
Annales Univ. Sci. Budapest., Sect. Comp. 57 (2024) 219–244

GVIEW: VISUALISING SOFTWARE DEPENDENCIES

IN ORDER TO SUPPORT CODE COMPREHENSION

István Bozó, Mátyás Komáromi and Melinda Tóth

(Budapest, Hungary)

Communicated by Zoltán Horváth

(Received January 10, 2024; accepted July 2, 2024)

Abstract. It is always a great challenge to maintain industrial-scale soft-
ware. It requires a full understanding and awareness of the different com-
ponents and their connections to avoid introducing software errors. Aiding
the process of software maintenance by visualisation is a very timely topic,
as humans are more efficient at understanding visual information than writ-
ten. In our paper, we introduce Gview, a new tool for interactive graph
representation. The presented graph is interactive and utilises the GPU
to speed up layout generation. We integrated Gview with RefactorErl.
RefactorErl is a source code analyser and transformation tool that also
supports code comprehension for Erlang. The tool represents the syntactic
and semantic information in the Semantic Program Graph, containing a
massive amount of nodes and edges as input for Gview.

1. Introduction

Visualisation of software is mapping a software system and its architecture
to a visual representation. The created view can be static, interactive, or even
animated [9].

The visual representation of software may improve the productivity of de-
velopers, as it supports code comprehension, helps to find inconsistencies and

Key words and phrases: Code comprehension, software visualisation, Erlang, RefactorErl,
GView.
2010 Mathematics Subject Classification: 68N99.
Project no. TKP2021-NVA-29 has been implemented with the support provided by the
Ministry of Culture and Innovation of Hungary from the National Research, Development
and Innovation Fund, financed under the TKP2021-NVA funding scheme.
This work is a detailed version of a MaCS 2020 presentation.



220 I. Bozó, M. Komáromi and M. Tóth

improves quality. The software visualisation extracts and combines closely
related information of the system. The visualised representation is easier to
comprehend than gathering the same information manually from the source
code.

RefactorErl [7] is a static source code analyser and transformation tool for
Erlang. It aims to support the everyday code comprehension tasks of Erlang
developers. Since presenting the semantic information about the source code
is quite natural on a graph, we started the Gview project as a new graph
visualisation component for RefactorErl. The main goal was to be capable of
rendering the huge Semantic Program Graphs [13] as well.

The main contributions of this paper are the introduction of Gview which
is a new interactive graph visualisation tool and the extension of Refactor-
Erl that integrates Gview. Gview was designed to utilise the GPU resources
and provide different layout generation mechanisms, to support a generic data
transfer protocol and an easy-to-use interface for different tools. We present
the integration of Gview with RefactorErl and some use cases. However, the
tool was designed for software visualisation, its usage has no restrictions.

The rest of the paper is structured as follows. Section 2 introduces the
tool RefactorErl and the prototype of Gview. Section 3 presents details about
the generalised and RefactorErl-independent Gview and its integration with
RefactorErl. Section 4 describes use cases about how to use Gview for code
comprehension. Finally, Sections 5 and 6 present related work and conclude
the paper.

2. Background

Erlang [5] is a functional, concurrent programming language that was de-
signed to build distributed, soft real-time, robust, fault-tolerant applications.
Although the language is functional, industrial-scale applications require tools
to support software maintenance, code comprehension, refactoring, etc.

RefactorErl [7] was designed to provide a static source code analyser frame-
work with thorough static semantic analyses for the programming language
Erlang. The tool offers a wide range of source code transformations as well.
RefactorErl represents the source code in a so-called SPG, the Semantic Pro-
gram Graph [13]. The SPG contains the syntax tree of the source code en-
hanced with lexical information, and different analysers add semantic informa-
tion about the source code relations.

The tool [2] provides more than twenty refactoring steps for the users. Be-
sides the well-known renaming, moving, etc. transformations RefactorErl sup-
ports parallelisation by refactorings [29, 8, 19].



Visualising software dependencies 221

RefactorErl aims to support code comprehension in various ways. It defines
a query language [28] to allow user-defined semantic queries about the source
code and present the gathered information in different formats. For example,
the web interface of the tool lets the user navigate between the source code and
the results of the queries.

It also implements dependence analyses of software components and can
utilise the dependence relations for software clustering. RefactorErl defines a
duplicated code detection and elimination component.

RefactorErl can handle industrial scale applications [26]. For that size, the
Semantic Program Graph and also the gathered views are so huge that a static
graph visualiser is not able to present it to the developer. However, it is not
necessary to show the entire graph to the user. Most of the time the user wants
to check a filtered subgraph, a predefined view only, and explore the rest of the
graph interactively.

Therefore we started to build Gview as part of the RefactorErl project to
visualise different views of the Semantic Program Graph. The very first version
of Gview [16] was only able to visualise the module/function views of the SPG
that was printed to a static dot file [18].

3. Gview – Visualising software components

Our solution for the problem of visualisation can be broken down into four
sub-tasks: data transfer, layout generation, displaying the graph with the gen-
erated layout and handling user interactions. We define different views of the
graph. For example, the dataflow view of a given variable shows all the possible
ways how data could be assigned to it. These views have a specific meaning in
the context of the host application (RefactorErl) and thus must be generated
by it and converted into a visual description containing all the desired graphi-
cal properties of the resulting plot such as line thickness and colour. Figure 1
shows an overview of the internal structure of Gview.

