
Annales Univ. Sci. Budapest., Sect. Comp. 57 (2024) 245–270

REFACTORING CONCURRENT ERLANG

APPLICATIONS FOR DISTRIBUTION

István Bozó, Melinda Tóth and Balázs Varga
(Budapest, Hungary)

Communicated by Zoltán Horváth

(Received January 10, 2024; accepted July 7, 2024)

Abstract. Applications require more and more resources. Distributed
software can take advantage of today’s easily accessible hardware and al-
low for easy scaling. Software development might reach the point where
originally concurrently written portions of code should be transformed to
work in a distributed manner. This process is tedious and error-prone when
done manually.
Erlang is a functional programming language built for concurrent and dis-
tributed programming. In Erlang’s actor model of concurrency, indepen-
dent processes running on nodes communicate using message passing.
In our paper, we describe ways to transform concurrently written Erlang
code to introduce distributed functionality, while preserving the overall
semantics of the program. We define refactorings to transfer a selected
process to another node, along with its registration if the process was
registered. Using static analysis, we can discover and transform the parts
of the code that refer to the moved process. This way, we can modify the
send expressions, so that the communication between the processes can
remain intact.
We define transformation schemes along with their preconditions and nec-
essary compensations. We have implemented the basic cases of the trans-
formations using the open-source RefactorErl static analyser and refactor-
ing tool and used it for the validation of the schemes.

Key words and phrases: Refactoring, Erlang, distributed systems, concurrent systems, pro-
gram transformations.
2010 Mathematics Subject Classification: 68N99.
Project no. TKP2021-NVA-29 has been implemented with the support provided by the
Ministry of Culture and Innovation of Hungary from the National Research, Development
and Innovation Fund, financed under the TKP2021-NVA funding scheme.
This work is a detailed version of a MaCS 2020 presentation.

246 I. Bozó, M. Tóth and B. Varga

1. Introduction

Applications are getting more and more complex and require an increas-
ing amount of resources. Distributed software is able to scale easily to take
advantage of the available resources. They offer great reliability and fault tol-
erance. The development of a software project might start without distribution
in mind. At some point, as the complexity of the software increases, the devel-
oper might realise that the originally concurrently written program should be
transformed to function in a distributed manner.

Making concurrent programs distributed is a wide topic, and as such can
be approached in many ways. In this paper, we focus on Erlang programs,
analysing and transforming them before runtime. Our approach is based on
static program analysis and syntax tree transformations.

Erlang [9] is a functional programming language built for distributed sys-
tems. It was designed to easily express concurrent and distributed concepts at
the language level. It uses the actor model of concurrency, where lightweight
processes run on nodes (Erlang Virtual Machines) and communicate with each
other using message passing. Concurrent and distributed Erlang programs use
similar language constructs, making them ideal for transforming one into the
other. The communication between processes on different nodes is handled
transparently.

Our goal has been to transform concurrently written, single-node Erlang ap-
plications to work in a distributed environment across multiple nodes. Specif-
ically, we focus on the task of moving a set of processes to be spawned on a
different node with a known name. This transformation involves many aspects,
as processes generally interact with each other using message passing, as well
as with various resources on the node. When moving a process to a differ-
ent node, much care needs to be taken, so that communication and access to
resources stay intact. Therefore, this transformation, when done manually, is
tedious and error-prone.

Erlang programs can be analysed by static analysis frameworks such as
RefactorErl [18, 4]. By examining the code statically, without running it,
RefactorErl builds up a Semantic Program Graph that represents the syntactic
and semantic relationships within the program. It supports various simple and
complex queries, which we can use to understand and reason about concurrent
Erlang code. RefactorErl is also a refactoring tool, thus it can perform syntax
tree transformations, allowing us to programmatically define modifications of
the code.

Such tools have motivated us to explore ways to use static analysis to au-
tomate the process of discovering and transforming portions of the code that
must be changed to move a process to another node. This is not a trivial task,

Refactoring concurrent Erlang applications 247

as processes, as well as connections between sent and received messages, are
syntactically implicit in Erlang [14]. We make use of queries and transforma-
tions that are available in RefactorErl, but define them in a general, tool- and
framework-agnostic way in this paper.

Our main contribution is the definition of transformation schemes [19], fo-
cused on changing the spawning of easily movable processes, as well as processes
that are bound by local registration. We discuss transformations that cause
the registration to happen on the new node so that the moved process can
still be referenced by its registered name. We also consider the passing of mes-
sages between processes on the original node and the moved process. We define
methods to find the relevant send expressions in the code and transform them
to work across nodes. For the messages from the moved process to the original
node, we discuss a series of transformations to dynamically determine and pass
the name of the original node to the appropriate send expressions at runtime.

For all transformation schemes, we explore the preconditions along with the
necessary compensations and considerations. We define methods to find and
select the relevant portions of the syntax tree using static analysis, and the
changes that need to be made in the code to achieve the desired effect. We
have implemented the basic cases of the transformations using the open-source
RefactorErl framework.

The rest of this paper is structured as follows. In Section 2 we briefly
introduce the Erlang programming language. In Section 3 we describe the
introduced transformations, the conditions of applicability and the necessary
compensations. Finally, in Sections 5 and 6 we present some related work and
conclude the paper.

2. Concurrent and distributed programming in Erlang

Erlang was created for telecommunication applications, therefore implemen-
tation of concurrent and distributed programs is very natural in Erlang. Its
concurrency is based on the actor model, implemented by lightweight processes
that communicate with each other using message passing. The processes do
not have a shared state, they can send and receive messages among each other
to communicate or share data. The processes are lightweight, their creation
and deletion take only a small amount of time, and they have little resource
overhead.

Erlang provides a runtime system. The Erlang Virtual Machines (BEAM),
are often called nodes. The process handling of Erlang is independent of the
host operating system. The communication between processes on the same or
different nodes is handled transparently by Erlang, and the syntactic aspect of
writing concurrent and distributed code is similar. In this section, we describe
the most important language features used in the transformations [9].

