COMPUTATION OF THE EIGENSYSTEM OF TOEPLITZ BAND MATRICES

By

I. KÁTAI and E. RAHMY

Department of Numerical Methods and Computer Science of the L. Eötvös University, Budapest

(Received November 4, 1976)

- 1. Introduction. In this paper we shall outline a method for the computation of the eigenvalues of band Toeplitz matrices. By this method we can determine their eigenvectors as well. In a forthcoming paper we shall report on the stability of the method and some numerical experiments concerning it. Previously we have worked out a method for the symmetric five diagonal case.
- **2.** Reduction of the problem for finding the roots of a polynomial. Let

$$(2.1) B_n = \begin{bmatrix} \Phi_0 & \cdots & \Phi_{-p} \\ \vdots & \ddots & & \ddots \\ \vdots & & \ddots & & \ddots \\ \Phi_q & & & & \Phi_{-p} \\ \vdots & & & \ddots & & \ddots \\ \vdots & & & & \ddots & & \ddots \\ \vdots & & & & & & \ddots & & \ddots \\ \vdots & & & & & \ddots & & \ddots \\ \vdots & & & & & & \ddots & &$$

be a band Toeplitz matrix of order *n*. We assume that its elements are complex numbers.

It is obvious that λ is an eigenvalue of B_n , if and only if the difference equation

$$\Phi_{q} x_{i-q} + \ldots + \Phi_{1} x_{i-1} + (\Phi_{0} - \lambda) x_{i} + \Phi_{-1} x_{i+1} + \ldots + \Phi_{-p} x_{i+p} = 0 \quad i = 1, \ldots, n$$
(2.2)

with the conditions

(2.3)
$$\begin{cases} x_0 = \dots = x_{1-q} = 0 \\ x_{n+1} = \dots = x_{n+p} = 0 \end{cases}$$

has a non-trivial solution. Then the solution vector $(x_1, \ldots, x_n)^T$ is a corresponding eigenvector. A solution of (2.2) satisfying (2.3) can be extended so that

(2.4)
$$\begin{aligned} \Phi_{q} x_{i-q} + \dots + \Phi_{1} x_{i-1} + (\Phi_{0} - \lambda) x_{i} + \\ + \Phi_{-1} x_{i+1} + \dots + \Phi_{-p} x_{i+p} = 0 \end{aligned}$$

hold for every integer i.

We know the form of the general solution of (2.4). Let

(2.5)
$$P(z; \lambda) = P(z) = \sum_{i=-a}^{p} \tilde{\Phi}_{-i} z^{j+q},$$

(2.6)
$$\tilde{\boldsymbol{\Phi}}_{k} = \begin{cases} \boldsymbol{\Phi}_{k} & \text{if } k \neq 0 \\ \boldsymbol{\Phi}_{0} - \lambda & \text{if } k = 0 \end{cases}$$

be the characteristic polynomial of (2.4).

Suppose that λ_0 is an eigenvalue of B_n . Let w_1, w_2, \ldots, w_l be all the distinct roots of $P(z; \lambda_0)$ with the corresponding k_1, k_2, \ldots, k_l multiplicities. Then the general solution of (2.4) can be written in the form

(2.7)
$$x_h = \sum_{j=1}^l Q_j(h) \cdot w_j^h,$$
 where

(2.8)
$$Q'_{j}(h) = \sum_{i=0}^{k_{j}-1} c_{i,j} \cdot h^{i}$$

is a polynomial of degree $k_i - 1$.

