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Abstract. In many areas of science and engineering, solving equations
or systems of equations is really important. Instead of finding exact so-
lutions, which can be very hard or impossible in some cases, people often
use iterative methods to attain the desired solutions. This article is dedi-
cated to introducing a highly efficient derivative-free fourth order iterative
technique renowned for its exceptional convergence properties. The anal-
ysis within this article deals with scrutinizing both local and semi-local
convergence characteristics, taking into account the φ,ψ-continuity con-
straints imposed on the operators that are present in these methods. It’s
worth noting that the innovative methodology proposed herein isn’t con-
fined to specific techniques but has broader applicability, encompassing a
wide spectrum of approaches involving the utilization of inverses of linear
operators or matrices.

1. Introduction

In the realm of applied science and technology, a multitude of complex chal-
lenges can be effectively approached by framing them as non-linear equations
of the following form:

(1.1) F (x) = 0.
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In this context, F : D ⊂ B → B represents a differentiable function accord-
ing to the Fréchet sense, where B signifies a complete normed linear space, and
D denotes a non-empty, open, and convex set.

The pursuit of closed-form solutions for these non-linear equations typi-
cally presents formidable difficulties. Consequently, iterative methods have
emerged as the go-to approach for seeking solutions to such problems. Among
these methods, Newton’s method [1, 16, 21] stands out as a widely adopted
choice, primarily due to its remarkable quadratic convergence rate when tack-
ling equations like (1.1). In recent years, the fields of science and mathematics
have witnessed significant advancements, leading to the discovery and appli-
cation of various higher-order iterative techniques for solving non-linear equa-
tions [2–15, 17–20]. However, these advanced methods often grapple with the
drawback of demanding the computation of second and higher-order deriva-
tives, which can significantly hinder their practicality in real-world applica-
tions. The computational overhead associated with evaluating F

′′
during each

iteration makes classical cubic convergent schemes less suitable. Furthermore,
it’s worth noting that many of these methods rely on Taylor expansions, neces-
sitating derivatives of higher order not inherently present within the method
itself.

An in-depth analysis of the local and semi-local behavior of iterative meth-
ods offers invaluable insights into their convergence properties, error bounds,
and the region where solutions are unique. A multitude of studies have dedi-
cated their focus to investigating the local and semi-local convergence aspects
of efficient iterative techniques, yielding substantial outcomes in the form of
convergence radii, error estimations, and expanded applicability of these meth-
ods [2–4, 17]. Such findings carry significant weight, especially in guiding the
selection of appropriate initial points for the iterative process.

In this article, we introduce and thoroughly scrutinize a specific fourth order
derivative free iterative method. The central objective of our study revolves
around establishing rigorous convergence theorems for this method, building
upon the foundational work laid out in a previous research endeavor [18]. The
method is formally defined for x0 ∈ D, a ∈ R and for each n = 0, 1, 2, . . . as
follows:

un = xn + aF (xn),

An = [un, xn;F ],

yn = xn −A−1
n F (xn),(1.2)

xn+1 = yn −
[
3I −A−1

n ([yn, xn;F ] + [yn, un;F ])
]
A−1

n F (yn),

where [·, ·;F ] : D × D → L (B) is a divided difference of order one and L (B)
stands for the space of bounded linear operators from B into itself.
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We usually study the local as well as the semi-local analysis of convergence
for an iterative method [1–4, 17]. In the local analysis, a ball is determined
about the solution x∗, so if any point is selected inside it the convergence of
the method is assured to x∗. The semi-local analysis uses information involving
a ball centered at the starting point x0 and provides convergence conditions
based on the smallness of ∥x1 − x0∥.

There are limitations in the applicability of the method (1.2) which consti-
tute the motivation for this paper.