Figure 1. Representation of the inner division of sub-tasks in Gview.



222 I. Bozó, M. Komáromi and M. Tóth

3.1. Data Transfer

RefactorErl has its graph-based internal representation to store the anal-
ysed Erlang source code. The graph is accessible through an Erlang querying
interface. The data is stored in Erlang terms. Thus our first sub-task is to
define a protocol to transfer the data from RefactorErl to Gview.

Our initial approach was based on intermediate data storage such as a file
formatted in the DOT language of Graphviz, where RefactorErl would export
the whole SPG, often resulting in hundreds of megabytes in size and thus in
slow startups. This method also brought the additional cost of our method
being dependent on the specifics of the Semantic Program Graph. To improve
the visualisation, we introduced dynamic data transfer [15]. The transfer is
done through our binary protocol which was designed to be host-independent
while being as efficient as possible while not forming a performance bottleneck.
The protocol defined in our work also has a control layer that enables host
applications to programmatically change properties of the plot such as the
used layout algorithm.

Our protocol is a byte protocol, meaning it can be used over any stream that
can transfer bytes between applications such as TCP/IP. Our implementation
with RefactorErl uses the Erlang Ports interface which builds on the standard
input and output file handlers of the graph plotter. First, the host application
and the plotter exchange a two-way handshake message as seen in Figure 2,
stating the used version of the protocol, which is currently 1.0, resulting in an
error if the two are not compatible.

Figure 2. The initial two-way handshake message. Not a large but rather
important message.

After that, the plotter application is up and running, and is waiting for
new commands. The command string is sent in ASCII encoding, while the
label string is in UTF-8. The first important command is to change the layout
generation algorithm. For example, to change the layout from force-directed to
hierarchical. To accomplish this, the host must send two messages: ”set layout”
and the id of the new algorithm, for example, ”layered” for layered hierarchical
as seen in Figure 3.

The host can also issue a plot command via sending ”set view” and then
sending the description of the graph. A summary of this message can be seen
in Figure 4.



Visualising software dependencies 223

Figure 3. Example of a message sent by the host to set the used layout algorithm
to layered.

Figure 4. Summary of the complete plot message.

Sending a graph description begins with sending four integers: the number
of nodes, the size of the node palette and edge palette and the number of
selectors (details on selectors can be found in Section 3.4). Each entry of the
node palette describes the appearance of a given type of node, consisting of
the radius and the shape of the node. Similarly, one entry of the edge palette
holds a preferred width and colour of the edge and the shapes on the end of
the given edge. This visual description of the nodes and edges can be extended
in the future. After the integers, the entries of the node palette and the edge
palette are sent, each in a separate message. In the next messages, the labels
of the nodes, the tooltip strings, the selector counts, and the selector labels
are transferred. After that, a list of integers is sent for each node, denoting
the neighbouring nodes of the current node (edge list representation). These
integers hold the local ID of the nodes which is the number of the given node
and thus independent of the global ID (used in the host) of the node. The last
step is to send node weights, node types, edge weights, and edge types. Types
are integer lists while weights are lists of floating-point numbers. The structure
of the header and the palette entries can be seen in Figure 5.

Node and edge types indicate the id of the entry in the palettes (node
and edge palette respectively) at which the description of the given node or
edge is located, with this palette method, a huge bandwidth reduction can
be achieved for a lot of nodes and edges often share these details. Weights,
on the other hand, can mean different properties depending on the currently
used layout algorithm but in general, they can be understood to represent
the importance of a node or edge, for example, when using the force-directed



224 I. Bozó, M. Komáromi and M. Tóth

Figure 5. The header message and the palette entry messages of a set view
message.

layout, more important edges are generally shorter and more important nodes
repel other nodes stronger. The key idea to make the transfer fast is that since
each message is preceded by a four-byte integer, containing the length of the
message, we can create a byte buffer from all the messages and let the used
implementation stream the bytes in an efficient manner.

3.2. Layout

The second task we defined is to generate a suitable layout for the view
that is currently being plotted. Many layout algorithms have already been
developed as this is an important field of visual computing. In our previous
paper [17], we presented an efficient GPU parallel extension to the famous
Force-Directed Layout algorithm and also a cheap layered layout based on The
Sugiyama Method.

The main idea in the Force-Directed Layout (FDL) is to build a physical
system corresponding to the graph; each node gets represented by a negatively
charged body while edges become springs between these bodies. According
to the Coulomb law and Hooke’s law, given their position, the acting forces
can be expressed on each body, which results in a differential equation system
with time as the variable of the unknown function. The goal is to find an
approximation for the unknown function. The fixed point of this function
represents a physical equilibrium of the system, which will be the final layout
generated by the algorithm. To approximate the unknown function, we use the
higher-order Runge-Kutta methods, which are excellent candidates for massive
parallelisation. In our previous paper, we worked out the details of parallelising
this algorithm in a highly efficient manner and covered various memory and
workload optimisations too.



Visualising software dependencies 225

An example of a Gview-generated force-directed layout for an 8 by 8 grid
is shown in Figure 6.

