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Abstract. Automatic personality trait assessment is essential for high-
quality human-machine interactions. Systems capable of human behavior
analysis could be used for self-driving cars, medical research, and surveil-
lance, among many others. We present a multimodal deep neural network
with a distance learning network extension for apparent personality trait
prediction trained on short video recordings and exploiting modality in-
variant embeddings. Acoustic, visual, and textual information are utilized
to reach high-performance solutions in this task. Due to the highly central-
ized target distribution of the analyzed dataset, the changes in the third
digit are relevant. Our proposed method addresses the challenge of under-
represented extreme values, achieves 0.0033 MAE average improvement,
and shows a clear advantage over the baseline multimodal DNN without
the introduced module.
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and R.R. Saboundji were supported by part through grants EFOP-3.6.3-VEKOP-16-2017-
00001 and EFOP-3.6.3-VEKOP-16-2017-00002, respectively. A. Lőrincz was supported by
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1. Introduction

Prediction of personality traits is an important task since it is useful for
predicting decision-making patterns of people with stable personality traits in
diverse situations and detecting changes due to, e.g., stress, drinking, drugs,
and so on. One of the most studied model to describe personality is the Big
Five personality traits [2]. The theory identifies five factors: Extraversion,
Neuroticism, Agreeableness, Conscientiousness, and Openness. Each person-
ality trait represents a range bounded by two extremes, e.g., for extraversion,
the two ends are extreme extraversion and extreme introversion.

Audio-visual personality trait prediction has become of high-interest [15]
due to high-quality databases released in the ChaLearn challenges, i.e., in First
Impressions V1 and V2 [10]. In this study, we used the extended and revised
dataset (V2). The dataset contains 10,000 video clips extracted from more
than 3,000 different YouTube high-definition videos of people mostly facing
and speaking to a camera.

Although multimodal systems offer advantages compared to monomodal
systems, they raise several challenges as well. For example, one faces the prob-
lems of selecting from the modalities to be included in multimodal systems, de-
riving the architecture to fuse them, and attenuating errors from noisy, missing,
or underrepresented data. One specific characteristic of the First Impression
V2 database is its unbalanced data distribution with fewer extreme samples.
However, these examples have much more significance and have priority in
several use cases, including medication.

Multimodal fusion approaches often hardly consider complex intra- and
inter-modal dependencies and lack robustness in case of noisy or missing modal-
ities [26]. Due to these challenges, an increasing number of studies were con-
ducted to transfer knowledge across domains or modalities [11, 20]. Embedding
methods have been proven useful for overcoming the aforementioned inter-
dependencies. It has been found that similarity and correlation of seman-
tic information retrieved from real data can be represented using deep metric
learning in an embedded feature space [9, 8].

Our contributions are listed below:

1. We propose a multimodal deep neural network for the automatic person-
ality perception task. We extract modality-invariant embeddings from
multiple information sources with a distance learning network, empha-
sizing extreme examples and implicitly improving the multimodal fusion
process.
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2. We extended the Multi-Similarity loss [21] to handle multiple apparent
personality trait class labels simultaneously, besides using various input
modalities. The problem with non-extreme examples is that one or more
modalities contain inadequate information to aid the deep embedding
process. To overcome this issue, we modified the sample selection of the
online semi-hard mining procedure to emphasize the extreme samples.

3. Although samples having lower or higher personality trait values are less
frequent in the database, high-quality prediction of their values is desired
in various situations. We show that cross-modal embedding enhances the
prediction of the Big Five personality traits in extreme cases.

The paper is organized as follows. Section 2 reviews the related works.
The preprocessing steps, baseline, and the proposed method are detailed in
Section 3. The experimental setup, dataset introduction, and implementation
details are described in Section 4. Our results, together with the discussion are
presented in Section 5. We conclude in Section 6.

2. Related works

Multimodal information has been widely used in various domains ranging
from semantic indexing, and multimedia event detection to video situation
understanding, among many others. To merge such sources of information,
fusion strategies have been derived to harness complementary information from
single modalities. Such strategies are classified into three categories, model-
level fusion, feature-level fusion, and decision-level fusion [27].