248 I. Bozó, M. Tóth and B. Varga

2.1. Process creation

Processes can be created using versions of the built-in spawn function. It
returns a unique process identifier (Pid), which can be used to identify and
address the function globally, across nodes.

� Pid = spawn(Fun). Creates a process on the node on which it was
called. The created process starts to evaluate the implicit or explicit
function expression given in the argument.

� Pid = spawn(Module, Function, Args). Similarly to spawn/1, it cre-
ates a process on the node where it was called. The function to be
evaluated is specified by its module, function and the length of the Args
list. The specified function must be exported.

� Pid = spawn(Node, Fun). Similar to spawn/1, but the process gets cre-
ated on the node specified in the first argument. Every function referred
in the closure of the function expression must be available on the node.

� Pid = spawn(Node, Module, Function, Args). Similar to spawn/3,
but the process gets spawned on the node given in the first argument.
Every function referred in the closure of the function expression must be
available on the node.

In this paper, we will use the spawn functions to define the transforma-
tions, but Erlang also offers the similarly working spawn link, spawn monitor,
spawn opt functions, whose transformations can be done the same way.

Two additional useful functions for managing processes and nodes are
self() which returns the Pid of the evaluating process; and node(), which
returns the name of the node it runs on.

2.2. Locally registering processes

Processes can be registered in Erlang and they can be identified using a
fixed name. This registration is local to the node where the process is located.

The registration is done using the register(regname, Pid) function. It
always returns true (or throws an error when unsuccessful), and its arguments
are the name by which to register the process, and the Pid identifying the
process. A common pattern is to directly have a spawn expression as the
second argument of register.

Registered names can be used in the place of Pids in some places, such as
message passing. A process can only be registered by one name, and one name
can only identify one process. Upon termination of a process, it is automatically
unregistered.

Refactoring concurrent Erlang applications 249

2.3. Sending messages

Processes communicate by sending messages. It is an asynchronous oper-
ation. In Erlang, the ! operator allows us to send messages using the To !

Message syntax. The recipient of the message (To) can be one of the following:

� Pid. As described before, this can be used to refer to the process globally.

� A registered name. Can be used locally on the node where the process is
registered.

� A tuple of {RegName, Node}. To use a registered name globally, we must
specify the node on which the registered process is located.

3. Transforming concurrent Erlang programs

Static analysis can be used to discover certain relationships in the code,
ranging from simple syntactic ones to more complex semantic relationships.
Making use of the information extracted from these analyses, we define syntac-
tic transformation schemes to make programs function in a distributed manner.

The transformations defined in this paper are to be performed as part of the
development workflow, before runtime. The source code of an Erlang program,
originally written for running concurrently on a single node is transformed in
a way that some of its processes will run on a different node. The name of
the other node must be known in advance, it is considered an input to the
transformation.

This transformation has many preconditions, which will be defined at each
step. Some of these are runtime preconditions, which cannot be derived from
the source code using static analysis, but rather depend on the context and
state of the environment in which the program will be run.

The schemes defined in the following may be considered refactorings in the
sense that they intend to keep the overall functionality of the application in-
tact. However, the inner logic of the application fundamentally changes, as
some processes will run on a different node. The transformed program will be
subject to the peculiarities of distributed computing, meaning that the iden-
tical behaviour of the program may not be guaranteed. This is however not
the fault of the schemes, but an unchangeable property of distributed com-
puting. Therefore the schemes still serve as a useful starting point for making
applications distributed and more scaleable.

250 I. Bozó, M. Tóth and B. Varga

3.1. Moving a simple process

Erlang uses the actor model of concurrency. This means that the lightweight
processes do not have a shared state, but rather communicate with each other
using message passing. They may, however, make use of various resources that
are present on nodes.

The simplest case of transformation is when the process is largely indepen-
dent of its environment. This process may be messaged and message other
processes using Pids (process identifiers), which function as global references
to processes across nodes.

In this case, the process may be safely moved to another node, and the
application will continue to function, provided that the following two runtime
preconditions are fulfilled:

� The node to which the process is to be moved exists and is available at
runtime, and the original node can connect to it. Both nodes must use
either long or short names and have the same safety cookie.

� All code used by the migrated process must be available on the other
node. This includes the closure of the moved functions, so every function
that is transitively referenced by the moved process’ code.

Each process is created by a spawn[link| monitor] expression, which
can serve as the starting point of the transformation. In this simple case, the
transformation is merely a matter of inserting the name of the other node,
taken as a parameter, as the first argument of the spawn expression, since
the syntax of spawning processes on other nodes is very similar to spawning
processes locally. The transformation scheme is illustrated through a minimal
example in Figure 1 in the case of spawn/1 and spawn/3, and is identical for
the other spawn-like functions.

% spawn/1

spawn(fun()-> a() end).

%spawn/3

spawn(mod, fun, Args).

% spawn/1

spawn(’node@host’, fun() -> a() end).

%spawn/3

spawn(’node@host’,mod,fun,Args).

Figure 1. The transformation of simple, highly mobile processes.

The moved process itself might contain spawn expressions, creating new
processes locally. Since this is local relative to the spawning process, this
transformation implicitly moves them along as well.

Refactoring concurrent Erlang applications 251

3.2. Transforming locally registered processes

Many processes are not as mobile as those described in the previous subsec-
tion. A typical pattern is that a process is registered and it can be referenced
by a constant name. Process registrations are local to the node of the process.
If the goal is to move a process that was locally registered, then to preserve the
semantics, we need to update the registration to happen on the new node, as
well as every reference that was using the registered name.

An additional precondition must be fulfilled for this transformation to be
allowed. Each process may only be registered once, and registered names can
not be conflicting. The node to which the process is moved must not contain
a process that is registered as the same name as the moved process on the
original node.

This transformation scheme is focused on the spawning and registration of
processes. The goal is to manipulate the spawn and register expressions that
refer to a certain process, using the spawn expression and the name of the other
node as inputs to the transformation, so that

� The process created by the selected spawn expression gets spawned on
the given other node.