Let R denote the set $\{1-q, \ldots, 0, n+1, \ldots, n+p\}$, let r=p+q, and the r-dimensional vectors \mathbf{y}_{p} , \mathbf{c} be defined by

$$(2.9) \mathbf{y}_h^T = [W_1^h, h W_1^h, \dots, h^{k_1-1} W_1^h, \dots, W_l^h, h W_l^h, \dots, h^{k_l-1} W_l^h],$$

(2.10)
$$\mathbf{c}^T = [c_{0,1}, \ldots, c_{k_1-1,1}, \ldots, c_{0,l}, \ldots, c_{k_l-1,1}].$$

By this notation we can write

$$x_h = (\mathbf{y}_h, \mathbf{c}),$$

where $(\ ,\)$ denotes the scalar product. Thus the relations (2.3) can be written as

$$(2.11) (y_h, c) = 0 h \in R.$$

(2.11) has a non-trivial solution \mathbf{c} , if and only if the dimension of the space spanned by the vectorials \mathbf{y}_h $(h \in R)$ is smaller than r, i.e. if the Gram-determinant of \mathbf{y}_h $(h \in R)$ is zero:

$$(2.12) G(\{\mathbf{y}_h\}) \stackrel{\text{def}}{=} \det |(\mathbf{y}_h, \mathbf{y}_k)|_{h, k \in \mathbb{R}} = 0.$$

For the computation of the Gram determinant (allowing the existence of multiple roots) the knowing of the roots W_1, \ldots, W_l is needed. Assuming that the roots of $P(z, \lambda_0)$ are simple, we get the more convenient form:

(2.13)
$$\mathbf{y}_h^T = [w_1, \dots, w_r],$$

$$\mathbf{c}^T = [c_1, \dots, c_r].$$

Furthermore we have that

$$(2.15) \qquad (\mathbf{y}_h, \mathbf{y}_k) = \sigma_{h+k},$$

where

$$\sigma_l = \sum_{j=1}^r w_j^l.$$

So we get

$$G(\{\mathbf{y}_h\}) = \det |\sigma_{h+k}|_{h, k \in \mathbb{R}}.$$

In what follows, for a general λ let $R(\lambda)$ be the determinant

(2.18)
$$\det |\sigma_{h+k}|_{h,k\in\mathbb{R}} \stackrel{\text{def}}{=} R(\lambda),$$

where $\sigma_i = \sigma_i(\lambda)$ denotes the j th powersum of the roots of $P(z, \lambda)$.

It is obvious that $R(\lambda)$ is a polynomial of λ . For the computation of its zeros we can use any of the root-finding methods.

It is well known that if $P(z, \lambda)$ has a multiple root, then the discriminant

 $D(\lambda)$ of it must be zero. $D(\lambda)$ is a polynomial of degree 2(p+q)-1.

So we can go on the following way. First compute the roots of $D(\lambda)$, and for every root λ determine the roots of $P(z, \lambda)$. After then, by computing (2.12) we decide that whether λ is an eigenvalue.

The other eigenvalues of B_n must satisfy the relation $R(\lambda) = 0$.

3. Recursion formulas for σ_l .

If we want to compute the roots of $R(\lambda)$, we must to compute $\sigma_j = \sigma_j(\lambda)$ for many λ and for indices j = h + k, h, $k \in R$. To take this easy, we can use the Newton – Girard formulas.

We consider the polynomial

$$Q(z) \stackrel{\text{def}}{=} \frac{P(z,\lambda)}{\Phi_{-p}} = \sum_{j=-q}^{p} \frac{\tilde{\Phi}_{j}}{\Phi_{-p}} z^{j+q} = \sum_{k=0}^{r} s_{k} z^{r+k},$$

where

$$s_k = \frac{\tilde{\Phi}_{r+k+q}}{\Phi_{-n}}.$$

By taking

(3.1)
$$\begin{cases} a_k = (-1)^k s_k & (k = 1, ..., r) \\ a_0 = 1 \end{cases},$$

the Newton-Girard formulas give that

(3.2)
$$\begin{cases} \sigma_j + a_1 \, \sigma_{j-1} + \ldots + a_{j-1} \, \sigma_1 + j \, a_j = 0 & (j = 1, \ldots, r) \\ \sigma_{r+j} + a_1 \, \sigma_{r+j-1} + \ldots + a_r \, \sigma_j = 0 & (j = 1, 2, \ldots \end{cases}.$$