Human behavior monitoring and evaluation rely heavily on multimodal in-
formation fusion. Busso et al. [1] paired facial expressions with audio infor-
mation yielding better prediction for emotion recognition. Wimmer, et al. [23]
studied feature-level fusion of low-level audio and video description. Contex-
tual long-range information was later leveraged by the introduction of BLSTMs
by Wöllmer et al [24]. In contrast, with the emergence of deep learning, more
sophisticated methods were adopted, e.g., by Ngiam et al. [16], who suggested
a bi-modal deep auto-encoder to extract shared representations from the in-
put modalities. However, these approaches hardly consider complex intra- and
inter-modal interactions and lack robustness in case of noisy or missing modal-
ities [26, 16].

Embedding methods have been proven useful for integrating such inter-
dependencies. Han, J. et al. [7] used triplet loss to distill discriminative repre-
sentations in the speech modality. Tsai et al. [19] proposed a model that factor-
izes learned multimodal representations into two sets of independent generative
and discriminative factors. Recently, Han et al. [8] introduced a novel learning
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framework to leverage information from auxiliary modalities for emotion recog-
nition, using triplet loss to produce modality-invariant emotion embedding in
a latent space.

There are recent surveys on personality trait detection that can orient the
interested reader [4, 10]. Here, we mention the works related to the challenges
called ChaLearn: First Impression Challenge. Kaya et al. [13], the winner of
the ChaLearn: First Impressions V1 competition, used visual, audio, and scene
features in their system trained end-to-end. Kampman et al. [12] performed
an ablation study by combining audio, video, and text information in a tri-
modal stacked CNN architecture. More recently, Zhang et al. [28] studied the
feasibility of merging apparent personality and emotion estimations within a
single deep neural network in a multi-task learning framework. An apparent
problem with this approach is that the standard deviation of the estimations
when trained on the ChaLearn First Impression dataset is much narrower than
that of the original data. The phenomenon is called the “regression-to-the-mean
problem” where extreme values prediction becomes severely constrained. Li et
al. [15] considered this issue and proposed a classification-regression model in
which the final regression is guided by the learned classification features and
introduced a new objective function called Bell loss to ease the aforementioned
problem.

3. Methodology

In this work, we propose a multimodal deep neural network that combines
features from visual, acoustic, and textual clues to predict apparent Big-Five
personality traits using short video clips from the ChaLearn challenges. The
pipeline is depicted in Figure 1.

In the case of audio signals we use standard acoustic features that can be
generated by OpenSMILE [5], see later. For the visual feed, most of the frames
contain redundant information and we subsample the frames. Since annotated
transcripts are noisy, we adopt non-contextual word-level representation for
capturing the semantic meaning.

We aim to create a shared coordinate space, transforming the audio, video,
and text descriptors into a semantically relevant form using a Distance Learning
Network (DLN). DLNs typically use either Siamese networks with contrastive
loss or triplet networks with a triplet-based loss function. The triplet-based
loss functions are designed to encourage positive examples as close as possible
to the so-called anchor sample, and negative examples to be separated from
each other over a given threshold. In our experiments, we tested both methods
and found that triplet networks outperformed Siamese networks. Embedded
vector and auxiliary vector are interchangeably used for the outputs of the
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Figure 1. Pipeline of the proposed method for enhanced Big Five personality
trait prediction. Visual, acoustic, and textual information are processed with
modality-specific subnetworks. The hidden representations are projected into
a shared embedding space with a distance learning network (DLN) to exploit
mutual information of different information sources implicitly. The shared em-
bedding space of the 128D auxiliary vectors is illustrated by colored circles
in 2D. The extracted multimodal hidden representations and the cross-modal
embeddings are fused before the final Big Five prediction. The training pro-
cedure consists of multiple learning stages (LS). FC: fully-connected, Bi-GRU:
bidirectional gated recurrent unit, ⊕: concatenation operator. The numbers
within blocks indicate the number of hidden units used. Multiple values imply
stacked layers.

DLN. Higher precision estimation of the extremes is one of our goals and we
expect that multi-modal data enrichment is advantageous in each trait. We
use a DNN that combines tri-modal features along with the embedded vectors
to predict apparent personality traits from the short video clips.