Motivation: The local convergence order four is determined in [18] for B = Rk

under the Taylor series expansion technique and by assuming that the operator
F is at least five time differentiable and bounded. Moreover, isolation of the
solution x∗ or a priori bounds on the distances ∥xn − x∗∥ are not developed.
Notice that only the divided difference and the function appear on the method.
These limitations restrict the applicability of the method. As a motivational
example, consider the interval D = [− 3

2 , 2] and define the function F (x) =

= 1
2x

3 log x + 4x5 − 4x4 if x ̸= 0 and F (x) = 0 if x = 0. It is clear that F (3)

is not bounded and x∗ = 1. Thus, the results in [18] do not guarantee the
convergence of the method. But, the method converges say e.g. if a = 1 and
x0 = 1.2. The same limitations exist with other studies utilizing the Taylor
series expansion approach on other method [5–15, 19, 20]. Recall that we say
that a divided difference [·, ·;F ] satisfies a generalized continuity condition if

∥[v1, v2;F ]− [v3, v4;F ]∥ ≤ φ(∥v1 − v3∥, ∥v2 − v4∥)

for some non-negative, non-decreasing and continuous function (see also the
functions “φ” and “ψ” that follow). These conditions generalize the usual
Lipschitz or Hölder conditions, and can be used in cases these conditions do
not hold. Therefore, there is a need to work on the convergence conditions by
relying only on the operators on the method.

Novelty: The local convergence analysis relies on such information and the
concept of generalized continuity on the divided difference [·, ·;F ] [1–4,17]. This
way isolation of the solution and computable a priori estimates on ∥xn − x∗∥
become possible. Moreover, the more challenging and interesting semi-local
convergence analysis is developed based on majorizing sequences. Although,
we extend the applicability of method (1.2), our technique can be used to do
the same on other methods along the same lines.

The rest of the article is structured as follows: Section 2 discusses the
local convergence characteristics pertaining to the method (1.2). Section 3
introduces a pivotal concept: majorizing sequences. These sequences play a
crucial role in facilitating Semi-Local Convergence Analysis of (1.2). Section 4
takes the insights gained from the previous sections and puts them into practical
use through numerical applications. We will leverage the convergence results
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derived earlier to solve real-world problems, showcasing the applicability and
effectiveness of the method (1.2) in practical scenarios. Section 5 encapsulates
the key takeaways and implications of our findings, providing closure to this
paper’s comprehensive examination of method (1.2).

2. Analysis I: Local

The notation S(x∗, R) stands for the open ball with center x∗ and of radius
R > 0, whereas S[x∗, R] stands for the closure of the ball S(x∗, R).

The local analysis uses real functions. Let M = [0,+∞). There is a re-
lationship between the functions “φ” listed in conditions (C1)-(C3) (see (C4)-
(C6)), and the operators on the method (1.2). But first we need to list their
properties.

Assume:

(C1) There exist continuous and non-decreasing (CND) functions f : M → M
and φ0 : M ×M → M so that the equation φ0(f(t), t) − 1 = 0 has a
smallest positive solution (SPS). Denote this solution as ρ0. Let M0 =
= [0, ρ0).

(C2) There exists (CND) function φ :M0 ×M0 →M so that h1 :M0 ×M0 →
→M , where

h1(t) =
φ(f(t), t)

1− φ0(f(t), t)

the equation h1(t)− 1 = 0 has SPS denoted by s1 ∈M0.

(C3) There exist (CND) functions φ1 :M0 →M and φ2 :M0×M0×M0 →M
so that for h2 :M0 →M , where

h2(t) =

[
φ2(f(t), t, h1(t)t)

1− φ0(f(t), t)
+

2φ2(f(t), t, h1(t)t)(1 + φ1(h1(t)t))

(1− φ0(f(t), t))2

]
h1(t),

the equation h2(t)− 1 = 0 has a SPS denoted by s2 ∈M0. Let

(2.1) s∗ = min{sj}, j = 1, 2.