We can deduce similar formulas for σ_{-i} . Since

$$Q(z) = \prod_{i=1}^{r} (z - w_i),$$

therefore

$$z^r Q(1/z) = a_r \prod_{j=1}^r (z - 1/w_j).$$

Since $\sigma_{-i} = \sum (1/w_l)^j$, therefore by

$$a = (-1)_k \frac{s_{r-k}}{a_r}$$

we get

(3.3)
$$\sigma_{-j} + a_1^* \sigma_{-(j-1)} + \ldots + a_{j-1}^* \sigma_{-1} + j a_j^* = 0 \quad (j = 1, 2, \ldots, r)$$
$$\sigma_{-(r+j)} + a_1^* \sigma_{-(r+j-1)} + \ldots + a_r^* \sigma_{-j} = 0 \quad (j = 1, 2, \ldots).$$

If we use Newton – Raphson method for searching the roots of $R(\lambda)$, we must compute the derivative of $\sigma_i = \sigma_i(\lambda)$, too. We have

$$a_{\nu} = \begin{cases} (-1)^{\nu} \frac{\Phi_{\nu+q-r}}{\Phi_{-p}}, & \text{if } \nu \neq p, \\ (-1)^{p} \frac{\Phi_{0-\lambda}}{\Phi_{-p}}, & \text{if } \nu = p. \end{cases}$$

$$a_{\nu}^{*} = \begin{cases} (-1)^{r-\nu} \frac{\Phi_{-\nu+q}}{\Phi_{q}}, & \text{if } \nu \neq q, \\ (-1)^{p} \frac{\Phi_{0-\lambda}}{\Phi_{-p}}, & \text{if } \nu = q. \end{cases}$$

We see that only the coefficients a_p , a_q^* depend on λ , and

$$\frac{da_p(\lambda)}{d\lambda} = \frac{(-1)^{p+1}}{\Phi_{-p}}, \quad \frac{da_q^*(\lambda)}{d\lambda} = \frac{(-1)^{p+1}}{\Phi_q}.$$

So, by differenciating the Newton - Girard formulas, we get

$$\sigma'_{j} + a_{1} \sigma'_{j-1} + \dots + a_{j-1} \sigma'_{1} = 0 \quad (j = 1, 2, \dots, p-1)$$

$$\sigma'_{p} + a_{1} \sigma'_{p-1} + \dots + a_{p-1} \sigma'_{1} + \frac{(-1)^{p+1} p}{\Phi_{-p}} = 0$$

$$\sigma'_{j} + a_{1} \sigma'_{j-1} + \dots + a_{j-1} \sigma'_{1} + \frac{(-1)^{p+1}}{\Phi_{-p}} \sigma_{j-p} = 0 \quad (j = p+1, \dots, r),$$

$$\sigma'_{r+j} + a_{1} \sigma'_{r+j-1} + \dots + a_{r} \sigma'_{j} + \frac{(-1)^{p+1}}{\Phi_{-p}} \sigma_{q+j} = 0 \quad (j = 1, 2, \dots).$$

Observing that $\sigma_1' = \ldots = \sigma_{p-1}' = 0$, we can write the previous recursion formula in the form

$$\sigma'_{j} = 0 \quad (j = 1, 2, ..., p-1)$$

$$\sigma'_{p} = \frac{(-1)^{p} p}{\Phi_{-p}}$$

$$\sigma'_{j} + a_{1} \sigma'_{j-1} + ... + a_{j-p} \sigma'_{p} + \frac{(-1)^{p+1}}{\Phi_{-p}} \sigma_{j-p} = 0 \quad (j = p+1, ..., r)$$

$$\sigma'_{r+j} + a_{1} \sigma'_{r+j-1} + ... + a_{r} \sigma'_{j} + \frac{(-1)^{p+1}}{\Phi_{-p}} \sigma_{q+j} = 0 \quad (j = 1, 2, ...).$$

We can deduce similar formula for the derivatives of σ_j with negative indices.