Figure 6. Force-directed layout

The Layered Hierarchical Layout [6, 25, 10] generation algorithm starts
with assigning nodes to layers, which layers will determine the Y coordinate
of the final position of the node. In the next step, the algorithm calculates
the ordering of nodes on each layer to minimize edge crossings, since this is
a very hard (NP-complete) task even for two layers, different approximations
are employed here. In the final step, X and Y coordinates get calculated for
each node. Our version of the algorithm aims to assign more horizontal space
for nodes with more descendants on deeper layers, which tends to produce
visually pleasing layouts for graphs that possess a tree-like structure. The
layer assignment and the crossing minimisation can be done in various ways
and can be found in many related research papers.

An example of a Gview-generated layered layout for a relatively small ran-
dom tree is shown in Figure 7.

Figure 7. Layered layout



226 I. Bozó, M. Komáromi and M. Tóth

While the Layered Hierarchical Layout works well for trees, the Force-
Directed Layout is optimal for graphs with no special properties or specific
structures such as function call graphs. Thus our tool, Gview uses the Force-
Directed Layout as the default layout algorithm for graphs for the algorithm
produces visually pleasing layouts. The currently employed algorithm can be
dynamically changed through our data transfer protocol. Gview is extensible
and in the future, we plan to investigate more layout algorithms such as layout
generation by Stress-Majoring.

3.3. Plotting

Since our goal is to develop an interactive visualisation, the third task plays
a very important role. While the layout is calculated, the tool presents and
maintains the latest specified view using the graphical description. We aimed
to preserve platform independence while also not sacrificing low-level access to
hardware and thus the ability to gain control of the massively parallel archi-
tecture of modern GPUs.

Therefore, we based Gview on the cross-platform application programming
interface (API) OpenGL (Open Graphics Library) [24]. With OpenGL one can
utilise the GPU to render the 2D meshes generated from the layout algorithm.
It also features Compute Shaders which are Shader Stages that can be used
for computing arbitrary information. In our implementation, we use Compute
Shaders to support FDL parallelisation. While OpenGL enables low-level con-
trol of the GPU, to handle user interaction such as a click of the mouse button,
or keyboard shortcuts, and to open a window in which the OGL rendering
commands can take effect, we used the library Flib.

Flib [1] is an open-source GUI (Graphical User Interface) library built on top
of OpenGL, written in C++, and hosted on GitHub. It is also multi-platform
and uses the native window handling library on each supported system, for
example, WINAPI on machines running Windows. The GUI functionality of
Flib is backed by wrapper classes around OGL objects, such as the Array
Buffer Objects (ABOs), to take advantage of OOP concepts like RAII (Resource
Acquisition Is Initialisation) to ease the task of resource management and in
the same time remain as efficient as possible. Based on the resource handling
classes Flib contains a sprite engine featuring an automatic image packer called
a texture atlas for packing images on a single OGL texture object to then be
used by the engine. These sprites only contain small information, such as
position, size, rotation, and occupied rectangle on the texture atlas, and thus
by realizing the background of each GUI entity, such as buttons and sliders,
using sprites, all of them can be drawn in a single draw command. Text is
displayed in a highly similar manner: each font gets a personal texture atlas
and characters are plotted via sprites. The GUI is modelled as a tree in which
each node is a GUI element. The events are passed in a top-down manner, thus



Visualising software dependencies 227

every element receives and reacts to each event. To automatically convert basic
events such as mouse movement and mouse wheel scrolling into more complex
events like zooming or rotation, Flib uses listener classes one can inherit from
to acquire desired callback functions. Flib also has the utility to tessellate line
segments into thick lines built from triangles and generate distance-to-edge
values which we used when employing the anti-aliasing technique DEAA [14]
(Distance to Edge Anti Aliasing).

Since we aim at interactivity, we wanted to minimise the time spent on the
actual drawing while maintaining good-quality graphics. Upon each event such
as mouse wheel movement, dragging with the mouse or when a new approxima-
tion of the final layout is created, the plotting data is used to generate drawing
meshes (tessellated on the CPU) using Flib. For each visible node, we create a
regular polygon with n sides, depending on the zooming level and the requested
shape of the node. This dependence on the zooming level is called the Dynamic
Level of Detail. We use this technique to reduce the generated geometry by up
to a factor of 100. We also tessellate each visible edge of the plot and send the
resulting geometry in one batch to the GPU memory. This streaming process,
thanks to the small amount of geometry, takes only a fraction of the update
time.

Since the drawing is organised into single batches per triangle and line, we
can issue the drawing in only two draw calls which minimises drawing setup
costs. The events mentioned above may seem to be frequent to the user. How-
ever, at 60 events per second peak with thousands of nodes, it is still an easily
manageable task for an average modern CPU. We conducted measurements of
hundreds of frequently occurring views (about 20 to 30 nodes per view) and
determined the amount of time needed to parse the input graph description
from our binary protocol was at most 5ms which is not at all significant. Up-
dating the layout using parallel FDL with one iteration, however, although only
taking around 1 ms, needs to be calculated a large number of times. We also
evaluated the time taken to tessellate the given view into raw drawing data,
which as our predictions showed, does not take up much of the update time
(around 0.5ms at most). Since we are running the layout generation on a sepa-
rate thread (see Section 3.4) synchronizing the data on the drawing thread and
the worker thread takes up time too, but it is not significant. The summary of
our measurements is shown in Figure 8.