Set M1 = [0, s∗). It follows by the condition (C1) and the definition of
the parameter ρ0 that for each t ∈M1

0 ≤ φ0(f(t), t) < 1(2.2)

and

0 ≤ hj(t) < 1.(2.3)
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(C4) There exists an invertible operator T and x∗ ∈ D with F (x∗) = 0 such
that for each x, y ∈ D

∥T −1([x, y;F ]− T )∥ ≤ φ0(∥x− x∗∥, ∥y − x∗∥)

and for u = x+ aF (x)

∥u− x∗∥ ≤ f(∥x− x∗∥) ≤ ∥x− x∗∥.

Set D0 = D ∩ S(x∗, ρ0). The linear operator may or may not depend on
x∗ and should be independent of x and y (see also Remark 2.1 (a)).

It also follows by (C1) that ∥T −1(A0−T )∥ ≤ φ0(∥x0−x∗∥, ∥x0−x∗∥) <
< 1. Thus, the celebrated Banach Lemma for invertible operators [1, 16,
21] implies the existence of A−1

0 and

(2.4) ∥A−1
0 T ∥ ≤ 1

1− φ0(f(∥x0 − x∗∥), ∥x0 − x∗∥)
.

(C5)
∥T −1([x, x∗;F ]− T )∥ ≤ φ1(∥x− x∗∥)

and

∥T −1([u, x;F ]− [y, x;F ])∥ ≤ φ2(∥u− x∗∥, ∥x− x∗∥, ∥y − x∗∥)

for each x, y ∈ D0.

(C6) S[x
∗, s∗] ⊂ D, where s∗ is given in (2.1).

Remark 2.1.
(a) A popular choice but not the most flexible one is T = F ′(x∗). In this

case, one finds only a simple solution of the equation F (x) = 0 provided
that the operator F is differentiable at x = x∗.

(b) A possible choice for the function f is motivated by the calculation

u− x∗ = x− x∗ + aF (x) = (I + a[x, x∗;F ])(x− x∗) =

= (I + aT T −1([x, x∗;F ]− T + T ))(x− x∗) =

= ((I + aT ) + aT T −1([x, x∗;F ]− T ))(x− x∗)

so that

∥u− x∗∥ ≤ [∥I + aT ∥+ |a|∥T ∥φ1(∥x− x∗∥)] ∥x− x∗∥.

Hence, one can choose

(2.5) f(t) = ∥I + aT ∥+ |a|∥T ∥φ1(t).
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The local convergence analysis can be shown under the assumptions (C1)-
(C6).

Theorem 2.1. Under the assumptions (C1)-(C6) the following assertions are
valid for the method (1.2) provided that the starting iterate x0 ∈ S(x∗, s∗)−{x∗}

{xn} ⊂ S(x∗, s∗),(2.6)

∥yn − x∗∥ ≤ h1(∥xn − x∗∥)∥xn − x∗∥ ≤ ∥xn − x∗∥ < s∗,(2.7)

∥xn+1 − x∗∥ ≤ h2(∥xn − x∗∥)∥xn − x∗∥ ≤ ∥xn − x∗∥,(2.8)

and the sequence {xn} is convergent to x∗.

Proof. Induction method is used to show the assertions (2.6)-(2.8). Using
the first sub-step of the method (1.2), (2.4), the iterate y0 is well defined and

(2.9) y0 − x∗ = A−1
0 (A0 − [x0, x

∗;F ])(x0 − x∗).

It follows by (C2), (C4), (2.1), (2.4) and (2.9) that

∥y0 − x∗∥ ≤ φ(f(∥x0 − x∗∥), ∥x0 − x∗∥)∥x0 − x∗∥
1− φ0(f(∥x0 − x∗∥), ∥x0 − x∗∥)

≤

≤ h1(∥x0 − x∗∥)∥x0 − x∗∥ ≤ ∥x0 − x∗∥ < s∗.(2.10)