3.1. Data preprocessing

Audio Features For acoustic features, we used a de-facto standard preset
called extended Geneva Minimalistic Acoustic Parameter Set (eGeMAPS) [6].
This feature set contains the F0 semitone, loudness, spectral flux, MFCC, jit-
ter, shimmer, F1, F2, F3, alpha ratio, Hammarberg index, slope V0 features.
Furthermore, many statistical functions are applied to these low-level descrip-
tors considering voiced and unvoiced regions, resulting in 88 features for ev-
ery sample. The audio signals were extracted from the videos using FFmpeg
with 44100 sampling frequency. Then, the eGeMAPS were generated through
OpenSMILE. Min-max normalization was applied as a preprocessing step to
rescale variables into the range [0, 1].
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Visual Features We subsampled the video: only 6 frames are selected to re-
duce the overall complexity and redundancy of successive, similar frames. The
choice of 6 is arbitrary and it does not affect the outcome significantly. Pixel
values fit into the range of [0, 255]. Images are resized to 140 × 248 pixels to
preserve the original aspect ratio, and then the same random 128× 128 pixels
spatial crop was applied on all frames of a sample. We employed the same
augmentation techniques on every frame of a single clip (with 0.5 probability)
during training to preserve the relative similarity between video frames. Data
augmentation consists of random flip, random hue (±0.15), brightness (±0.2),
saturation (between 0.8 and 1.2), and contrast (between 0.8 and 1.2). The
augmentations on hue and brightness are additive, while the saturation and
contrast are multiplicative. During test and validation time, a center crop was
applied. Finally, the frames are scaled between [-1; 1].

Textual Features GloVe uses unsupervised learning to obtain non-contextual
vector representations of words. This vector is meant to encode semantic in-
formation, such that similar words (e.g., synonyms) have similar embedding
vectors. We used pre-trained embeddings (Wikipedia 2014 and Gigaword 5),
which capture the overall meaning of a sentence in a relatively lesser amount of
memory, and faster than contextual models (like BERT) do. The transcripts
are tokenized with SpaCy. All special characters, digits, URLs, and emails
are filtered. Every token is converted to its corresponding GloVe vector before
feeding it to the textual subnetwork.

3.2. Multimodal information fusion

Visual, acoustic, and textual high-level attributes are combined via a model-
fusion approach. Being a regression task, in the first learning stage, the
modality-specific subnetworks are trained separately, using ground truth an-
notations. Hence, they are used as feature extractors, and the parameters of
the networks are frozen during further training. In the second learning stage,
the tri-modal feature vectors are concatenated and used as the input of a fully-
connected network.

Acoustic subnetwork. The 88-dimensional acoustic feature vector xA ∈
∈ IRN is the input of the audio subnetwork fA : IRN → IRQ, which is, a fully-
connected shallow network with two hidden layers.

Visual subnetwork. Using the video samples xV ∈ IRF×H×W×C, where F is
the number of frames, H and W are the height and width spatial dimensions,
C is the number of channels, a feature extractor fV : IRF×H×W×C → IRQ is
trained. We chose ResNet-50 for our visual backbone. For every frame, a 2048-
dimensional feature vector is extracted. Average pooling was applied to the
time dimension, followed by a fully-connected layer.
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Textual subnetwork. The textual subnetwork input is xT ∈ IRK×G, where
K is the maximum sequence length, G is the dimension of GloVe embeddings.
A bidirectional gated recurrent unit (Bi-GRU) with attention mechanism is
trained fT : IRK×G → IRQ as a feature extractor.

The xA audio feature vector, the corresponding xV RGB frames and xT

GloVe vectors are fed into their modality-specific subnetworks, producing hA,
hV , hT ∈ IRQ hidden representations, respectively:

(3.1) hA = fA(xA), hV = fV (xV ), hT = fT (xT )

Let us define p : IR(·) → IR5, which is a linear mapping function, that
estimates the five personality attributes from a given hidden representation.
For monomodal subnetworks, the process can be formalized as follows:

(3.2) ŷ = p(hA), ŷ = p(hV ), ŷ = p(hT )

The network parameters are optimized with Bell loss, following the work of
[15]. The shape of the loss function is like an inverted bell and is applied to
address the regression-to-the-mean problem [25], which is particularly problem-
atic in our case, where the ground truth scores follow a Gaussian distribution
closely. The Bell loss is defined as:

(3.3) Lbell =
1

5n

n∑
i=1

5∑
j=1

γ
(
1− e−

(yij−ŷij)
2

2σ2

)
,

where n is the number of samples, yij and ŷij are the ground truth and pre-
diction of ith sample of jth trait, respectively, σ is the derivation parameter,
and γ is a scale parameter. The σ controls the amplitude of variation, and γ
makes the loss function consistent with other used loss functions, such as the
classical Mean Absolute Error (MAE) and Mean Squared Error (MSE).

