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Abstract. Formal semantics provides rigorous, mathematically precise
definitions of programming languages, with which we can argue about pro-
gram behaviour and program equivalence by formal means; in particular,
we can describe and verify our arguments with a proof assistant. There are
various approaches to giving formal semantics to programming languages,
at different abstraction levels and applying different mathematical machin-
ery. In this paper we investigate some of the approaches that share their
roots with traditional relational big-step semantics, such as (a) functional
big-step semantics, (b) pretty-big-step semantics and (c) traditional natu-
ral semantics. We compare these approaches with respect to the following
criteria: executability of the semantics definition, proof complexity for
essential mathematical properties and the conciseness of expression equiv-
alence proofs. The comparison is based on formalisations of a sequential
subset of Core Erlang, a simple functional programming language.
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1. Introduction

This work is part of a wider project that aims to reason about the correct-
ness of code refactoring. To this end, a rigorous, formal definition is needed for
the programming language under refactoring: in our case, Erlang. In earlier
work, we developed a relational big-step semantics for sequential Core Erlang,
including language features such as exceptions and side effects. This semantics
was used for proving characteristic properties (e.g. determinism) of the lan-
guage, as well as showing the equivalence between pairs of pattern expressions.
The latter are important from the refactoring point of view: pattern equiva-
lences can be interpreted as simple, correct refactorings for Core Erlang [3, 4].

Formalising Core Erlang in the big-step operational definitional approach
was a somewhat ad hoc decision, supported by the following facts: it is not as
detailed as small-step definitions, offering shorter proofs, and, at the same time,
unlike in denotational definitions, semantics and proofs of nondeterministic and
divergent programs do not need special treatment in the proof assistant em-
bedding. Nonetheless, relational big-step semantics comes with its drawbacks:
in general, it is not directly executable, the proof of determinism is complex,
and we cannot use this style of semantics to argue about concurrency. After
working with the relational big-step semantics formalisation for a while, the
shortcomings of this approach became apparent, and we decided to investigate
whether other semantics definition styles would be more suitable.

Selecting the semantics definition style seems to be a simple choice: the
purpose of defining the semantics should determine the applied definition ap-
proach. However, conflicting requirements can make the decision unclear. For
instance, in related work, different approaches have been applied to reason
about program transformations: Grigore et al. [10] and Garrido et al. [13] use
(reduction style) small-step semantics, whilst Owens et al. [21] use (functional)
big-step semantics. Both of these are executable and can be used to argue about
program equivalence, but show different characteristics in general. There are
a number of ways to create a testable and usable formal semantics, as, for ex-
ample, addressed in a related discussion by Blazy and Leroy [5], but it is not
obvious to tell which is the best option for our purposes. Moreover, this choice
is not only about the different mathematical approaches, but also how easy it
is to implement them in the Coq proof assistant.

This paper is a detailed version of our MaCS 2020 conference presenta-
tion, where we analyse and compare different methods of defining big-step
style semantics for a small, Erlang-like programming language. We do this to
answer the question of which method should be used when creating a seman-
tic description of sequential Core Erlang, when the description should support
equivalence proofs and be efficiently executable. In doing this we survey the
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following methods: (a) traditional relational big-step semantics [14], (b) pretty-
big-step semantics [8], and (c) functional big-step semantics [21], which can be
seen as equivalent to supplying a definitional interpreter [23]. We also briefly
discuss a coinductive approach to define big-step semantics [16]. When com-
paring semantic approaches, we aim to answer the following questions:

1. Does the semantics definition scale in terms of the complexity of expres-
sion equivalence proofs? Since our primary purpose is to prove expres-
sion pattern equivalences, the semantics has to be especially supportive
of constructing such proofs.

2. Is the semantics effectively executable, allowing for automatic evaluation
of expressions? Is this automatic execution efficient, with a performance
comparable to a reference implementation? Execution of the semantics
definition is crucial when it comes to validation: testing the semantics
against a reference implementation needs the semantics to be executed.

3. How complex are the proofs for the common properties such as determin-
ism or progress? For instance, some semantics are inherently determin-
istic, because they are presented as a semantic function, while it is a lot
more cumbersome to prove this property in a relational semantics.