3.4. Interaction

User interaction happens through the Graphical User Interface of Gview,
backed by Flib, built on top of OpenGL, via mouse clicks, keyboard buttons,
etc. Hovering over a node or the label of the node highlights it and reveals
smaller nodes around it, called selectors, indicating the selected node. Selectors
only have a label and can be specified from the host application as described



228 I. Bozó, M. Komáromi and M. Tóth

Figure 8. Relation of the time spent on transferring a view, updating one
iteration on it, drawing it, and synchronisation. Note that layout updates
occur much more frequently than data transfers.

in Section 3.1. Different types of nodes may have different sets of selectors, for
example, a function node has an expand selector if it is the centre of the view
for expanding the call depth shown and a lex selector to switch to the lexical
nodes of the SPG spanning from the function node. Clicking a node triggers
message sending. It sends the host application the clicked and node messages
and an integer representing the id of the node. When a selector is clicked,
beside the messages clicked, selector, and the node id, the number of the
selector is also sent. Certain key combinations, like CTRL+Z and CTRL+Y,
also produce messages undo and redo accordingly. With these combinations,
the user can go step by step back and forward in the history of previous steps.
The host application can react to these events by loading a new view or ignoring
them all without any problem.

Our previous approach [16] was a single-threaded design. Thus, the layout
generation, drawing, and user input handling were done on the same thread. In
some cases, when the layout-generating algorithm took more time than usual,
it delayed user interaction handling. To remedy this problem, we split up the
process into two threads as shown in Figure 9: the first is responsible for user
interaction handling and drawing the actual graph quickly from the last syn-
chronised layout, and the second is responsible for layout generation. The two
threads share a mutex used to protect the shared layout data which is updated



Visualising software dependencies 229

by the worker thread after every iteration, or after the completion of the gen-
eration if the algorithm is non-iterative. This way the zooming and translating
can remain interactive even with heavy layout calculations in exchange for a
synchronisation overhead.

Figure 9. Interaction of the rendering thread which also handles the user in-
teraction and the worker thread that generates the layout.

3.5. Integration with RefactorErl

RefactorErl already contains numerous refactorings and code comprehen-
sion-supporting functionalities. To further enhance the code comprehension
capabilities, we wanted to extend it with graph plotting capabilities to allow
the traversal of the Semantic Program Graph (SPG) interactively.

Our design of the graph displaying component of RefactorErl relies on the
strength of the Erlang programming language: robustness. The SPG can grow
to an enormous size (hundreds of thousands, or millions of nodes and edges),
thus when one wants to display only the closely related entities of a subgraph
in focus the dynamic capability of Gview is a good match. The implementation
uses Erlang ports for dynamic data transfer and command protocol between
RefactorErl and Gview. The standard input and output of the opened appli-
cation (Gview in our case) are turned into binary input and output channels.
Through this channel, the processes can communicate by sending and receiv-
ing messages. On Windows, this is not that straightforward as the newline
characters are changed which requires special handling.



230 I. Bozó, M. Komáromi and M. Tóth

The exact mechanism of the Erlang ports is implementation-dependent,
however, according to our estimations, even larger views of thousands of nodes
can be sent quickly. To confirm our estimation, we measured the data transfer
rates on one hundred views of different sizes ranging from the trivially small
to even two thousand nodes. We found that the loading times never exceeded
one-third of a second, proving that the Erlang Ports can deliver sufficient speed.

According to Erlang’s ”Let It Crash” philosophy, we wanted to let the
smaller building blocks of the tool crash and then restart without the end
user even noticing it, thus the communication between the static analyser and
the plotter is governed by an Erlang server, gview server. The responsibility
of gview server is to accept incoming plot requests, and layout changes and
based on them create the necessary data to be sent to Gview and also receive
and propagate events from Gview to the view switch handling code. For large
graphs, such as dataflow graphs, it may take some time for this server to collect
the necessary information for plotting.

The gview monitor is a server process that monitors the gview server and
acts as a proxy between the user/program and Gview. Thus the caller of the
Gview interface of RefactorErl does not have to wait to receive the data until
the graph query finishes. Since Gview is an external program RefactorErl stays
unaffected by an unexpected failure of Gview.

The module gview gives an interface that hides the monitor and the server
and makes the usage of the tool much more intuitive. Interface functions such
as gview:start/0, gview:layout/2 or gview:load/2 can be used to pass
commands to Gview, for example, P = gview:start() starts a new instance
of Gview and assigns its identifier to variable P which then can be used to
plot all the loaded modules and functions via gview:load(P, modules) or
change the layout view gview:layout(P, layered) or query the status of the
connection via gview:status(P).

An overview of the application structure can be seen in Figure 10.

Figure 10. Our graph visualisation architecture, Gview.



Visualising software dependencies 231

4. Using Gview for code comprehension in RefactorErl

In this section, we show two use cases to demonstrate how Gview supports
code comprehension. In our use cases, we analysed the Mnesia DBMS sys-
tem [20] and built the Semantic Program Graph from it. The first use case
generates a function view of the SPG, while the second uses the syntactic view
to explore the graph searching for possible values of different language con-
structs.