� The moved process no longer gets registered on the original node.

� The moved process is registered on the new node with the same name as
it was originally.

The scope of this transformation scheme is restricted to the original, spawn-
ing process. In this case, we can use static analysis to find the semantic con-
nection between spawning and the registration of the process. This can be
calculated by the combination of control flow and data flow analysis. Control
flow analysis, starting from the spawn expression, can determine which por-
tions of code are on the same execution path, and which expressions will be
evaluated by the spawning process.

The goal is to find registrations that are guaranteed to refer to the spawned
process. The transformation can handle the register expressions that are on
one of these execution paths. If this is the case, backward data flow analysis is
used to determine from the register expression, whether the process registered
by it is the one that was selected as the transformation’s candidate for moving.
If the corresponding register expression is found, the name by which the process
is registered must be saved for use in the later transformation steps.

The transformation scheme depends on the relationship between the spawn-
ing and registration of the process, which can be determined using the above
technique. The following cases are possible:

252 I. Bozó, M. Tóth and B. Varga

1. There is no register that belongs to the spawned process. This case was
discussed in the previous subsection.

2. The spawn expression is embedded into register as its second argument.

3. The spawning and registration happen in separate expressions. Typically,
as the process is spawned, the Pid returned by spawn is stored in a vari-
able, which is then used in the register expression later. The applicability
of the transformation, in this case, depends on whether the expressions
between the spawn and register fulfil certain conditions. This will be
discussed later.

4. Multiple registrations belong to the spawned process on different execu-
tion paths. Even though a process may only be registered as one name
at the same time, it is allowed to write code where different execution
paths contain registrations of the same process.

5. There are a series of registrations and unregistrations of the process on
the same execution path. In this case, the transformation is generally
not possible. In a transformed distributed program, we could no longer
guarantee that the process would still be registered at the same intervals
as originally. We do not handle this case.

In the following, we discuss the three cases when the transformation is
necessary and possible (cases 2,3 and 4) in more detail.

3.2.1. Embedded spawn and register

If the spawn expression is the second argument of a register expression,
then the whole expression must be replaced by a spawn/2 expression. We dis-
cuss the case of spawn/1 and spawn/3 expressions within the register, but the
same approach can be used for transforming processes spawned by spawn link
or spawn monitor. The spawned process will no longer be registered on the
original node after the replacement. The first argument of the new spawn
expression is the name of the other node, which is the parameter of the trans-
formation. The second argument is an anonymous function, which runs on the
other node. It is responsible for registering the process by the same name as it
was originally, and then evaluating the same functions as before.

In the case of replacing a spawn/1 expression, the existing anonymous func-
tion can be reused with a slight modification. As mentioned, the moved process
must perform a self-registration before evaluating its expressions. To achieve
this, the transformation inserts a register(regname, self()) expression at
the beginning of the fun, where regname is the name of the registration ex-
tracted and saved in the previous transformation step. The self/1 function
returns the Pid of the executing process.

Refactoring concurrent Erlang applications 253

When moving a process spawned using spawn/3, the approach is similar.
The outer register expression is replaced by a spawn/2, with the name of the
node as the first, and an anonymous function as the second argument. It
will perform the self-registration the same way and then apply the original
function. This can be done using the apply(Mod, Fun, Args) built-in function,
which requires the same arguments as the original spawn/3 to be replaced.
The new spawn expression can therefore be constructed using the information
from the spawn, and the containing register expressions.

% Transforming spawn/1

register(regname,

spawn(fun() -> a() end)).

% Saving the Pid

register(regname,

Pid = spawn(fun()-> a() end)).

% Transforming spawn/3

register(regname,

spawn(mod, fun, [arg1, arg2])).

%

% Transforming spawn/1

spawn(’node@host’,

fun() ->

register(regname, self()),

a()

end),

true.

% Saving the Pid

Pid = spawn(’node@host’,

fun() ->

register(regname, self()),

a()

end),

true.

% Transforming spawn/3

spawn(’node@host’,

fun() ->

register(regname, self()),

apply(mod, fun, [arg1, arg2])

end),

true.

Figure 2. Transforming spawn/1 in the embedded case; the same transforma-
tion when the Pid is assigned to a variable; and the transformation in the case
of spawn/3.

There are two small compensations that the transformation needs to per-
form. If the Pid returned by the inner spawn was assigned to a variable, then
the new spawn’s returned value must also be assigned to a variable by the same
name. Additionally, the true atom must be added as the next expression after
the newly inserted spawn, since the original register expression’s value (which
is always true) may have been returned as the last expression of a function.
Therefore, the last expression of the transformed code must evaluate to true. If

254 I. Bozó, M. Tóth and B. Varga

the register’s true value was explicitly assigned to a variable, then the variable
must be created and a newly inserted true atom needs to be assigned to it. The
transformation scheme demonstrating all of these cases can be seen in Figure 2.

3.2.2. Separate spawn and register

Another typical pattern is when the Pid of the spawned process is saved
to a variable, used in a pattern match, or returned from a function, and is
used at a later point in the code to register the process. As described before,
the combination of data flow and control flow analyses can be used to find the
corresponding register expression.

The task is similar to the embedded case: the transformation must re-
place the register expression with the true atom, and replace the spawn with
a spawn/2 in the same way. This transformation may however change the or-
der in which the registration and other expressions are evaluated. Originally,
they were run by the same process, with certain expressions evaluated between
them. In the transformed code, the self-registration will be the first action
of the moved process, being executed concurrently with the spawning original
process, losing all guarantees regarding the order of execution. Due to this,
the transformation may not be performed in all cases, so we must introduce
additional checks and preconditions:

� If any expression between the spawning and registration of the process
has side effects, we do not allow the transformation. A clear example of
why side effects must not be allowed is message passing. As a side effect,
an expression may try to communicate with the spawned process, and it
is possible for that interaction to only make sense when the registration
has not happened yet. Since we have no way of reasoning about the
actual side effects of a non-pure expression, we set it as a precondition
that they may not exist between the spawn and register.