We note that the paper not only makes a survey of the abovementioned seman-
tics definition styles, but implements a benchmark language in each of those,
and makes the detailed comparison based on the case study. Namely, we make
the following main contributions:

� Traditional big-step, pretty-big-step and functional big-step semantics
definitions for a simple functional programming language, with proofs of
their equivalence.

� Proofs of basic properties of each semantics and proofs for simple expres-
sion pattern equivalences (local refactorings) in each definition style.

� A systematic comparison of the approaches with respect to execution and
proof complexity.

We will often quote Coq code to highlight the fact that all these concepts
have been formalised in Coq [24]. Inductive constructors in the relational
semantics are described as inference rules.

The rest of the paper is structured as follows. In Section 2 we describe the
syntax, and necessary abstractions for our benchmark language. In Section 3
we discuss the traditional big-step and the pretty-big-step semantics, and in
Section 4 we cover the functional approaches, in particular the functional big-
step semantics. Section 5 evaluates the presented approaches, and also briefly
summarises coinductive big-step semantics [16]. Finally, Section 6 concludes
and discusses future work.
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2. The benchmark language

Throughout the paper, we define formal semantics for a simple but repre-
sentative, functional programming language, which resembles Erlang; in fact,
our case study language is a proper subset of Core Erlang. In this section, we
introduce the syntax and a semantic domain for the language, based on which
the later sections will define big-step operational semantics of different styles
in order to make a systematic comparison between them.

2.1. Syntax

The case study language includes abstractions known from the functional
paradigm (such as single assignment variables, let-binding, lambda abstraction
and function application), but we also incorporate impure expressions (such
as I/O calls and exception handling). Furthermore, the language supports
recursive function definitions (letrec-binding), but only one name can be bound
by each expression. Figure 1 defines the syntax of the language precisely, as an
inductive type.

Inductive Expression : Type :=
| ELit (l : Literala)
| EVar (v : Var)
| EFunId (f : FunctionIdentifier)
| EFun (vl : list Var) (e : Expression)
| ECall (f : string) (params : list Expression)
| EApp (exp : Expression) (params : list Expression)
| ELet (v : Var) (e b : Expression)
| ELetRec (fid : FunctionIdentifier) (params : list Var) (b e : Expression)
| ETry (e1 : Expression) (v : Var) (e2 : Expression)

(vl : list Var) (e3 : Expression).

aLiterals are either atoms or integers.

Figure 1: The syntax of our case study language (subset of Core Erlang)

2.2. Semantic domain

This language has expressions of three types: atoms, integers and func-
tions. Therefore, values of expressions can only be literal values and closures
(see Figure 2). Closures are the normal forms of functions, and store the func-
tion’s parameter list, body expression and an evaluation environment in which
the body should be evaluated; moreover, the collection of recursive functions
defined simultaneously1.

1The presented approach is based on our previous work and is fairly general: it can handle
multiple simultaneous function definitions, not only one; see [4] for more details.
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Definition FunctionExpression : Type := list Var × Expression.
Inductive Value : Type :=
| VLit (l : Literal)
| VClos (Γ′ : Environment)

(ext : list (FunctionIdentifier × FunctionExpression))
(vl : list Var) (e : Expression).

Definition Exception := ExceptionClass × Value × Value.

Figure 2: Semantic domain

Expression evaluations may yield exceptions. In our formalisation, excep-
tions are represented as triples: exception class (error, throw or exit) and
two values describing the exception reason. In our case studies, we will use two
common Erlang examples: badarity happens when an application evaluation
fails due to the mismatch in the number of formal and actual parameters, and
badfun is encountered when the function expression of the application (i.e. the
first subexpression in EApp) evaluates to a value that is not a function closure.

Finally, we define the semantic domain as the union of values and exception
descriptions: Value + Exception. In the formalisation, we use Coq’s built-in
union type with the standard inl and inr constructors to make elements of the
semantic domain.

2.3. Environment

In order to share as much as possible in the different semantics definitions,
not only we fix the semantic domain, but we define a common type for the
evaluation environment. Basically, this is a collection of variable names (and
function identifiers) mapped to values (we use Γ to denote it). There are several
helper functions to manage this environment, namely:

� Γ[x]: Returns the value associated with a given name x in Γ. If the name
is unbound, it yields an exception.