Figure 11. Mnesia view

Figure 11 illustrates the force-directed layout-based representation of the
Mnesia modules and functions. Mnesia has 26 KLOC, which is a medium-scale
Erlang application. It contains 1804 function definitions in 30 different mod-
ules. However, the presented view contains the referred functions and modules
as well. Therefore in total 63 modules and 2104 functions are visualised.

After starting RefactorErl’s interactive Erlang shell interface, we can easily
start Gview and load the module view with the following commands:

P = gview:start().

gview:load(P, modules).

Our interactive tool makes it possible to select a node in the graph and
generate a new view. Figure 12 shows the graph created when we clicked on
module mnesia log.



232 I. Bozó, M. Komáromi and M. Tóth

Figure 12. mnesia log view

The same view is available through a direct call in the Erlang shell as well:

gview:load(P, [{modules, [mnesia_log]}]).

The size of these graphs for even this medium-scale application is too big
but makes a good starting point for further analysis. The interactive nature of
the tool makes it possible to easily dig deeper into the modules, functions or
structures to find the required information.

4.1. Call graph view

Clicking on the open log/3 function in Figure 12 results in the graph shown
in Figure 13. This function call graph contains information about the called
functions and the caller functions as well. Coloured, directed edges differentiate
the functions calling open log/3 (blue edges) and those that are called by
open log/3 (red edges). The software checks the size of the call graph and sets
a call depth limit if needed to result in a comprehensible graph. The minimum
level of depth is one. The depth of the plot can be adjusted by the user (with
buttons located right above the root node).



Visualising software dependencies 233

Figure 13. open log/3 function call graph

Any element of the graph can be clicked to expand the next level of the call
graph. For example, selecting the open log/5 label results in the graph shown
in Figure 14.

The user can easily switch between the force-directed and layered layout and
choose the most appropriate for the task. For example, the following command
results in the view presented in Figure 15:

gview:layout(layered).

Using call graphs in software maintenance is useful, it can contribute to
bug detection and fixing and code comprehension tasks as well. An interactive
tool, such as the integrated Gview to RefactorErl, provides tools to help the
developer draw and explore the call graph. The semantic information available
in RefactorErl extends the classical static call graph views with dynamic call
information as well [12].



234 I. Bozó, M. Komáromi and M. Tóth

Figure 14. open log/5 function call graph

Figure 15. open log/5 function call graph (layered view)



Visualising software dependencies 235

4.2. Enhanced syntax view

Besides the high-level function view, a developer might be interested in the
details of the implementation as well. At this point, Gview provides a syntactic
view of the functions and expressions as well. The syntax view of open log/6

is illustrated in Figure 16.

Figure 16. open log/6 high level syntax view

The syntax view can be further expanded with new levels of details from
the syntax tree until the developer finds the appropriate information (Figure
17).

Figure 17. Extending the syntax view of open log/6

Besides the syntax tree, the interface makes it possible to reach semantic
information from the Semantic Program Graph of RefactorErl. For example,
a view can be generated from the dataflow information [27, 30]. The dataflow
reaching analysis of RefactorErl can calculate the possible values of a particular



236 I. Bozó, M. Komáromi and M. Tóth

expression. During the analysis, all possible execution paths are considered and
the possible values of the expressions are collected. This information can be
useful in the case of debugging, code comprehension, testing, etc. For example,
pointing the possible values of an expression can help in fault localisation when
we are analysing runtime errors containing some information about the values
causing the error. Using dataflow reaching we can also calculate the possible
arguments of a function call, thus, we can narrow the scope of our investigation
by selecting and focusing on the matching function clauses only.

Using Gview, the developer who is interested in the possible values of a
variable only needs to click on the targeted variable node. For example, by
clicking on the variable Mode on the syntax view (Figure 16) we can deduce
from the generated graph (Figure 18) that the possible values are read write

and read only.

Figure 18. Values of the variable Mode

However, the desired information is not always available within a single
step. Clicking on Fname in Figure 16 does not give us the possible values as a
constant expression (Figure 19) since it is calculated by the function application
filename:join(...).

Figure 19. Values of the variable Fname



Visualising software dependencies 237

Thus, we have to further investigate the structure of the application that is
concatenating a directory name with a filename. Once we click on the function
application node (the right-hand side node in Figure 16 ), Gview plots the
syntax tree of the application (Figure 20). Here we can find the name of the
file represented by the Fname node. Selecting this node will list all the possible
file names used during the concatenation (Figure 21).

Figure 20. Exploring the syntax tree values of the application
filename:join(...)

Figure 21. Exploring the values of the variable Fname



238 I. Bozó, M. Komáromi and M. Tóth

Exploring the syntax tree and using dataflow relations are extremely useful
in bug-fixing tasks. Once the developer detects a wrong value at a certain point
of execution, the enhanced syntax tree explorer can help to find out where the
wrong value comes from.

4.3. Using the interactive graphs

RefactorErl can export the Semantic Program Graph to a dot file, thus for
a few lines of code dot1 can visualise the SPG. However, even for a small ap-
plication (Crypto, 3KLOC), the graph contains thousands of edges and nodes.
For a medium-scale application (Mnesia, 26KLOC) the graph contains more
than a million relations (See Figure 7.1 in [15] and a partial view in Table 1).
dot is not able to generate a layout for such applications, therefore without
Gview, we were not able to visualise the SPG. It is obvious, that the user
does not want to see thousands of nodes on a static graph, but rather wants
to start with a high-level view and dynamically expand it to get the desired
details. Using the external dot command was not the best tool to develop this
functionality, thus we started the implementation of Gview.