� If the registration has a data flow dependency on one of the expressions
between it and the spawn, the transformation is not allowed. If a value
required in the register expression is computed only after the spawn,
then it can not be used within the transformed spawn/2 expression. It
may be possible to define a transformation that also moves the required
computations to the new node since the expressions are pure, but this
requires further research.

If the above conditions are fulfilled, the transformation can be performed
according to the scheme in Figure 3. The reason behind this is that the register
can be swapped with a pure expression directly before it if there is no data flow
dependency between them. Repeating this process, the register can be brought
directly next to the spawn, where the execution order is the same as in the

Refactoring concurrent Erlang applications 255

embedded case (the registration would take place directly after the spawn),
and thus the transformation can be performed in the same manner.

Pid = spawn(fun() -> a() end),

A = pure_function(12),

B = hello,

register(regname, Pid).

Pid = spawn(’node@host’

fun() ->

register(regname, self(),

a()

end),

A = pure_function(12),

B = hello,

true.

Figure 3. Replacing spawn and register expressions that have pure expressions
between them.

3.2.3. Registers on multiple execution paths

The result of the control flow analysis may show that the spawned process
is registered on multiple execution paths. This time, the goal is to prove that
the spawn expression could be moved to just before each registration of the
process.

Let us try to propagate the spawn expression’s node through the control
flow graph using the following three rules.

1. The spawn can be swapped with the expression following it in the exe-
cution path if it is pure, and its value does not depend on the spawn’s
value (the Pid of the spawned process).

2. If the control flow graph diverges, propagate the spawn expression to each
branch.

3. At a merge node (where multiple execution paths converge), all of the
incoming branches must contain the spawn expression.

If by following these three rules, all registrations of the process can be
reached by the spawn expression then we can perform the transformation. Fig-
ure 4 shows the transformation of a code sample with multiple control flows.
This time, each of the register expressions will be replaced with the constructed
spawn/2 (followed by the true atom).

3.3. Restoring communication to the moved process

Processes typically do not work in isolation. They interact by sending
and receiving messages. Erlang supports message passing across nodes at the
language level using send expressions, which were introduced in Section 2.

256 I. Bozó, M. Tóth and B. Varga

X = something(),

Pid = spawn(fun() -> b() end),

case X of

1 -> Y = one;

11 -> Y = eleven;

_ -> Y = notone

end,

function_without_side_effects(X),

case Y of

one ->

register(some, Pid);

eleven ->

register(other, Pid);

notone -> noreg

end.

X = something(),

case X of

1 -> Y = one;

11 -> Y = eleven;

_ -> Y = notone

end,

function_without_side_effects(X),

case Y of

one ->

Pid = spawn(’node@host’,

fun() ->

register(some, self()),

b()

end),

true;

eleven ->

Pid = spawn(’node@host’,

fun() ->

register(other,self()),

b()

end),

true;

notone -> noreg

end.

Figure 4. The transformation is allowed here, because using the three rules, the
spawn could be brought to be before each register. The replacement happens at
the registrations, keeping the registered names, and not losing the assignment
of Pid or the true returned by the case branches.

When moving a process to another node, the send expressions addressing it
with a Pid do not need to be modified, as it works transparently across nodes.
In our research, we have focused on cases where the program has originally
been written for a single node.

The main focus of this transformation step is when a locally registered
process, addressed in send expressions using its name (regname ! Message),
is moved to another node of a known name. The goal of the transformation
scheme is to find the send expressions in the code where the recipient is the
moved process and change the atom in the left argument to a tuple that also
contains the new node’s name.

The transformation scheme is a simple syntactic replacement, shown in
Figure 5, since the name of the other node is considered a parameter of the
transformation.

Refactoring concurrent Erlang applications 257

regname ! Message {regname, ’node@host’} ! Message

Figure 5. Transformation of a send expression.

The challenge is to find the send expressions to transform. The name by
which the moved process is registered is known from the previous section. We
must find those send expressions whose recipient is the moved process. The
potential candidates are those who send expressions whose left side is an atom
(or an expression that is evaluated to an atom) and it matches the registered
name of the moved process. This is a necessary, but not sufficient condition.
The difficulty is caused by multiple execution paths of the program with mul-
tiple entry points and diverging control flows. We must assume that every
exported function may be called in any context. It is possible that in one of
these contexts, the same name is used to refer to a different process that is
executed at a different time from the moved process. The transformation must
not break the application in any of these cases.

3.3.1. Control flow-based approach

By performing control flow analysis, we can limit the transformation to
those send expressions that are guaranteed to refer to the moved process. This
is a conservative approach, it will not include any false positives that refer to
a different process. There might be sending expressions in the code base that
do not get transformed, even though they should have been.

The analysis starts from the register expression where the moved process
was registered and finds all possible execution paths of the program after the
registration. This search can be extended to also include the possible control
flows of all processes spawned (locally) after the registration. When these parts
of the program are running, the process in question is already registered on the
node. Therefore, all send expressions on the execution paths with the recipient
being the registered name are sure to refer to the process in question. The
unregistration of the process is not handled by this approach.

If we sacrifice certainty, we might also start searching backwards from the
register. Specifically, we look for processes that were spawned locally before
the registration took place, and that are on the same execution path. Since
the timing of the execution of different processes is not orderable, the send
expressions in these processes may run after the registration takes place.

If there was such a message passing in the original code, we can assume
that the intention was to address the process in question. The author of the
original code must not have assumed that the send expression on this other
process would run before the register. And since a registered name can only
identify one process at a time, the send expression’s recipient is the process to
be moved.

258 I. Bozó, M. Tóth and B. Varga

Adding this extension invites the possibility of false positives, so it is to
be used with care. Figure 6 shows the reasoning behind this approach. Send
expressions to b’s registered name in the green portions are transformed, in
the red portions they are not. Yellow portions are transformed if the extended
version is used.

Figure 6. The timing of function spawns and registrations. The question is
that if a send expression has the same left side as b’s registered name, can we
be sure it refers to b? The green portions are guaranteed to be executed when
this is the case, the yellow portions can not be decided, and in the red parts,
the name does not refer to b.