� Γ[xs 7→ vs]: Inserts bindings into Γ. The names (variables or function
identifiers) in the list xs will be bound to the values in vs, pairwise. If
there is only one binding (i.e. Γ[[x] 7→ [v]]) we omit the parentheses of
the lists: Γ[x 7→ v].

� get env Γ ext: Returns the evaluation environment for the body of a
closure based on its stored environment Γ and extension ext.

� To denote lists, we use standard list notations, i.e. [x1, . . . , xn] denotes
the list consisting of the elements x1, . . . , xn.

We remind the reader that the case study language allows for calling some
built-in I/O functions, thus the semantics will need to address the meaning
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of these side-effects. For this, we define a type (SideEffectList), the values of
which log simple input-output effects produced by the evaluation of specific
ECall expressions. While evaluating ECall expressions, we use the auxiliary
eval function, which returns a value or exception and a side effect trace — only
this operation can extend the side effect trace 2.

2.4. Evaluation criteria

As mentioned already in the introduction, we will compare the different
approaches of defining big-step semantics based on the following criteria:

� How complex is proving the properties of the semantics. We will use the
determinism property to investigate this.

� Is the approach executable? Is the semantics efficiently executable?
� How complex is proving expression evaluation formally. We will use two
smaller expressions to investigate this:

let X = fun(Y,Z)->Y in apply X(’a’, ’b’)

let X = 4 in let Y = 5 in apply (fun(X,Y)->X+Y) (X, Y)

Listing 1: Expression evaluation examples

� How complex is proving expression equivalence? We will use one uncon-
ditional and one conditional3 equivalence to investigate this:

e ⇔ let X = fun() -> e in apply X()

let A = e1 in let B = e2 in

let B = e2 in ⇔ let A = e1 in

A + B A + B

Listing 2: Expression equivalence examples

3. Relational big-step semantics

A traditional big-step operational semantics is a relation between the evalu-
able expression and its value, or more generally, between initial and final config-
urations, where the configurations may include the evaluation environment or
the side-effects of the evaluation. Note that in big-step style, the intermediate

2In our previous work [4] we applied a slightly different method in the formalised tra-
ditional big-step semantics using standard list append operations in every derivation rule;
however, this former approach had to be refined in order to support automatic evaluation of
expressions.

3In the second example, the side effects produced by e1 and e2 are swapped during the
evaluation of these expressions.
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stages of the evaluation are not visible from the relation [20]. The idea of this
style of semantics is originated from Kahn [14]. In Coq, such a relation can be
formalised with an inductive type, where the data constructors represent the
derivation rules (or judgements).

3.1. Traditional relational big-step semantics

Traditional inductive big-step semantics are used in many projects, to men-
tion but a few: deriving such a semantics from a small-step definition [9],
call-by-need semantics of let and letrec calculus (λlet, λletrec) [17], or the trace-
based operational semantics for While [18] (this one is defined coinductively),
as well as our project defining Core Erlang [3, 4, 19].

For the investigation of the different big-step definition styles, we reuse
our Core Erlang formalisation mentioned above, but discard parts of it since
the case study language used in the comparison is a subset of it. The big-
step semantics will be denoted by ⟨Γ, exp, eff1⟩ ⇓ {res, eff2} where Γ is the
evaluation environment, exp is the evaluable expression, eff1 and eff2 are the
initial and final side effect traces and res is the result which is either a value or
an exception. Before describing the semantics, we introduce some predicates
and notations for readability about evaluating a list of expressions (we use |l|
to denote the length of list l, S i denotes the successor of i and l[i] denotes the
ith element of l). The function nth def l default i works the same way as l[i−1]
if i > 0, but for i = 0 it returns the default value. We also use Coq’s standard
last function [11].

⟨Γ, es, eff1⟩ ⇓all {vs, effs} := (|es| = |vs|) ⇒ (|es| = |effs|) ⇒ (∀j < |es|,
⟨Γ, es[j],nth def effs eff1 j⟩ ⇓ {inl vs[j],nth def effs eff1 (S j)})

⟨Γ, es, eff1⟩ ⇓up to: i {vs, effs} := (i < |es|) ⇒ (|vs| = i) ⇒ (|effs| = i) ⇒
(∀j < i, ⟨Γ, es[j],nth def effs eff1 j⟩ ⇓ {inl vs[j],nth def effs eff1 (S j)}).