Table 1. Exporting the Semantic Program Ggraph [15]

Project
DOT
size

DOT
generation

Nodes
Edge
count

Function
count

Crypto 9,84 MB 22,3s 24 551 86 222 174
Sasl 45,84 MB 151,9s 107 936 438 508 928
SSH 94,71 MB 241,2s 230 398 913 924 1117
Mnesia 141,79 MB 477,1s 332 360 1 374 466 2104
StdLib 283,74 MB 1028,4s 652 300 1 438 325 3206

RefactorErl has a dependency graph calculation and visualisation compo-
nent. This can be considered as predefined views on the module and function
level. The function level dependency graph is a call graph. We compared the
layout generation for the dependency graphs and the function call graph view
generation of Gview. For the Mnesia application generating the function de-
pendency graph took more than an hour, and it took 4 minutes to open the
static graph. Gview was able to generate the layout in 2 minutes and open it
in 14 seconds to interactively traverse and further expand it.

1A command from the GraphViz toolchain



Visualising software dependencies 239

5. Related work

Following are some tools suitable for software visualisation that we would
like to compare to our solution.

5.1. IslandViz

With the tool IslandViz [23], one can explore modular software systems in
virtual reality. The metaphor ”island” is used for modules, each module repre-
senting a distinct island. The system is displayed as a virtual table, where users
can explore the software by performing navigational tasks on multiple levels of
granularity. The tool enables the users to get an overview of the complexity of
the software and traverse the system interactively and explore the modules and
the dependencies between them. The project is built on Unity, a cross-platform
real-time game engine developed by Unity Technologies. IslandViz offers two
layout generation algorithms, one pseudo-random-based and a variant of the
Force-Directed Layout. The random-based algorithm incrementally puts nodes
(islands) in random positions, retrying up to fixed times if the placed island
collides with another. The problem with this approach is that it disregards
the actual structure of the graph. The other available option in the software
is an FDL which differs from our variant. The IslandViz uses regular physi-
cal springs as opposed to logarithmic springs and employs friction instead of
instantaneous forces. However, the real difference lies in the terminating con-
dition and the underlying mathematical tool. The computation in IslandViz
stops after a certain number of steps. Our solution can keep a moving average
of the maximum relative error thanks to the embedded higher-order methods
and terminates only if this error is below a certain threshold. Our redesign
of the Force-Directed Layout algorithm [17] also targets the massively parallel
architecture of modern GPUs which results in a massive performance increase
over the CPU implementation.

5.2. Graphviz

Graphviz [11] is a well-known graph visualisation software package de-
veloped by AT&T Labs Research in 1991 and is open-source. Among the
supported layout generation algorithms, there are energy-minimising, stress-
majoring methods, and hierarchical ones, each of which has its program in
the Graphviz package. These programs transform the input graph, described
in a text-based language, and apply the given technique to produce an image
file that can be then embedded in other applications and web pages. Many
details can be adjusted using these tools, such as the colours, fonts, tooltips,
line styles, and the shape of nodes. Among the several applications that use
Graphviz, there are many UML drawing tools and computer-aided design sys-
tems such as FreeCAD.



240 I. Bozó, M. Komáromi and M. Tóth

Numerous software packages can produce graph descriptions in the native
language of Graphviz, the DOT graph description language. Since the Refac-
torErl can export the entire SPG to DOT, we tried the approach of parsing
the exported DOT file in the Gview plotter. This version resulted in slower
startups.

There were former attempts at using Graphviz as a graph plotter for Refac-
torErl. The resulting graphs were static, and it was too complicated to switch
between different views. In general, Graphviz targets and excels at the static
plotting of graphs that did not meet our requirements.

5.3. CodeCity

CodeCity [31] is a software visualisation tool that brings software systems
to the screen with a city metaphor. In the interactively discoverable 3D city
classes show up as buildings that stretch higher depending on the complexity
of the given class. The buildings that represent classes are grouped into neigh-
bourhoods based on their packages. The program uses OpenGL to render the
scene and was built using VisualWorks Smalltalk. The goal of the project is
to aid users in discovering software artefacts such as god classes that appear
as large skyscrapers on the landscape. CodeCity targets the visualisation of
different code metrics and thus is not suited for plotting other relations such
as dataflow or function dependency graphs.

5.4. CityVR

CityVR [22] is an interactive software visualisation tool that uses virtual
reality to achieve the gamification of software engineering. Similarly, how head-
phones help to filter noise, the used I3D medium enables users to isolate them-
selves from the outer world in a visual way and thus encourages immersion.

CityVR was built using Unity3D 5.5 and uses CodeCity to create the dis-
played model which is generated from source code files. Since monitors are
the most frequently used tools for software visualisation, a more exciting and
thought-provoking way of exploring software dependencies and metrics is using
a virtual reality headset. This way users of such visualisation tools can achieve
better recollection [21].