(3.4) Lmae =
1

5n

n∑
i=1

5∑
j=1

|yij − ŷij |, Lmse =
1

5n

n∑
i=1

5∑
j=1

(
yij − ŷij

)2
As empirical results showed in [15], the Bell loss has difficulties at the

beginning of the optimization and shines at later optimization stages. To avoid
the issue, the sum of Lmae and Lmse guide the stochastic gradient descent
algorithm in the earlier stages by producing a higher gradient. We trained the
modality-specific subnetworks with L, which is the sum of Lmae, Lmse and
Lbell loss functions introduced in Equation (3.3) and (3.4).

Baseline multimodal network. In the second learning stage, the parame-
ters of the fA acoustic, fV visual, and fT textual subnetworks are not updated.
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To leverage the supplementary information of multiple modalities we concate-
nated the hA, hV , and hT hidden representations and performed model-level
fusion. M1 : IR3Q → IRO fully-connected shallow network and p is applied to
get the personality trait prediction. Formally defined as:

(3.5) ŷ = p
(
M1

(
hA ⊕ hV ⊕ hT

))
,

where ⊕ is the concatenation operator.

3.3. Cross-modal deep metric learning

In the following paragraphs, we describe the metric learning framework. We
can leverage complementary information from different modalities efficiently
using a distance learning network. Using the cross-modal embedding, we make
the proposed model more robust to noise, so a more accurate prediction can
be achieved. We aim to train a cross-modal DLN S : IRQ → IRE on the
hidden representations of modality-specific nets, which project the multimodal
descriptors into a shared coordinate space IRE.

(3.6) eA = S(hA), eV = S(hV ), eT = S(hT )

where S is a DLN, eA, eV and eT are the projected E-dimensional embeddings
of hA, hV and hT hidden representations, respectively.

We aim to create a common cross-modal embedding space by transforming
tri-modal descriptors in a semantically relevant way. For training the DLN,
we choose the current state-of-the-art, triplet-base multi-similarity (MS) loss
function [21], which requires an anchor, a positive and a negative example to
form positive and negative pairs within a mini-batch. It can jointly measure
the self-similarity and relative similarities of a pair, which allows it to collect
informative pairs by implementing iterative pair mining and weighting. Deep
metric learning requires class labels for training, and MS loss is proposed and
tested for only one modality, the single RGB texture.

Triplet generation. Using inputs and the corresponding class labels, we can
form triplets {e, e+, e−}. Examples from the same class {e, e+} are determined
as positive pairs ∈ P, as well as samples belonging to different classes {e, e−}
are the negative pairs ∈ N . The Big Five annotations of the First Impressions
V2 dataset are continuous variables. We define personality classes in Section 4.4
because it is a database-specific modification.

We applied MS loss, which is defined as a pair weighting problem, and
empirical results show that it is superior over other commonly used loss func-
tions, namely the contrastive loss, triplet loss, binomial deviance loss, and lifted
structure loss. To compute a cross-modal MS loss, first, the eA audio, eV vi-
sual, and eT textual embeddings are combined to form a triple-sized batch of
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embeddings denoted as {eA, eV , eT }, then the similarity metrics are calculated
using mixed embeddings of different modalities.

Similarity is defined between two embeddings e1 and e2 as the dot product
of the vectors considering only the jth personality trait, denoted as Dj

e1,e2 =
= ⟨S(e1), S(e2)⟩. MS consists of two parts: mining and weighting. Both
schemes are integrated into a single loss function, which is defined as follows:
(3.7)

LMS =
1

5n

n∑
i=1

5∑
j=1

{
1

α
log

[
1+

∑
k∈Pj

i

e−α(Dj
ik−λ)

]
+

1

β
log

[
1+

∑
k∈N j

i

eβ(D
j
ik−λ)

]}
,

where D is the similarity matrix within a triple-size mini-batch, Dj
ik is the

similarity of two embeddings i and k, Pj and N j are the sets of positive and
negative examples considering only the jth trait class labels, respectively. α, β
and λ are fixed hyper-parameters.

We calculated a mean, trait-wise multi-similarity loss, considering all 5
target variables per sample within a mini-batch. In the case of non-extreme
examples, one or more modalities contain inadequate information to aid the
deep embedding process, so we modified the online semi-hard sample mining
process to only consider extreme samples as an anchor. In the third learning
stage, the S embedding network is trained with trait-wise LMS with the mod-
ified mining procedure. The DLN outputs auxiliary vectors that can help the
evaluation due to its specific modality mixing mechanism.