Thus, the iterate y0 ∈ S(x∗, s∗) and the assertion (2.7) is validated if n = 0.
Next, notice also that the iterate x1 is well defined by (2.4) and the second
sub-step of method (1.2). Consequently, one can write in turn

x1 − x∗ = y0 − x∗ −A−1
0 F (y0)−A−1

0

[
(A0 − [y0, x0;F ])−

− (A0 − [y0, u0;F ])
]
A−1

0 F (y0).(2.11)

Then, in view of (2.1), (2.4), (2.10), (C4), (C5) and (2.11), one obtains

∥x1 − x∗∥ ≤
[
φ2(f(∥x0 − x∗∥), ∥x0 − x∗∥, ∥y0 − x∗∥)

1− φ0(f(∥x0 − x∗∥), ∥x0 − x∗∥)
+

+
2φ2(f(∥x0 − x∗∥), ∥x0 − x∗∥, ∥y0 − x∗∥)(1 + φ1(∥y0 − x∗∥))

1− φ0(f(∥x0 − x∗∥), ∥x0 − x∗∥)

]
∥y0 − x∗∥ ≤

≤ h2(∥x0 − x∗∥)∥x0 − x∗∥ ≤ ∥x0 − x∗∥.(2.12)

Hence, the iterate x1 ∈ S(x∗, s∗) and the assertion (2.8) is validated if n = 0.
These calculations can be repeated, if xm, ym, xm+1 replace x0, y0, x1 in the
preceding calculations. Therefore, the induction for assertions (2.6)-(2.8) is
terminated. Moreover, it follows from the estimate

∥xm+1 − x∗∥ ≤ b∥xm − x∗∥ < s∗,(2.13)

where b = h2(∥x0 − x∗∥) ∈ [0, 1) , that the iterate xm+1 ∈ S(x∗, s∗) and
limm→+∞ xm = x∗. ■
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The isolation of the solution x∗ is developed in the next result.

Proposition 2.2. Assume:
There exists a solution z ∈ S(x∗, s3) of the equation F (x) = 0 for some s3 > 0;
The first condition in (C4) is valid on the ball S(x∗, s3) and there exists s4 > s3
such that

(2.14) φ0(0, s4) < 1.

Set D1 = D∩S[x∗, s4]. Then, the equation F (x) = 0 is uniquely solvable by x∗

in the domain D1.

Proof. Let z ̸= x∗. Then, define the divided difference T = [x∗, z;F ]. It
follows by (C4) and (2.14) that

∥T −1(T − T )∥ ≤ φ0(∥x∗ − x∗∥, ∥z − x∗∥) ≤ φ0(0, s4) < 1,

so T−1 is well defined. Therefore, one can get

x∗ − z = T−1(F (x∗)− F (z)) = T−1(0).

Hence, it follows that z = x∗. ■

Remark 2.2. If s3 = s∗ and all assumptions of Theorem 2.1 are valid, then
take z = x∗.

3. Analysis II: Semi-local

The role of x∗, φ, f is exchanged by x0, ψ, g respectively in the calculations
as follows:
Assume

(H1) There exists CND functions g : M → R and ψ0 : M ×M → R so that
the equation ψ0(g(t), t)− 1 = 0 has a SPS denoted as p. Set M3 = [0, p).

(H2) There exists CND function ψ :M3 ×M3 ×M3 → R.
Define the sequence {αn} for α0 = 0, some β0 ≥ 0 and each n = 0, 1, 2, . . .
by

qn = ψ(αn, βn, g(αn))(βn − αn),

αn+1 = βn +

[
1

1− ψ0(g(αn), αn)
+

2ψ(αn, βn, g(αn))

(1− ψ0(g(αn), αn))2

]
qn,

γn+1 = (1 + ψ0(αn+1, βn))(αn+1 − βn) + qn,(3.1)

βn+1 = αn+1 +
γn+1

1− ψ0(g(αn+1), αn+1)
.

A general convergence condition for this sequence is given below.
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(H3) There exists p̄ ∈ [0, p) such that for each n = 0, 1, 2, . . .

ψ0(g(αn), αn) < 1 and αn ≤ p̄.

It follows that the following are valid

0 ≤ αn ≤ βn ≤ αn+1 ≤ p̄

and there exists p∗ such that p∗ ∈ [0, p̄] and limn→+∞ αn = p∗.