5.5. Sourcetrail

Sourcetrail [4] is a lightweight source explorer that supports many main-
stream IDEs and code editors. It features interactive code and dependence
exploration and fast searching functionality. The program aims to help pro-
grammers quickly find relevant pieces of code in large projects without digging
through the code base but rather through interactive diagrams of variables,
functions, and classes. They argue that by exploring the code through this
visual representation, finding important information is much easier and more



Visualising software dependencies 241

convenient. By accompanying diagrams with relevant code snippets, Source-
trail shortens the investigation time. It is a standalone program and integrates
with IDEs and editors such as VSCode through free downloadable extensions.

One drawback of Sourcetrail is that it only supports projects written in
C/C++ or Java and thus is not applicable in the case of Erlang projects.

5.6. Understand

Understand [3] is a multi-platform Integrated Development Environment
(IDE) developed by SciTools for maintaining, measuring, and visualising code
bases. It features many code metrics from the basics like class or file count to
custom metrics such as knots, path count, and weighted methods per class. Un-
derstand employs an incrementally built indexing that enables users to search
quickly in even millions of lines of code. It supports control flow graphs, hi-
erarchy graphs, dependency graphs, and many more but no dataflow graphs.
Various coding standards can be checked by the tool such as naming guidelines
and general best practices. The tool can generate overviews, like quality or
metrics reports.

Using Understand naturally comes with the limitation that it has to be the
IDE of choice for a project unlike in the case of Sourcetrail. Despite being able
to handle more than a dozen languages and projects that use more than one
language, Understand does not support Erlang, which is an important aspect
of our scope.

6. Conclusion and future work

Providing tools to support code comprehension and visualise software is
highly desirable in industrial-scale development. In this paper, we demon-
strated our tool, Gview, which was designed to provide an interactive, dy-
namic, tool-independent visualisation framework built on top of Flib. Gview
also utilises the GPU to provide efficient layout calculation.

We presented the internal design and structure of the tool. We demon-
strated the data transfer protocol defined as a communication channel to Gview
and also the interaction handlers. The paper describes the graph layout cal-
culation algorithms and plotting. The current version of the tool supports
force-directed and hierarchical layout generation. In the future, we plan to
extend the options.

We presented the integration of Gview with RefactorErl to demonstrate
the applicability of Gview in large-scale software visualisation. The usefulness
of the tool was shown in code comprehension use cases through call chain
detection and expression value investigation.



242 I. Bozó, M. Komáromi and M. Tóth

Gview is open source and available on GitHub2. The integration with Refac-
torErl will be released soon with the upcoming release of the tool.

References

[1] Flib project GitHub page, https://github.com/Frontier789/Flib/,
[Acc. 02.07.2024].

[2] RefactorErl, Static source code analyser and refactoring tool for Erlang,
https://plc.inf.elte.hu/erlang, [Acc. 02.07.2024].

[3] SciTools - Understand, https://scitools.com/, [Acc. 02.07.2024].

[4] SourceTrail. A cross-platform source explorer for C/C++ and Java*,
https://www.sourcetrail.com/, [Acc. 0207.2024].

[5] Armstrong, J., Programming Erlang, The Pragmatic Bookshelf, 2nd
edition, 2013.

[6] Battista, G. D. , P. Eades, R. Tamassia and I. G. Tollis, Algorithms
for drawing graphs: an annotated bibliography, Computational Geometry:
Theory and Applications, 4(5) (1988), 235–282.

[7] Bozó, I., D. Horpácsi, Z. Horváth, R. Kitlei, J. Kőszegi, M.
Tejfel and M. Tóth, Refactorerl - source code analysis and refactoring in
Erlang, in: Proceedings of the 12th Symposium on Programming Languages
and Software Tools, pages 138–148, 2011.

[8] Bozó, I., V. Fördős, D. Horpácsi, Z. Horváth, T. Kozsik, J.
Kőszegi and M. Tóth, Refactorings to enable parallelization, in: J.
Hage and J. McCarthy (Eds.), Trends in Functional Programming, Lec-
ture Notes in Computer Science, pages 104–121, 2015.

[9] Diehl, S., Software Visualization: Visualizing the Structure, Behaviour,
and Evolution of Software, Springer, 2007.

[10] Eiglsperger, M., M. Siebenhaller and M. Kaufmann, An efficient
implementation of Sugiyama’s algorithm for layered graph drawing, in: J.
Pach (Ed.), Graph Drawing, pages 155–166, Springer, 2005.

[11] Ellson, J., E. Gansner, L. Koutsofios, S. C. North and G. Wood-
hull, Graphviz—open source graph drawing tools, in: International Sym-
posium on Graph Drawing, pages 483–484, Springer, 2001.

[12] Horpácsi, D. and J. Kőszegi, Static analysis of function calls in Er-
lang. Refining the static function call graph with dynamic call information
by using data-flow analysis, e-Informatica Software Engineering Journal,
7(1) (2013), 65–76

2https://github.com/Frontier789/Gview

https://github.com/Frontier789/Flib/
https://plc.inf.elte.hu/erlang
https://scitools.com/
https://www.sourcetrail.com/


Visualising software dependencies 243

[13] Horváth, Z., L. Lövei, T. Kozsik, R. Kitlei, A. Nagyné Vı́g, T.
Nagy, M. Tóth and R. Király, Modeling semantic knowledge in Erlang
for refactoring, in: Knowledge Engineering: Principles and Techniques,
Proceedings of the International Conference on Knowledge Engineering,
Principles and Techniques, KEPT 2009, Sp. Issue of Studia Universitatis
Babeş-Bolyai, Series Informatica, 54 (2009), 7–16.