3.4. Sending messages from the moved process

The moved process might have been sending messages to other processes
on the original node, addressing them by their registered names, in the form
of name ! Message.

When the process is moved, these recipient specifications are no longer valid,
because their registrations are only present on the original node. Similarly to
the previous point, the left side of the send expression must be transformed
into a tuple, to include the name of the original node.

The original node’s name is not an outside parameter of the transformation.
It is runtime information that can not be decided through static analysis. It
can be generated at runtime by evaluating the node() function on the node.
This information then needs to be propagated dynamically to all functions of
the moved process that send messages to a process on the original node.

Refactoring concurrent Erlang applications 259

The passing of the node name will happen through function arguments. We
must make sure that the transformation does not break existing functionality,
so changing the interface of the functions (adding an extra argument) is not
desirable. Therefore, the transformation will duplicate some function defini-
tions, transforming only the duplicates. With this compensation, the original
code will remain usable as well.

3.4.1. Finding functions to transform

The task is to find a subset of the functions used by the moved process that
will need to be transformed in some way (let us call these marked functions).

There are two rules for a function used by the process to be marked:

1. The function must be marked if it contains a send expression in the form
of atom ! Message. This is a message passing to a process on the same
(i.e. the original) node.

2. The function must be marked if it calls – or locally spawns a process that
evaluates – an already marked function. The reason for this is that it
will need to propagate the variable containing the original node’s name
to the called marked function.

The search starts from the spawn expression of the process to be migrated.
If the process was created by spawn/3, the starting point is the referred func-
tion. In the case of spawn/1, the search will begin in the anonymous function
expression’s body.

The search can be done by a recursive algorithm that constructs a search
tree based on the control flow graph and implements a depth-first search ex-
tended with some loop-handling functionality. In the tree, each node represents
a function. A directed edge connects two function nodes x and y if y comes
directly after x on an execution path in one of the control flows; or if x spawns
a process locally that evaluates y (specified in spawn/3 or the fun expression of
a spawn/1). The algorithm’s goal is to check rule 1 for each encountered func-
tion node, mark it accordingly, and propagate the marking back up through
the tree according to rule 2. An example search tree built by the algorithm can
be seen in Figure 7.

This search algorithm can be abstracted to work with any predicate. Rule
2 from above, describing the transitive nature of the marking, is part of the
logic of the abstract algorithm. The predicate checked by the algorithm can
be generic and set as a parameter. In this specific case of finding functions to
transform, rule 1 from above is used as the predicate.

260 I. Bozó, M. Tóth and B. Varga

Figure 7. The search tree built by the algorithm. The search starts from node
s, the nodes with ! fulfil the predicate (containing local message passing), and
the red nodes are marked by the algorithm. The graph is based on the control
flow graph but is limited to function calls and local spawns. Upon encountering
a loop by traversing the edge between g and a, the depth-first search steps back
and runs the loop handling logic.

Algorithm 1 shows the abstract version of the search algorithm. Each in-
stance of the algorithm has a Start node and knows about the already Visited
nodes. The children of the Start are discovered in lines 3-4. Line 5 recursively
calls the algorithm for the children, adding Start to the list of visited nodes.
The result of the recursive calls is a list of the Start node’s marked children.

The conditional in lines 6-14 interprets the result. A node gets marked if
any of its children are marked (line 13), or if the node itself fulfils the predicate
(line 8). Otherwise, it does not get marked (line 10).

The other if expression encompassing almost the whole algorithm, whose
conditional is on line 2, is necessary due to loops. Let us consider an example
based on the tree in Figure 7 being built. The algorithm is on node g, and
Visited = [e,a,s] (new nodes are always added to the beginning, so the list is in
reverse order). Upon the recursive algorithm being called from g to a, a loop
is detected (lines 1-2).

Refactoring concurrent Erlang applications 261

Algorithm 1 predicateSearch(Start, Visited, Predicate)

1: OnLoop ← dropWhile(notEq(Start), reverse(Visited))
2: if OnLoop == [] then
3: Calls ← getNextExecutionSteps(Start)
4: LocalSpawns ← getLocalSpawnedFunctions(Start)
5: Res ← flatten([predicateSearch(E, [Start | Visited], Predicate) || E ← Calls ++

LocalSpawns])
6: if Res == [] then
7: if Predicate(Start) then
8: return [Start]
9: else
10: return []
11: end if
12: else
13: return [Start | Res]
14: end if
15: else
16: if any (node ∈ OnLoop fulfills Predicate) then
17: return [Start]
18: else
19: return []
20: end if
21: end if

Due to the nature of the depth-first search, at this point, a is not marked
yet, since its marking depends on its subtree, which g is a part of. If the
algorithm had no additional logic to handle this, and simply stepped back, g
would be left unmarked, since after the marking of a it would not be revisited.
Therefore, lines 16-20 run whenever a loop is discovered (when Start is a,
Visited=[g,e,a,s] in our example). The OnLoop list contains the [a,e,g] nodes
on the loop, and each node is checked for the predicate. If any of them fulfils
it, the node a is considered to be marked, and the marking will correctly be
propagated back in the loop, resulting in g not being left out.

The algorithm finds all of the functions that need to be modified. Let us
make a copy of the definitions of these functions to preserve the originals, and
continue with their transformation.

3.4.2. Transforming function calls and definitions

The copied function definitions need to take an extra argument that contains
the name of the original node. The transformation modifies the parameter lists
of each clause by adding a first argument for taking the node information. The
name of this argument must be unbound in the scope of the function.

Since adding this argument increases the arity of the function copies, a
precondition of the transformation is that there is no function in the same
module with the same name and one higher arity as any of the copied functions.
If there is such a function, the copies have to be renamed, for example by adding

262 I. Bozó, M. Tóth and B. Varga

a postfix to the name to make it unique. If the original function was exported,
the transformation needs to add an export to the copy as well.