(H4) There exist an invertible operator T and x0 ∈ D so that for each x, y ∈ D
Note that the limit point p∗ is the least bound (upper) of the sequence
{αn} which is unique.

∥T −1([x, y;F ]− T )∥ ≤ ψ0(∥x− x0∥, ∥y − x0∥)
and ∥u− x0∥ ≤ g(∥x− x0∥) ≤ ∥x− x0∥.

As in the local case but using (H1) it follows that A
−1
0 is invertible and

∥A−1
0 T ∥ ≤ 1

1− ψ0(g(∥x− x0∥), ∥x− x0∥)
.

Choose ∥A−1
0 F (x0)∥ ≤ β0.

(H5) ∥T −1([u, x;F ]− [y, x;F ])∥ ≤ ψ(g(∥x− x0∥), ∥x− x0∥, ∥y − x0∥).
and

(H6) S[x0, p
∗] ⊂ D.

Remark 3.1.

(a) A possible and popular choice for T but not the most flexible one is
T = F ′(x0). Therefore, the function F must be differentiable at x = x0.

(b) The calculations

u− x0 = x− x0 + aF (x) = (I + a[x, x0;F ])(x− x0) + aF (x0) =

= [(I + aT ) + aT T −1([x, x0;F ]− T )](x− x0) + aF (x0)

motivate the choice

g(t) = (∥I + aT ∥+ |a|∥T ∥ψ0(0, t)) t+ |a|∥F (x0)∥.

Next, the semi-local convergence of the method (1.2) is developed using the
assumptions (H1)-(H6).
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Theorem 3.1. Assume the conditions (H1)-(H6) are valid. Then, the follow-
ing assertions hold

{xn} ⊂ S(x0, p
∗),(3.2)

∥yn − xn∥ ≤ βn − αn,(3.3)

∥xn+1 − yn∥ ≤ αn+1 − βn(3.4)

and there exists a solution x∗ ∈ S[x0, p
∗] of the equation F (x) = 0 so that

(3.5) ∥x∗ − xn∥ ≤ p∗ − αn.

Proof. Induction is used to validate assertions (3.2)-(3.5). Clearly, (3.2) is
valid if n = 0. Then, by the definition of β0 in (H4), (1.2) and (3.1) it follows

∥y0 − x0∥ ≤ β0 = β0 − α0 < p∗.

Hence, the iterate y0 ∈ S(x0, p
∗) and (3.3) is valid for n = 0. The linear

operator A0 is invertible by (H4), and
(3.6)
x1 − y0 = −A−1

0 F (y0)−A−1
0 [(A0 − [y0, x0;F ])− (A0 − [y0, u0;F ])]A

−1
0 F (y0).

Then, by (3.1), (H4), (H5) and (3.6) one gets

∥x1 − y0∥ ≤
[

1

1− ψ0(g(∥x0 − x0∥, ∥x0 − x0∥))
+

+
2ψ(g(∥x0 − x0∥), ∥x0 − x0∥, ∥y0 − x0∥)
(1− ψ0(g(∥x0 − x0∥), ∥x0 − x0∥))2

]
q0 ≤ α1 − β0

and

∥x1 − x0∥ ≤ ∥x1 − y0∥+ ∥y0 − x0∥ ≤ α1 − β0 + β0 − α0 = α1 < p∗,

where we also used

F (y0) = F (y0)− F (x0)−A0(y0, x0) = ([y0, x0;F ]−A0)(y0 − x0).

Thus,

∥T −1F (y0)∥ ≤ ψ(g(∥x0 − x0∥), ∥x0 − x0∥, ∥y0 − x0∥) ≤
≤ ψ(g(α0), α0, β0) = q0.