[14] Jimenez, J. , D. Gutierrez, J. Yang, A. Reshetov, P. Demoreuille,
T. Berghoff, C. Perthuis, H. Yu, M. McGuire, T. Lottes, H.
Malan, E. Persson, D. Andreev and T. Sousa, Filtering approaches
for real-time anti-aliasing, in: ACM SIGGRAPH Courses, 2011.

[15] Komáromi, M., Gview: Efficient graph visualisation for RefactorEr,
Scientific Students’ Associations Conference, ELTE, Budapest, Hungary,
Received 1st prize, 2018.

[16] Komáromi, M., I. Bozó, and M. Tóth, An Efficient Graph Visu-
alisation Framework for RefactorErl, Studia Universitatis Babes, -Bolyai
Informatica, 63(2), (2018), 21–36.

[17] Komáromi, M., M. Tóth and I. Bozó, Optimising the Force-Directed
Layout Generation, Paper submitted to Acta Univ. Sapientiae, Informat-
icathe, 2024.

[18] Koutsofios, E. and S. North, Drawing graphs with dot, Technical
Report 910904-59113-08TM, AT&T Bell Laboratories, Murray Hill, NJ,
1991.

[19] Kozsik, T., M. Tóth and I. Bozó, Free the conqueror! Refactor-
ing divide-and-conquer functions, Future Generation Computer Systems,
79(Part 2) (2018), 687 – 699.

[20] Mattsson, H., H. Nilsson and C. Wikström, Mnesia - a distributed
robust DBMS for telecommunications applications, Practical Aspects of
Declarative Languages, pages 152–163, Springer, 1999.

[21] Merino, L., J. Fuchs, M. Blumenschein, C. Anslow, M. Ghafari,
O. Nierstrasz, M. Behrisch and D. A. Keim, On the impact of the
medium in the effectiveness of 3d software visualizations, in: 2017 IEEE
Working Conference on Software Visualization (VISSOFT), pages 11–21,
IEEE, 2017.

[22] Merino, L., M. Ghafari, C. Anslow and O. Nierstrasz, Cityvr:
Gameful software visualization, in: 2017 IEEE International Conference
on Software Maintenance and Evolution (ICSME), pages 633–637, IEEE,
2017.

[23] Misiak, M., A. Schreiber, A. Fuhrmann, S. Zur, D. Seider and
L. Nafeie, Islandviz: A tool for visualizing modular software systems in
virtual reality, in: 2018 IEEE Working Conference on Software Visual-
ization (VISSOFT), pages 112–116, IEEE, 2018.



244 I. Bozó, M. Komáromi and M. Tóth

[24] Shreiner, D., G. Sellers, J. Kessenich and B. Licea-Kane, OpenGL
programming guide: The Official guide to learning OpenGL, version 4.3,
Addison-Wesley, 2013.

[25] Suderman, M., Layered Graph Drawing, PhD thesis, McGill University,
Montreal, Que., Canada, 2005.

[26] Tóth, M., Using the open-source RefactorErl in Ericsson, talk at: Func-
tional Programming Meetup, Craft Edition, 2015.

[27] Tóth, M. and I. Bozó, Static Analysis of Complex Software Systems Im-
plemented in Erlang, Central European Functional Programming Summer
School – Fourth Summer School, CEFP 2011, Revisited Selected Lectures,
Lecture Notes in Computer Science (LNCS), 7241 (2012), 451–514.

[28] Tóth, M., I. Bozó, J. Kőszegi and Z. Horváth, Static Analysis Based
Support for Program Comprehension in Erlang, Acta Electrotechnica et
Informatica, 11(3) (2011), 3–10.

[29] Tóth, M., I. Bozó and T. Kozsik, Pattern candidate discovery and
parallelization techniques, in: Proceedings of the 29th Symposium on the
Implementation and Application of Functional Programming Languages,
IFL 2017, pages 1:1–1:26, ACM Press, 2017.

[30] Tóth, M., I. Bozó, Z. Horváth and M. Tejfel, 1st order flow analysis
for Erlang, in: Proceedings of 8th Joint Conference on Mathematics and
Computer Science, pages 403–416, 2010.

[31] Wettel, R. and M. Lanza, Visually localizing design problems with
disharmony maps, in: Softvis 2008 (4th International ACM Symposium
on Software Visualization), pages 155–164, ACM Press, 2008.

I. Bozó, M. Komáromi and M. Tóth
ELTE, Eötvös Loránd University
Budapest
Hungary
bozo i@inf.elte.hu

makom789@gmail.com

toth m@inf.elte.hu


	Introduction
	Background
	Gview – Visualising software components
	Data Transfer
	Layout
	Plotting
	Interaction
	Integration with RefactorErl

	Using Gview for code comprehension in RefactorErl
	Call graph view
	Enhanced syntax view
	Using the interactive graphs

	Related work
	IslandViz
	Graphviz
	CodeCity
	CityVR
	Sourcetrail
	Understand

	Conclusion and future work