3.4. Fused model

Our method combines the multimodal regression network and the cross-
modal distance learning network in the fourth (and final) learning stage. The
cross-modal embeddings (eA, eV , eT ) are complementary to the hidden repre-
sentations of the modality-specific subnetworks s and all of them contribute to
the final prediction of p.

Model-level fusion is applied, similarly as before: the embeddings are con-
catenated to the previously fused features, then a M2 : IR3H+3E → IRO fully-
connected shallow network and p is applied to get the prediction of the Big
Five traits. Formally defined as:

(3.8) ŷ = p

(
M2

(
M1

(
hA ⊕ hV ⊕ hT

)
⊕ eA ⊕ eV ⊕ eT

))
,
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4. Experiments

In the following paragraphs, we introduce the dataset used for the exper-
iments, concretize input and hidden dimensions, and predetermined hyper-
parameters during the network implementation. Then the evaluation metric,
personality trait class definitions, visualization, and the results are presented.

4.1. Database

We used the ChaLearn: First Impressions V2 database for our experiments
because it is the largest publicly available in-the-wild dataset in this subfield.

The dataset contains 15 seconds long videos, which are collected automat-
ically. Transcripts of the video clips are generated by a cloud transcription
service Rev. The clips are annotated by Amazon Mechanical Turk (AMT)
workers using a special interface [17]. Personality annotation followed the Five
Factor Model, which consists of Openness to experience, Conscientiousness, Ex-
traversion, Agreeableness, and Neuroticism, however, the last trait was labeled
as Emotional Stability (ES), which is the reverse of Neuroticism and denoted
as N in the results section.

They registered annotations using pairwise comparisons, and then they con-
verted the votes to cardinal values by fitting a BTL model with maximum
likelihood estimation. Values are scaled, so every video sample has five con-
tinuous trait scores between 0 and 1. Each trait represents a range bounded
by two extremes. For example, for extraversion, the two polar ends are ex-
treme extraversion and extreme introversion, which can be described with the
words “friendly” and “reserved”, respectively. A few examples from the dataset
focusing on the extreme poles per trait are depicted in Figure 2.

Creators of this dataset rely on the perception of human subjects watching
the videos. It is a different task than evaluating real personality traits with
experts, but equally useful in the context of human interaction.

One specialty of this dataset is that the target variables have unbalanced
data distribution. The regression-to-the-mean problem is emphasized because
the scores follow a Gaussian distribution, and the optimization process likely
produces predictions near the mean of ground truth values to minimize the
loss. We alleviated this problem with the Bell loss [15], which is similar to
the Mean Squared Error, however, it can produce higher gradients when the
prediction is closer to the ground truth.

4.2. Experimental setup

Our experiments are conducted with Tensorflow on a single GeForce RTX
2080 Ti GPU. The training process is performed in multiple learning stages.
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Figure 2. Examples of the First Impression V2 dataset. For each video, the
ground truth Big Five scores are provided. For each trait, the first two samples
instantiate the low extremes, and the last two examples demonstrate the high
extremes of a given trait.

The weights are not modified after a finished stage. We used Adam [14] op-
timizer with a 0.001 initial learning rate with a polynomial decay schedule
throughout all experiments. Following the work of [15], we set the parameters
of Bell loss σ = 9 and γ = 300. In the first, second, and fourth learning stages,
L was used as the loss function (Section 3.2).

For reduced complexity, we define Q = 256 and O = 512 in Section 3.
All three modality-specific networks produce 256-dimensional feature vectors,
and following a concatenation shared dense networks produce 512-dimensional
vectors in the baseline and the proposed fused model as well.
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For acoustic representation, 88-dimensional eGeMAPS vectors are used
(N = 88). We fed a mini-batch of 128 vectors to the audio subnetwork and
tuned the two fully-connected layers for 100 epochs with early stopping.

After the frame selection (6 frames per clip) and augmentation techniques,
6× 128× 128× 3 input features are fed to the visual subnetwork (F = 6,
H = W = 128, C = 3). We trained it from scratch with a mini-batch of 22
video sequences for 80 epochs. Dropout with a 0.5 rate was applied before the
fully-connected layer as an extra regularization.