Hence, the iterate x1 ∈ S(x0, p
∗) and (3.4) is valid for n = 0. Then, we can

write

F (x1) = F (x1)− F (y0) + F (y0)
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leading to

∥T −1F (x1)∥ ≤ ∥T −1[x1, y0;F ]∥∥x1 − y0∥+ q0 ≤
≤ ∥T −1([x1, y0;F ]− T + T )∥∥x1 − y0∥+ q0 ≤
≤ (1 + ψ0(∥x1 − x0∥, ∥y0 − x0∥))∥x1 − y0∥+ q0 ≤
≤ (1 + ψ0(α1 − β0))(α1 − β0) + q0 = γ1,

∥y1 − x1∥ ≤ ∥A−1
1 T ∥∥T −1F (x1)∥ ≤

≤ γ1
1− ψ0(g(∥x1 − x0∥), ∥x1 − x0∥)

≤ γ1
1− ψ0(g(α1), α1)

= β1 − α1

and

∥y1 − x0∥ ≤ ∥y1 − x1∥+ ∥x1 − x0∥ ≤ β1 − α1 + α1 − α0 = β1 < p∗.

So, the iterate y1 ∈ S(x0, p
∗) and (3.3) is valid for n = 1. The preceding calcu-

lations can be repeated with x0, y0, x1 replaced by xm, ym, xm+1 to terminate
the induction. It follows by these assertions that the sequence {xn} is com-
plete in Banach space B and as such it is convergent to some x∗ ∈ S[x0, p

∗].
Moreover, by letting m → +∞ in the estimate ∥T −1F (xm)∥ ≤ γm and using
the continuity of F , we deduce F (x∗) = 0. Furthermore, by letting i→ +∞ in
the estimate

∥xm+i − xm∥ ≤ αm+i − αm

we obtain the assertion (3.5). ■

The isolation of the solution follows, as shown below:

Proposition 3.2. Assume:
There exists a solution v ∈ S(x0, r1) of the equation F (x) = 0 for some r1 > 0;
the first condition in (H4) is valid in S(x0, r1) and there exists r2 ≥ r1 so that

ψ0(r1, r2) < 1.

Set D3 = D ∩ S[x0, r2].
Then, the equation F (x) = 0 is uniquely solvable by v in the domain D3.

Proof. Let v0 ∈ D3 with F (v0) = 0 and v0 ̸= v. Define the divided difference
T0 = [v, v0;F ]. It follows that

∥T −1(T0 − T )∥ ≤ ψ(∥v − x0∥, ∥v0 − x0∥) ≤ ψ0(r1, r2) < 1.

Thus, it follows that v0 = v. ■

Remark 3.2.
(a) Under all the assumptions of Theorem 3.1, set x∗ = v and p∗ = r1 in

Proposition 3.2.

(b) The limit point p∗ can be replaced by p in assumption (H6).
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4. Numericals

Let T = F ′(x∗) and define the divided difference

[x, y;F ] =
1∫
0

F ′(x+ θ(y − x))dθ.

Consider a = 1.

Example 4.1. Consider the following simultaneous differential equations which
dictates the movement of an object defined by

F ′
1(w1) = ew1 ,

F ′
2(w2) = (e− 1)w2 + 1,

F ′
3(w3) = 1.

These equations are subject to initial conditions F1(0) = F2(0) = F3(0) = 0.
We define a vector function F (w) = (ew1 − 1, e−1

2 w2
2 +w2, w3)

T on the interval
D = [0, 1], where w = (w1, w2, w3)

T .

The derivative of the function F (w) with respect to w is given by:

F ′(w) =

ew1 0 0
0 (e− 1)w2 + 1 0
0 0 1


Using the definition of F , we find that F ′(x∗) = I, where x∗ = (0, 0, 0)T . Now,
we aim to validate conditions (C1)-(C6). These conditions are valid for

φ0(t1, t2) =
1

2
(e− 1) (t1 + t2) ,

φ1(t) =
1

2
(e− 1)t,

φ2(t1, t2, t3) =
1

2
(e− 1) (f(t1) + t2 + t3) ,

φ(t1, t2) =
1

2
(e− 1) (f(t1) + t2) ,

f(t) = 2 +
1

2
(e− 1)t.