The next step is to transform the function applications in the bodies of the
function copies that call one of the original functions. The node name argument
must be passed along. It is added as the first argument of the application. To
find these, we filter the expressions in the copied function definitions, looking
for function applications whose referred function is in the set of originals. The
moved process may use functions that locally spawn other processes (this was
one of the edges in the search tree). If this is done using spawn/1 and a fun
expression, the body of the fun is searched the same way.

The node name argument must also be passed along through spawn/3 or
apply/3 calls, found by the same filtering technique. The difference is that the
argument must be added to the beginning of the list in the third parameter of
the spawn or apply calls.

Note that by performing this transformation, if a function was copied, all
of the function copies will use the newly transformed version of it, while the
originals will keep using the original version, allowing them to be used with
the same interface, and not breaking any functionality. Figure 8 shows the
transformation logic of this step. The copied function definition on the right is
created.

% f, a, b are marked

functions

f() ->

a(),

spawn(mod,b,[some,value]),

not_marked_fun(123),

f().

% f, a, b are marked functions

f(OrigNode1) ->

a(OrigNode1),

spawn(mod, b,

[OrigNode1,some,value]),

not_marked_fun(123),

f(OrigNode1).

Figure 8. The definition of the function on the left is copied. The copied
function takes a new argument (OrigNode1) and passes it along the calls and
local spawns of marked functions. Functions that were not marked remain
unchanged.

With this compensation, the functions of the moved process will correctly
pass the node information around. If there were such functions (because some-
where a backward communication was performed), the node name must be
given to the first function that the spawned process evaluates. The node name
can be discovered at runtime by running the node() function on the original
node, by the process that performs the spawning of the moved process.

Let us insert the ThisNode = node() expression before the spawn to be
able to pass it to the first called (modified) function of the spawned process.

Refactoring concurrent Erlang applications 263

If the migrated process was spawned using spawn/1, the technique is the same
as with modifying function calls – looking for them in the body of the fun
expression – and adding the ThisNode variable as the first argument. With
processes spawned using spawn/3, the modification is also the same as within
the function copies: the ThisNode variable is added to the beginning of the list
in the third argument of the spawn. This transformation step can be seen in
Figure 9.

% spawn/1 case

spawn(’node@host’,

fun() ->

register(regname, self()),

b(some, value)

end).

% spawn/3 case

spawn(’node@host’,

fun() ->

register(regname, self()),

apply(mod, a, [])

end).

% spawn/1 case

ThisNode = node(),

spawn(’node@host’,

fun() ->

register(regname, self()),

b(ThisNode, some, value)

end).

% spawn/3 case

ThisNode = node(),

spawn(’node@host’,

fun() ->

register(regname, self()),

apply(mod, a, [ThisNode])

end).

Figure 9. Passing the name of the original node in a variable to the spawned
process

3.4.3. Transforming the send expressions

The goal of these compensations is that the send expressions located in the
copied function definitions, whose left side is an atom, can be transformed.
We must be careful here, as there might be messages being sent to one of the
processes that were moved as well. These processes were registered within the
body of the function copies. In Section 3.2, we have computed the list of these
registered names. So if the atom of the send expression is one of these, it must
not be transformed, as both the sender and the receiver are on the new node.

With the function copy now taking the name of the original node as its
first argument (let us call it OriginalNodeName, but the actual name will de-
pend on the bound variables in the scope), the necessary information is readily
available. The name ! Message send expression is transformed to {name,
OriginalNodeName} ! Message.

This concludes the transformation step, the moved process (and those lo-
cally spawned by it) can send messages to processes that have remained on the

264 I. Bozó, M. Tóth and B. Varga

original node. The original versions of the transformed functions were kept,
so that they may be used in a different context, possibly by different nodes or
processes without having to use a different interface.

There may be some functions that were only used by the moved process,
and therefore the original version does not need to be kept. A series of semantic
queries can be used to find unused function definitions after this transformation
and remove them from the code. A detailed description of this compensation
can be found in [19].

4. Validating the implemented transformations

The basic cases of the transformations are implemented in the RefactorErl
static source code analyser and transformation framework.

While using formal methods to prove the transformations’ correctness would
be the most desirable, it is infeasible due to their complexity. There are ongoing
attempts [11, 8] to formalize Erlang’s semantics, and to describe refactorings
by defining rewrite rules or behavioural equivalences. However, in their current
stage, these methods are not applicable yet to the transformations presented in
this paper. Thus we have tested the refactoring for a large number of different
use cases to ensure its correctness. We have defined several unit tests based on
RefactorErl’s testing framework, and we have defined a manual testing process
and applied it to different open-source projects.

The manual testing method involved the following steps:

1. Experiment with the original, concurrently written program. Run its ex-
ported functions, log some messages and try to understand the behaviour
of the application.

2. Use RefactorErl’s process analysis tools to aid the understanding of the
process and messaging relationships.

3. Perform the desired transformation using RefactorErl.

4. Observe the transformed code and examine the changed parts. Check if
there are any unexpected changes.

5. Behaviour testing: Experiment with the transformed program, and run
its functions. Focus on the modified or newly copied functions. See
whether at any time new errors are produced. See if running the program
with the same parameter in the same context produces the results as
before (this only applies in deterministic or pure programs). Run any
available unit- and integration tests.

Refactoring concurrent Erlang applications 265

The transformation involves moving processes, removing and creating regis-
trations and modifying communication between processes. Therefore, we have
defined a checklist for behaviour-testing the transformed code to find any issues
that might have been caused by the refactoring. The following non-exhaustive
list provides a starting point for validating the success of the transformation,
and ensuring that the application’s behaviour is unchanged:

� The moved processes can access all of their required resources (these are
available on the new node, accessible the same way as before, and com-
patible with the process). Test: Run the functions that access resources
on the new node. Look for errors.

� The moved processes are no longer registered on the original node. Test:
Run registered() on the original node.

� The moved processes that were registered before being registered on the
new node. Test: Run registered() on the new node.