For semantic word representation, we used 300-dimensional GloVe embed-
dings. We empirically set the sequence length to 80. After converting every
token to its corresponding GloVe vector, an 80 × 300 matrix is produced for
every sample (K = 80, G = 300). For the textual subnetwork, we used 0.5
for the Bi-GRU input dropout rate. We also applied a simplified attention
mechanism [18] and tuned the subnetwork for 50 epochs.

The DLN consists of two fully-connected hidden layers with 200 neurons
each and a linear dense output layer with 128 units. Dropout with a 0.5 rate
was applied after the first hidden layer. In the third learning stage, we used
LMS as the loss function (Equation (3.7)). We used ReLU as an activation
function and Kaiming/He normal initialization, in addition to 0.0005 weight
decay in every dense layer, except within the DLN, where weight decay is not
considered.

4.3. Evaluation metrics

During the ChaLearn challenge, the “1-Mean Absolute Error” was the per-
formance metric, so many publications employed it. It is defined as follows:

(4.1) Racc = 1− 1

5n

n∑
i=1

5∑
j=1

|yij − ŷij |,

where n is the number of samples, yij and ŷij are the ground truth and predic-
tion of ith sample and jth trait.

4.4. Personality trait class definition

Annotation regarding the First Impressions V2 dataset consists of 5 con-
tinuous variables. In this work, we aim to differentiate extreme examples from
ordinary samples based on the ground truth values. We determine 4 classes
per trait, and we are focusing on the two extremes, which can be monitored
in various clinical sessions later on: the low-extreme and high-extreme classes,
which are labeled as C1 and C4, respectively.

However, in our case, the ground truth follows a Gaussian distribution, and
splitting the [0, 1] interval into equal parts would lead us to an undesirably
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unbalanced number of extreme samples. To address this issue, we can create
more balanced classes by determining the following segmentation thresholds:
scores in range [0, t̄− σt) belong to the low-extreme class (C1), values in range
[t̄ − σt, t̄) as well as [t̄, t̄ + σt) are labeled as ordinary (C2, C3), and samples
between [t̄+ σt, 1] are the high-extremes (C4), where t̄ and σt is the mean and
standard deviation calculated over all training samples of t personality trait.
Figure 3 demonstrates the class definitions on the histograms of the train and
test sets.

Figure 3. Personality trait class definitions. Continuous ground truth values
are segmented into 4 classes. The thresholds are determined using the mean
and standard deviation calculated on the train set trait-wise. Samples from C1
and C4 are the low extremes and high extremes, respectively.

4.5. Visualization of cross-modal embeddings

We transformed the acoustic, visual, and textual features into a shared co-
ordinate space with a DLN. Figure 4 shows a two-component Principal Com-
ponent Analysis (PCA) calculated on the multimodal inputs as visualization,
using only the Neuroticism ground truth values and trait classes within plots.

The test set contains 2000 samples, so considering all three modalities, 6000
embeddings are available. We randomly subsampled to avoid highly overlapped
markers and overcrowded visualization, also paying attention to preserving the
modality and class balance within the subset: 25 embeddings are selected for
every class per modality, so on (a) subplot 300 transformed embeddings are
present. The figure shows that even using only two components, the two polar
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Figure 4. Visualization of 2-component PCA of cross- and multimodal embed-
dings of the “test” set (a), showing Neuroticism ground truth values and class
labels. The audio, video, and text modalities are drawn with circle, square,
and cross, respectively. The four personality classes are represented with col-
ors, where blue is the low extreme (C1), and red is the high extreme class
(C4). In (b) and (c), we emphasize embeddings within the two extreme poles
of Neuroticism.

ends of a personality trait are successfully separated. However, there is a
continuous transition between trait classes, especially in the case of C2 and C3:
the ground truth values are around the mean, and there are hardly perceived
or any clues to make these samples more separated using the available inputs.

5. Results

We performed an ablation study with the used modalities to measure the
added values of information sources. For the sake of comparison, a prior model
obtained directly from the training labels (by averaging) on this dataset was
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capable of obtaining close to 0.88 of Racc at test stage [3] due to the highly
centralized distribution. In turn, changes in the third digit are relevant. Ta-
ble 1 indicates that the video modality contains the most information, with
an average score of 0.9074. Apparent personality traits can be determined ac-
curately using only a single frame: 0.9056 score over the test set strengthens
the statement that trait assignment among human observers can be as fast as
100ms [22]. The bi-modal systems produce a clear performance jump in every
single case compared to the monomodal configurations. Furthermore, the “Au-
dio + Video + Text” model performed the expected best result: the different
modalities supplement each other.