Upon solving, we find ρ0 = 0.352417, which impliesM0 = [0, ρ0). The radii are
further determined as s1 = 0.184268, and s2 = 0.118707. Utilizing equation
(2.1), we obtain the radius of convergence as s∗ = 0.118707.

Example 4.2. Consider the set D = B = R, and let’s define a function F on
this set as follows: F (x) = sin(x). Consequently, the derivative of F , denoted
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as F ′(x), is F ′(x) = cos(x). We find that x∗ = 0 is a solution of this function.
Now, let’s examine the conditions (C1) to (C6), and we observe that they are
satisfied when:

φ0(t1, t2) = t1 + t2,

φ1(t) = t,

φ2(t1, t2, t3) = f(t1) + t2 + t3,

φ(t1, t2) = f(t1) + t2,

f(t) = 2 + t.

After solving, we obtain ρ0 = 0.302776. This result indicates that M0 =[0, ρ0).
The radii are subsequently calculated as s1 = 0.158312 and s2 = 0.101986. By
applying equation (2.1), we determine the radius of convergence to be s∗ =
= 0.101986.

All computations are performed in Mathematica programming package ver-
sion 11.3.0.0 with 600 digits. These computations were carried out on an In-
tel(R) Core(TM) i5 - 8250U CPU @ 1.60 GHz 1.80 GHz with 8 GB of RAM,
running on Windows 11 Home version 22H2. To stop the iterative process, we
have used the criterion: error = |xN − xN−1| < ϵ, where ϵ = 10−50 and N
represents the number of iterations required for convergence.

Example 4.3. Take into account the pair of equations:

(x− 1)4 + e−y − y2 + 3y + 1 = 0

4 sin(x− 1)− log(x2 − x+ 1)− y2 = 0.

These equations are governed by the initial conditions x0 = {2,−2}T , and the
solution x∗ = {2.0704433766798807 . . . ,−1.53017120230005783 . . .}T .

Detailed error estimates for the solution when a = 0.01 can be found in
Table 1. Following a comprehensive examination of the equation system, it
becomes evident that convergence towards the solution represented as x∗ occurs
within a maximum of three iterations.

∥x1 − x∗∥ ∥x2 − x∗∥ ∥x3 − x∗∥
3.65 ∗ 10−2 2.38 ∗ 10−5 1.12∗10−18

Table 1. Error estimates for Example 4.3
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Example 4.4. Now, let’s delve into a system of five equations,

5∑
j=1,j ̸=i

xj − e−xi = 0, 1 ≤ i ≤ 5.

We start with an initial value x0 = {1, 1, 1, 1, 1}T . The solution to this partic-
ular problem is represented as:

x∗ = {0.20388835470224016, · · · , 0.20388835470224016}T .

Table 2 provides error estimates for the solution in the case where a = 0.01.
After conducting a comprehensive analysis of the equation system, it becomes
clear that convergence towards x∗ is achieved in a maximum of three iterations.

∥x1 − x∗∥ ∥x2 − x∗∥ ∥x3 − x∗∥
2.73 ∗ 10−5 4.77∗10−19 6.44∗10−83

Table 2. Error estimates for Example 4.4

5. Conclusion

We have introduced a new methodology that thoroughly examines how
well high-order methods converge, both locally and semi-locally. What sets
our approach apart is that it doesn’t rely on extra derivatives beyond what the
method itself already uses. Unlike previous methods that assumed the existence
of high-order derivatives, ours doesn’t require that, opening up new possibilities
for convergence, error estimation, and determining uniqueness. Importantly,
our method is highly adaptable, working well with a wide range of high-order
methods, including both single-step and multi-step ones. This versatility ex-
pands the potential applications across various scientific and engineering fields.
These encompass not only single-step but also multi-step methods, as exempli-
fied by references [2–4, 17]. This approach is also applicable for the extension
of methods found in [5–15,19,20], where our future research plans will uncover
them.
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