� Messages sent between processes on the original node and the moved pro-
cesses (by Pid, registered name, or global) still function. Test: Depends
on the program. Try to produce behaviours that involve message passing.
Log the received messages.

� Messaging among the moved processes is intact. Test: Same as above

� Messaging among the processes that stayed on the original node still
works. Test: same as above.

Further information about the validation and testing with examples can be
found in [19] and [20].

5. Related work

Transforming concurrent applications to distributed ones using static trans-
formations is not a very widely researched topic. However, there are various
approaches by researchers, whose main goal – increasing performance, enabling
easier scaling and fault tolerance – aligns with the theme of our research. Most
of these papers are focused on the earlier step of this effort, transforming se-
quential programs to parallel; while some provide the theoretical background
behind the transformations.

5.1. Process migration

Process migration means moving the execution of a process to another ma-
chine while it is running. This is advantageous for dynamic load balancing and

266 I. Bozó, M. Tóth and B. Varga

configuration, allowing a high level of flexibility since parts of the execution
can be moved around the distributed system.

Tanenbaum and van Steen’s book on distributed systems [17] offers an ad-
ditional explanation of the framework devised by Fuggetta et al. [10] for the
categorisation of relationships of resources. It considers two factors, the rela-
tionship between a process and the resource; as well as between the resource
and the underlying machine. The process can require the resource by identifier,
value, or type; and the resource can be unattached, fastened, or fixed to the
machine. The combination of these two factors gives 9 categories with different
migration characteristics.

In [7], this categorisation is applied to Erlang processes and resources. The
author notes that local registration is a fixed identifier resource, which means
that the moving of locally registered processes is a difficult task. The pro-
posed solution is to use a global reference, which in Erlang terms is either a
{registered name, node name} tuple or a Pid-based messaging. The author
also suggests the use of the global module as an alternative.

The runtime migration of Erlang processes has also been studied [15]. The
authors have created a mechanism that allows the migration between two Er-
lang nodes without interruptions while keeping the state of the process.

5.2. Refactoring tools

The transformations described in this paper are designed to be implemented
using the RefactorErl framework. However, there exist other Erlang refactoring
tools as well. We used this tool because it supports thorough semantic analysis
besides its transformation backend.

Erlang Syntax and Metaprogramming Tools [2] are a collection of modules
for handling and transforming abstract syntax trees. One of its modules is
erl tidy, which provides basic automatic refactorings of Erlang code. Tidier
[16] is another fully automatic refactoring tool for Erlang programs. It offers
relatively simple refactorings involving a smaller scope and provides strong
reliability guarantees for the transformed code.

Wrangler [13, 3] is a semi-automatic refactoring tool for Erlang programs,
providing several refactorings ranging from simple to large structural changes.
It provides interaction with Emacs and Eclipse interfaces. It is extensible as it
provides an API for performing refactorings.

5.3. Process related refactorings

Wrangler includes some process-related refactorings, including registering
a process, renaming a registered process or creating processes from function
definitions. In the accompanying paper [14], the authors provide a thorough
evaluation of the challenges of analysing processes. They note that the key

Refactoring concurrent Erlang applications 267

difficulty is caused by the implicit nature of many process-related structures.
The authors point out that Erlang processes do not have a clear syntactically
defined scope, but may consist of various functions that may also be shared
by other processes. Parts of code, even those involving process spawning or
message sending may be used from various places. We have made sure to
address this point when designing the transformation, by making copies of
certain function definitions, as described in Section 3.4.

Wrangler’s process-related refactorings use an Abstract Syntax Tree anno-
tated with process information, but there are other approaches as well. Pro-
gram slicing [21] is a method used to reduce a program to parts that produce
a subset of the program’s behaviour. Considering data and control flow de-
pendencies, slicing techniques separate parts of the code that influence a given
statement. A recent publication [12] uses slicing techniques to implement three
refactorings to introduce concurrency to sequential Erlang code.

The PaRTE framework [5] combines the capabilities of RefactorErl and
Wrangler, with the main goal of parallelising sequential Erlang code. The
tool discovers parallelisation pattern candidates using algorithmic skeletons [6].
The framework is part of the Paraphrase-Enlarged project [1], whose goal is to
statically detect parallel patterns in (Erlang) programs.

6. Conclusion and future work

In this paper, we have examined the task of transforming concurrently writ-
ten Erlang programs to function in a distributed manner. We have defined
transformation schemes that make use of static analysis to transform Erlang
code so that some of its processes will run on a different node.

We have examined the preconditions of moving a registered process to pre-
serve the overall semantics of the application. We have defined transformations
that consider the relationship and relative location of the spawning and regis-
tration of the process.

To restore the communication between the moved process and the processes
that remain on the original node, we have defined transformations to modify
the send expressions. We have described the challenges of finding the relevant
expressions. To allow messaging from the moved process, we have devised a
search algorithm and a series of transformation steps to dynamically generate
the original node’s name at runtime, and pass it to the send expressions where
it is necessary.

We have implemented the basic cases of the transformations described in
the paper using RefactorErl. This implementation has been used to manually
validate the refactorings. We have transformed multiple open-source example

268 I. Bozó, M. Tóth and B. Varga

projects and compared the functionality of the original and the transformed
versions.

Future work might be done towards improving analysis regarding the com-
munication among processes. Currently, we can gain a limited understanding
of the process relationships using static analysis. By better describing these
connections, more specific and useful cases of the transformation could be de-
fined. We could define metrics regarding the strength of the connection between
certain processes by analysing messages passing between them, and then ap-
ply clustering algorithms to automatise the refactoring to achieve the highest
performance or robustness.

There are still some cases for which we have not developed transformations.
The goal is to cover these in the future and extend the already implemented
refactorings. It is worthwhile to also study the applicability of the global mod-
ule in the transformations.

In distributed systems, efficiently storing and accessing large amounts of
data is not a trivial task. Erlang offers storage options such as ETS, DETS
and Mnesia databases, with different distribution characteristics. For example,
ETS tables are owned by a process, thus the movement of the process must
involve compensations so that the table can still be accessed. There are many
new transformations to be defined involving this topic.

