 = A%+ B%*+ ABW,. Observing that
A*+B*—1=2(n+1)(n+2), AB= —(n+1)(n+2),
we get W, = 2. This case was above considered. Now-we-have that

Xpy1-n=aX, (e=1or —1).
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We get
0=2xXp4y-p—axy,=[(1-0)e,+(n+1) ] +[—cz—acs]h+
+[c, @ PtV — 0, ] O+ [c, O —ac, ] OH
First we consider the symmetric case: « = 1. Then ¢; = 0, ¢, = ¢, ®**! and
0=x_,6+¢[01+67+2],
0=2xy=c,+c,[1+0O"11].

This has a non-trivial solution if and only if @-1+6"*2 = 1+4+6"1?, j.e

if @"*2 = 1. In this case W, = 2 cos 2’”; (k=0,...,n). We must give
n+
n+2 . .
upk=0,and k = for even n. In the other cases of k, 4 is an eigen-
value:

2
l=4+2a1+ﬁ, a, = —2[1+cos 2k”].
4

n+2
Let now consider the unsymmetric case: « = — 1. Then 2¢; +¢;(n+1) =0,
€, = —¢, 0", and from x_; = 0, x, = 0 we get that the condition
n+2 _ (@—1
u(@) = det |"T3 OO _
+1 6Or*ti—]

holds, if 1 is an eigenvalue. By a simple computation we can prove that
u(@)=0 if O is real and O= 1, — l.g‘aking O =7 (0<gp<m) we get

n+1

u(@) = 2i0 2 [(n+3)sir'i’('n+1)%—(n+1)sm(n+3)%],

Let
L(n) = (n+3)sin(n+1)n—(n+1)sin(n+3)n.

It is easy to see that in the interval [O, %] L(n) has k distinct roots, where

k= 2[n+2]+ln’

—1"if n+2=0(mod 4)
0 if n+2=1(mod4)
0 if n+2=2(mod4)
1 if n+2=3(mod 4)
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Let n;<...<m, denote these roots. Then u(e!"2)=0 (j=1,...,k,),
and the corresponding 4 is an eigenvalue.

E)W = —2, W, +2.

There is a connection with the case D). Suppose that for some (a, =) a¥ we
get an eigenvector y = (y,, ..., y,)T. Then

W,=2—a¥ af—-2A= —2[1—-a¥]
and

yj—2+af}’j—1_2(1 _af)}’j+af)’j+1+y1'+2 =0 (j=1,...,n)
Y-1=Y0=Ynt1=Yns2=10.
If we take x; = (—1)/y;, then
Xjoat(—a¥) X =2 [l +(—aP)]x;+(—af) x4, +X;,, = 0.
Thus for taking a, = —af, we get the case D).

2 ANNALES — Sectio Computatorica — Tomus I.