The ⟨Γ, es, eff1⟩ ⇓all {vs, effs} states that an expression list es evaluates to
a value list vs (note that this formula also expresses that the evaluation of
the expressions does not produce any exceptions). The evaluation for the jth
step starts with the side effect log effs[j − 1] (or the default initial log eff1)
and the result log is effs[j]. The definition of ⟨Γ, es, eff1⟩ ⇓up to: i {vs, effs}
describes the same behaviour, but only for the first i elements. Now we can
describe the big-step semantics for our case study language (Figure 3 shows
the evaluation of expressions without exceptions, and Figure 4 explains the
semantics of exceptions).
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In the following figures, the result res could be either a value or an exception,
so its type is Value+ Exception.

(Lit) ⟨Γ,ELit l, eff1⟩ ⇓ {inl (VLit l), eff1}

(Var)
res = Γ[inl s]

⟨Γ,EVar s, eff1⟩ ⇓ {res, eff1}

(FunId)
res = Γ[inr fid]

⟨Γ,EFunId fid, eff1⟩ ⇓ {res, eff1}

(Fun) ⟨Γ,EFun vl e, eff1⟩ ⇓ {inl (VClos Γ ⟨⟩ vl e), eff1}

(Call)

⟨Γ, params, eff1⟩ ⇓all {vals, effs}
eval fname vals (last effs eff1) = (res, eff2)

⟨Γ,ECall fname params, eff1⟩ ⇓ {res, eff2}

(App)

⟨Γ, params, eff2⟩ ⇓all {vals, effs} |var list| = |vals|
⟨Γ, exp, eff1⟩ ⇓ {inl (VClos Γ′ ext var list body), eff2}

⟨(get env Γ′ ext)[var list 7→ vals], body, last effs eff2⟩ ⇓ {res, eff3}
⟨Γ,EApp exp params, eff1⟩ ⇓ {res, eff3}

(Let)
⟨Γ, e, eff1⟩ ⇓ {inl val, eff2} ⟨Γ[v 7→ val], b, eff2⟩ ⇓ {res, eff3}

⟨Γ,ELet v e b, eff1⟩ ⇓ {res, eff3}

(LetRec)
⟨Γ[fid 7→ VClos Γ [(fid, (params, b))] params b], e, eff1⟩ ⇓ {res, eff2}

⟨Γ,ELetRec fid params b e, eff1⟩ ⇓ {res, eff2}

Figure 3: The core traditional big-step definition of our case study language

3.1.1. Making it executable

The traditional, relational big-step semantics introduced in the previous
section is not inherently executable or computable: for a given pair of starting
and final configurations, it needs to be proven that they are in operational
semantics relation. In Coq, such a proof can be given in terms of proof primi-
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(Try)
⟨Γ, e1, eff1⟩ ⇓ {inl val’, eff2} ⟨Γ[v 7→ val’], e2, eff2⟩ ⇓ {res, eff3}

⟨Γ,ETry e1 v e2 vl e3, eff1⟩ ⇓ {res, eff3}

(Catch)
⟨Γ, e1, eff1⟩ ⇓ {inr (ex1, ex2, ex3), eff2}

⟨try vars to env vl [exclass to value ex1; ex2; ex3] Γ, e3, eff2⟩ ⇓ {res, eff3}
⟨Γ,ETry e1 v e2 vl e3, eff1⟩ ⇓ {res, eff3}

For the next rule, let us consider
nonclosure v := ∀ Γ′, ext, var list, body : v ̸= VClos Γ′ ext var list body.

(AppExc1)

⟨Γ, exp, eff1⟩ ⇓ {inl v, eff2}
⟨Γ, params, eff2⟩ ⇓all {vals, effs}

nonclosure v
eff3 = last effs eff2

⟨Γ,EApp exp params, eff1⟩ ⇓ {inr (badfun v), eff3}

In the following rule, we denote VClos Γ′ ext var list body with v.