Thus, we can fairly compare the proposed method to the “Audio + Video
+ Text” baseline. Table 1 shows that our method performs more superior
overall, emphasizing the improvement produced by cross-modal embeddings
from 0.9094 to 0.9127.

Input features O C E A N Avg

Audio 0.9007 0.8916 0.8947 0.9016 0.8955 0.8968
Scene 0.9048 0.9110 0.9065 0.9065 0.8990 0.9056
Video 0.9065 0.9132 0.9086 0.9072 0.9016 0.9074
Text 0.8900 0.8841 0.8837 0.8982 0.8853 0.8882

Audio + Video 0.9074 0.9143 0.9097 0.9088 0.9041 0.9089
Audio + Text 0.9016 0.8952 0.8958 0.9023 0.8965 0.8983
Text + Video 0.9073 0.9140 0.9105 0.9080 0.9041 0.9088

Audio + Video + Text 0.9069 0.9103 0.9108 0.9108 0.9083 0.9094

Ours 0.9102 0.9154 0.9142 0.9127 0.9112 0.9127

Table 1. Comparison on the Racc performance of the network trained with
different data modalities.

We also evaluated the trained system using only extreme samples. We
subsampled the test set, so the subset only contained examples from C1 and
C4, trait-wise. In Table 2, the “All” column values are produced on the whole
test set by the baseline and our method, respectively. In the case of the “Low”
and “High” columns, the corresponding personality trait classes are C1 and
C4. The results indicate that we can enhance the prediction of high extreme
values at the expense of low extreme prediction in most cases. However, by
focusing on Conscientiousnes, enhanced quality of both low- and high-extreme
predictions can be observed.

6. Conclusions

In this article, we proposed a multimodal deep neural network for the per-
ceived Big Five personality trait prediction, which deals with multimodal data.
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Baseline Ours
All Low High All Low High

O 0.9069 0.8691 0.8702 0.9102 0.8684 0.8794
C 0.9103 0.8731 0.8832 0.9154 0.8753 0.8891
E 0.9108 0.8870 0.8739 0.9142 0.8841 0.8768
A 0.9108 0.8590 0.8626 0.9127 0.8573 0.8644

N 0.9083 0.8730 0.8739 0.9112 0.8722 0.8742

Table 2. Network performance Racc on all samples, low and high extreme
examples. Baseline: Audio + Video + Text. Ours: Audio + Video + Text
fused with cross-modal embeddings.

Currently, the largest publicly available dataset is used in these experiments,
the ChaLearn: First Impressions V2, and we created embeddings, which are
modality-invariant to an extent, to make the different input modalities supple-
ment each other.

An ablation study has demonstrated the added values of different modali-
ties, as well as the proposed extension. We applied a modified multi-similarity
constraint over acoustic, visual, and textual representations to implicitly ex-
ploit the mutual information. Experiments show that we achieved higher overall
prediction accuracy, surpassing the performance of baseline multimodal config-
urations. Besides, we evaluated the proposed method of extreme examples,
which produced the desired results in some cases.

To the best of our knowledge, this is the first work that introduces cross-
modal embedding for personality trait prediction. The proposed learning frame-
work is far from perfect. It could be further developed, which is planned for
future works. The feature extraction part could be improved to produce more
diverse and descriptive representations. Probabilities could be utilized within
the triplet constraint to consider the uncertainty around trait class segmen-
tation thresholds properly. The multiple learning phases could be combined to
form an end-to-end training process for better useability.

This work is a detailed version of the 13th Joint Conference on Mathematics
and Computer Science (MaCS 2020) presentation.

References

[1] Carlos, B., D. Zhigang, Y. Serdar, B. Murtaza, L. Chulmin,
K. Abe, L. Sungbok, N. Ulrich and N. Shrikanth, Analysis of
emotion recognition using facial expressions, speech and multimodal in-
formation, Proceedings of the 6th International Conference on Multimodal
Interfaces, (2014), 205–211.



Enhancing apparent personality trait analysis 183

[2] Digman, J.M., Personality structure: Emergence of the five-factor
model, Annual Review of Psychology, 41-1 (1990), 417–440.

[3] Escalante, H.J., H. Kaya, A. Salah, S. Escalera, Y. Güçlütürk,
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