Our contribution is the definition of schemes for common patterns of concur-
rent to distributed transformations. We have examined preconditions, querying
and transformation steps, as well as additional considerations that need to be
taken. The topic of our paper is relatively unexplored, and there is much future
research to be done in this area.

References

[1] ParaPhrase Enlarged project, http://paraphrase-enlarged.elte.hu/,
[Acc. 02.07.2024].

[2] Erlang Syntax and Metaprogramming tools,
https://www.erlang.org/doc/apps/syntax_tools/chapter.html,
[Acc. 02.07.2024].

[3] Wrangler, https://refactoringtools.github.io/docs/wrangler/,
[Acc. 02.07.2024].

[4] Bozó, I., D. Horpácsi, Z. Horváth, R. Kitlei, J. Köszegi, M. Tejfel
and M. Tóth, RefactorErl - Source Code Analysis and Refactoring in
Erlang, in Proceedings of the 12th Symposium on Programming Languages
and Software Tools, pages 138–148, 2011.

http://paraphrase-enlarged.elte.hu/
https://www.erlang.org/doc/apps/syntax_tools/chapter.html
https://refactoringtools.github.io/docs/wrangler/

Refactoring concurrent Erlang applications 269

[5] Bozó, I. V. Fördős, Z. Horváth, M. Tóth, D. Horpácsi, T. Kozsik,
J. Köszegi, A. Barwell, C. Brown and K. Hammond, Discovering
Parallel Pattern Candidates in Erlang, in Proceedings of the Thirteenth
ACM SIGPLAN Workshop on Erlang, page 13–23, Association for Com-
puting Machinery, 2014.

[6] Cole, M., Algorithmic Skeletons: Structured Management of Parallel
Computation, MIT Press, 1991.

[7] Fauszt, Zs., Konkurens Erlang programok vizsgálata és transzformálása
– Analysis and transformation of concurrent Erlang programs, Master’s
thesis, Eötvös Loránd University, 2018.

[8] Francalanza, A. and E. Tanti, Towards Sound Refactoring in Erlang,
Xjenza Online - Journal of The Malta Chamber of Scientists, 3 (2015),
31–35.

[9] Francesco, C. and S. Thompson, ERLANG Programming, O’Reilly
Media, Inc., 1st edition, 2009.

[10] Fuggetta, A., G. Picco and G. Vigna, Understanding Code Mobility,
Software Engineering, IEEE Transactions, 24 (1998), 342–361.

[11] Horpácsi, D., J. Kőszegi and S. Thompson, Towards Trustworthy
Refactoring in Erlang, Electronic Proceedings in Theoretical Computer
Science, 216 (2016), 83–103.

[12] Li, H. and S. Thompson, Safe Concurrency Introduction through Slic-
ing, in Proceedings of the 2015 Workshop on Partial Evaluation and Pro-
gram Manipulation, page 103–113, Association for Computing Machinery,
2015.

[13] Li, H. and S. Thompson, Tool Support for Refactoring Functional Pro-
grams, in Proceedings of the 2008 ACM SIGPLAN Symposium on Partial
Evaluation and Semantics-Based Program Manipulation, page 199–203,
Association for Computing Machinery, 2008.

[14] Li, H., S. Thompson, Gy. Orosz, and M. Tóth, Refactoring with
Wrangler, Updated: Data and Process Refactorings, and Integration with
Eclipse, In Proceedings of the 7th ACM SIGPLAN Workshop on ER-
LANG, page 61–72, Association for Computing Machinery, 2008.

[15] Piotrowski M. and W. Turek, Software Agents Mobility Using Pro-
cess Migration Mechanism in Distributed Erlang, in Proceedings of the
Twelfth ACM SIGPLAN Workshop on Erlang, Erlang ’13, page 43—50,
Association for Computing Machinery, 2013.

[16] Sagonas, K. and T. Avgerinos, Automatic Refactoring of Erlang Pro-
grams, in Proceedings of the 11th ACM SIGPLAN Conference on Prin-
ciples and Practice of Declarative Programming, page 13–24, Association
for Computing Machinery, 2009.

[17] Tanenbaum, A.S. and M. Steen, Distributed Systems: Principles and
Paradigms, Prentice-Hall, Inc., USA, (2nd Edition), 2006.

270 I. Bozó, M. Tóth and B. Varga

[18] Tóth, M. and I. Bozó, Static Analysis of Complex Software Systems Im-
plemented in Erlang, Central European Functional Programming Summer
School – Fourth Summer School, CEFP 2011, Revisited Selected Lectures,
Lecture Notes in Computer Science (LNCS), 7241 (2012), 451–514.

[19] Varga, B., Refactoring concurrent Erlang applications for distribution,
Thesis at the Student Association Conference, Faculty of Informatics. Re-
ceived 1st prize., 2020

[20] Varga, B., Elosztott programozást seǵıtő programtranszformációk meg-
valóśıtása – Implementing program transformations to help distributed
programming, Bachelor’s Thesis, Eötvös Loránd University, 2020.

[21] Weiser, M., Program Slicing, in Proceedings of the 5th International
Conference on Software Engineering, page 439–449. IEEE Press, 1981.

I. Bozó, M. Tóth and B. Varga
ELTE, Eötvös Loránd University
Budapest
Hungary
bozo i@inf.elte.hu

toth mi@inf.elte.hu

balazsvarga@student.elte.hu

	Introduction
	Concurrent and distributed programming in Erlang
	Process creation
	Locally registering processes
	Sending messages

	Transforming concurrent Erlang programs
	Moving a simple process
	Transforming locally registered processes
	Embedded spawn and register
	Separate spawn and register
	Registers on multiple execution paths

	Restoring communication to the moved process
	Control flow-based approach

	Sending messages from the moved process
	Finding functions to transform
	Transforming function calls and definitions
	Transforming the send expressions

	Validating the implemented transformations
	Related work
	Process migration
	Refactoring tools
	Process related refactorings

	Conclusion and future work