(AppExc2)

⟨Γ, exp, eff1⟩ ⇓ {inl v, eff2}
⟨Γ, params, eff2⟩ ⇓all {vals, effs}

|var list| ≠ |vals|
eff3 = last effs eff2

⟨Γ,EApp exp params, eff1⟩ ⇓ {inr (badarity v), eff3}

(CallExc)

⟨Γ, params, eff1⟩ ⇓up to: i {vals, effs}
⟨Γ, params[i], last effs eff1⟩ ⇓ {inr ex, eff2}

⟨Γ,ECall fname params, eff1⟩ ⇓ {inr ex, eff2}

(LetExc)
⟨Γ, e, eff1⟩ ⇓ {inr ex, eff2}

⟨Γ,ELet v e b, eff1⟩ ⇓ {inr ex, eff2}

(AppExc3)
⟨Γ, exp, eff1⟩ ⇓ {inr ex, eff2}

⟨Γ,EApp exp params, eff1⟩ ⇓ {inr ex, eff2}

(AppExc4)

⟨Γ, exp, eff1⟩ ⇓ {inl v, eff2}
⟨Γ, params, eff2⟩ ⇓up to: i {vals, effs}

⟨Γ, params[i], last effs eff2⟩ ⇓ {inr ex, eff3}
⟨Γ,EApp exp params, eff1⟩ ⇓ {inr ex, eff3}

Figure 4: The traditional big-step operational semantics of exception creation
and propagation
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tives, or one can write a program in the tactic language to construct the proof.
Automatic execution of relational semantics can be done with the latter. We
could also see the evaluation tactics as a machinery that can turn the relational
semantics into functional: a program in the tactic language can perform pat-
tern matching, case distinction and even recursion, and can ultimately compute
the results of the relation.

Limitations of Coq tactics. Executing the relational semantics in Coq in-
volves technical considerations: one needs to make sure that the operational
semantics derivation rules do not contain auxiliary function calls in their conse-
quences. Otherwise, the Coq tactic language cannot do simple pattern match-
ing on the proof goals and prevents syntax-directed evaluation. In our seman-
tics, we needed to apply minor changes in the derivation rule of variables and
at uses of the append operation on side effect logs in our Core Erlang seman-
tics [4]. The issue has been solved by refactoring: we replaced the auxiliary
function applications with fresh variables and added extra premises stating
equality between the variables and the corresponding function applications.

On the other hand, in case of the side effects (and the mentioned append
operations) to avoid the introduction of unreasonable numbers of new variables,
we changed the use of these traces. Note that currently only ECall expressions
can cause new side effects, the other rules just have to propagate the logs.
Instead of handling only the additional side effects of an expression evaluation
step, we rather consider using always the whole initial and final side effect
traces (i.e. not only their difference like in [4]). This way we could dispose of
the append operations in the consequences of the derivation rules.

Evaluation tactic. We use Coq’s tactic sublanguage called Ltac [12] to au-
tomate proof construction. In our case, the evaluation of the semantics of the
case study language without exceptions is syntax-directed, i.e. a tactic can be
designed to evaluate any expression in any context based on pattern-matching
on the expression to be evaluated (e.g. ECall expression can be evaluated with
Call). On the other hand, after introducing exceptions, several derivation
rules are applicable for evaluating a particular expression (e.g. there are two
rules for ECall, five rules for function applications, etc.). We extended the
evaluation tactic to try applying the applicable rules one after the other. In
cases of rules like AppExc4, we needed to apply them multiple times (with dif-
ferent i indices), to find the expression in the parameter list that evaluates to
an exception. This can be seen as a backtracking proof-search for a successful
evaluation path.

As it turned out, such evaluation tactics in Coq are rather ineffective in
terms of time and space. To speed up the execution, we can create some helper
functions and prove lemmas about specific expressions (e.g. the evaluation
of parameters which are just literals), so that the evaluation tactic can apply
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these lemmas before trying to evaluate an expression with the mentioned slow
backtracking process. These lemmas can significantly speed up the evaluation
of expressions which contain such specific sub-expressions; however, they only
solve a small part of the problem.

