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1. Introduction. In this paper we shall outline a method for the compu-
tation of the eigenvalues of band Toeplitz matrices. By this method we can
determine their eigenvectors as well. In a forthcoming paper we shall report
on the stability of the method and some numerical experiments concerning it.
Previously we have worked out a method for the symmetric five diagonal
case.

2. Reduction of the problem for finding the roots of a polynomial.

Let

D, - - - D, -

@.1) B,=|®, o,

I T §

= q

be a band Toeplitz matrix of order n. We assume that its elements are comp-

lex numbers.
It is obvious that A is an eigenvalue of B,, if and only if the difference:

equation

Poxi—gt o+ P X+ (Do— ) X+
(2.2) +¢_1x,-+1+-..+¢_px,~+p=0 i= l,.-.,n
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with the conditions
(2.3) { Xp= . =X_q=0
Xp41 = +++ =Xp5, =0

has a non-trivial solution. Then the solution vector (x,, ..., x,)T is a corres-
ponding eigenvector. A solution of (2.2) satisfying (2.3) can be extended so
that

¢qxi—q+ cee +(D1xi—1+((po_}')xi+
(2.4) +P_ Xyt AP pX5, =0

hold for every integer i. )
We know the form of the generalsolution of (2.4).

Let
(2.5) P(z2)=P@) = 5 b_ 2+,
i==q
26 5, _ {q),‘ it k=0
®,—2 if k=0

be the characteristic polynomial of (2.4).

Suppose that 2, is an eigenvalue of B,. Let w;, w,, ..., w, be all the
distinct roots of P(2; 4,) with the corresponding k,, k,, . .., k, multiplicities.
Then the general solution of (2.4) can be written in the form

| 1
(2.7 '. xp= > Q;(h)-wh,
i j=1
where i
1 k.—1
(2.8) ! Qj'(h) = c,-_j-h'
i=0

is a polynomial of degree k;— 1.

Let R denote the set {l—¢,...,0, n+1,...,n+p}, letr = p+q, and
the r-dimensional vectors y,, ¢ be defined by

2.9) yF =W RWE, oL R YW, L W RWE, L R W
(2.10) €T =[co1s -« s Chy=1,1y -~ s Copr + - +» Chyp—1,1] -
By this notation we can write

Xp = (Ym ©)»

where (, ) denotes the scalar product. Thus the relations (2.3) can be writ-
ten as

(2.11) (ywec)=0 heR.
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(2.11) has a non-trivial solution ¢, if and only if the dimension of the space
spanned by the vectorials y, (h€ R) is smaller than r, i.e. if the Gram-deter-
minant of y, (h€ R) is zero:

def .
(2.12) -G({yn}) = det |(Yn Y)lnker =0.

For the computation of the Gram determinant (allowing the existence
of multiple roots) the knowing of the roots W, ..., W, is needed. Assuming
that the roots of P(z, 4,) are simple, we get the more convenient form:

(213) YZ= [Wl) ...,W,];
(2.149) T =[cy--he]-
Furthermore we have that
(2.15) (Yn Yi) = Onsrcs
where
r

(2-16) o = ZW}.

j=1
So we get
(2.17) G({y}) = det |on kln ker -

In what follows, for a general A let R(4) be the determinant

def
(2.18) det IU'h+k|h,kER (= R(l)) ’

where o; = o;(4) denotes the j th powersum of the roots of P(z, A).

It is obvious that R(2) is a polynomial of A. For the computation of its
zeros we can use any of the root-finding methods.

It is well known that if P(z, 1) has a multiple root, then the discriminant
D(2) of it must be zero. D(2) is a polyromial of degree 2(p+¢)— 1.

So we can go on the following way. First cémpute the roots of D(2),
and for every root A determine the roots of P(z, 4).. After then, by computing
(2.12) we decide that whether 4 is an-eigenvalue. !

The other eigenvalues of B, must satisfy the relation R(4) = 0.

3. Recursion formulas for o,.
If we want to compute the roots of R(1), we must to compute ¢; = o;(4) for
many 2 and for indices j = h+k, h, k€ R. To take this easy, we can use the
Newton — Girard formulas.
We consider the polynomial
def p b r
Q) = M = 2 &_zﬁq = > s, 2Ttk
D i=—q ()] k=0

-p -p

where
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By taking
— (— 1) —
G.1) {ak—( s, (k=1,...,r)
a, =1
the Newton — Girard formulas give that
(3.2) {O'j+(110’j__1+...+aj_101+faj=0 (i=1,-..,r).
o‘,+j+(110',+j_1+...+aro’j=0 (j= 1,2,...

We can deduce similar formulas for o_;. Since

Q@) = [T z—w),

j=1
therefore

ZQ(l/z) = a, [T (z—1/w)).
j=1
Since o_; = 3 (1/w))/, therefore by

= ('l)kh

r
we get

o_j+afo_j_p+t...+af,0+jar=0 (j=12,...,1)
3.3) '
a_(,+j)+a’1"a_(r+j_1)+ e +a;k O’_j =0 (] =1, 2, .. .).
If we use Newton— Raphson method for searching the roots of R(4), we
must compute the derivative of o; = ¢;(%), too. We have

(=1)y ;"’, it »=p,

a, = P
(=1p °'1, if v=p.

\ _p
(—l)"’" —V+q’ if V#q,

a* = ik
(_1p3°i, if v=gq.

ds_P

We see that only the coefficients a,, aF depend on 4, and
da,(A) (—1)p*1 daf(d) (—1)p*1

da S D, da ?,
So, by differenciating the Newton — Girard formulas, we get
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oita,0i ... +a,01=0 (G=12,...,p-1)

, , , _1 p+1
0p+alo'p_1+...+ap_lal+u =
-P
; , ,, (=1)pHt .
0ita 0, +... +aj_lal+T 0,,=0 (j=p+1,...,1),
-p
, ’ ’ (_l pti .
0',+j+(110',+j_1+...+a,0‘j+ GQ'H:O (l= 1,2,...)-
-p

Observing that ¢; = ... = o,_; = 0, we can write the previous recursion

formula in the form
;=0 (j=1,2,...,p-1)

—1)
o, = (=DFp
2,

’ ’ ’ —1)pt1 .
orj+alorj_1+...+aj_pop+£qj)—aj_,,=0 G=p+1,...,1)
-»p

(=1

U';+j+a10';+j_1+...+a’0}+ O'q+j=0 (j=1,2,...).

-p
We can deduce similar formula for the derivatives of o; with negative
indices.