3.2. Pretty-big-step semantics

As seen before, the traditional definition contains several similar rules with
the same premises. The idea of Charguéraud — called pretty-big-step seman-
tics [8] — is focusing on eliminating this redundancy. Let us discuss his idea
through our case study using the evaluation rules for applications. First of all,
Charguéraud identified two sources of duplication:

� The similar premises in the rules for exceptions, correct evaluation (and
divergence).

� The duplication of the evaluation judgement both for values and excep-
tions. This is not present in our case study language, however, App could
be described in form of two rules: one for exception and one for the value
final result.

In the following paragraphs we focus on the first problem. Instead of using
duplicated conditions, Charguéraud suggests to use “intermediate terms” which
contain the satisfied conditions implicitly. These can be seen also as terms,
which remember the state of the evaluation, i.e. which sub-terms have already
been evaluated (this resembles a small-step semantics in some aspects).

Applications with intermediate terms. Let us see how the idea applies
to our semantics. First, we need to create the syntax for intermediate terms
(see Figure 5). In our case, we need three additional constructors for appli-
cations: AApp1 corresponds to the function expression evaluation, AList to
the evaluation of the parameters, while AApp2 to the application exception
creation and function body evaluation.

Inductive AuxExpression :=
| AApp1 (b : Value + Exception) (params : list Expression)
| AApp2 (v : Value) (b : list Value + Exception)
· · ·
.

Inductive AuxList := AList (rest : list Expression)
(b : list Value + Exception).

Figure 5: The syntax of intermediate terms
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In this figure, lres is either a list of Values, or an exception, so its type is list
Value + Exception.

(Apppretty1 )

⟨Γ, exp, eff1⟩ ⇓p {res1, eff2}
⟨Γ,AApp1 res1 params, eff2⟩ ⇓p {res2, eff3}
⟨Γ,EApp exp params, eff1⟩ ⇓p {res2, eff3}

(ExcApppretty1 ) ⟨Γ,AApp1 (inr ex) params, eff1⟩ ⇓p {inr ex, eff1}

(FinApppretty1 )

⟨Γ,AList params (inl []), eff1⟩ ⇓p {lres, eff2}
⟨Γ,AApp2 v lres, eff2⟩ ⇓p {res, eff3}

⟨Γ,AApp1 (inl v) params, eff1⟩ ⇓p {res, eff3}

(ExcApppretty2 ) ⟨Γ,AApp2 v (inr ex), eff1⟩ ⇓p {inr ex, eff1}

(FinApppretty2 )
|var list| = |vals|

⟨(get env Γ′ ext)[var list 7→ vals], body, eff1⟩ ⇓p {res, eff2}
⟨Γ,AApp2 (VClos Γ′ ext var list body) (inl vals), eff1⟩ ⇓p {res, eff2}

(ExcApppretty2,badfun)
nonclosure v

⟨Γ,AApp2 v (inl vals), eff1⟩ ⇓p {inr (badfun v), eff1}

In the following rule, we denote VClos Γ′ ext var list body with v.

(ExcApppretty2,badarity)
|var list| ≠ |vals|

⟨Γ,AApp2 v (inl vals), eff1⟩ ⇓p {inr (badarity v), eff1}

Figure 6: Pretty-big-step semantics for applications

After having the intermediate terms defined, we can rewrite the semantics
of applications (Figure 6 and 7). We decided not to include our side effect
traces in the intermediate terms, because this way the effects can be handled
just like before. First, we have to evaluate the function expression of the
application (Apppretty1 ). We create the intermediate term AApp1 with the
result of this step. If this result was an exception, then the evaluation is finished
with ExcApppretty1 , otherwise, the parameters follow after using FinApppretty1 .
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(FinListpretty) ⟨Γ,AList [] (inl vals), eff1⟩ ⇓p {inl vals, eff1}

(ExcListpretty) ⟨Γ,AList rest (inr ex), eff1⟩ ⇓p {inr ex, eff1}

(StepListpretty)

⟨Γ, r, eff1⟩ ⇓p {res, eff2}
⟨Γ,AList rest (mk result res vals), eff2⟩ ⇓p {lres, eff3}

⟨Γ,AList (r :: rest) (inl vals), eff1⟩ ⇓p {lres, eff3}

Figure 7: Pretty-big-step semantics for parameter lists

When there are parameters, we can take the first one and evaluate it with
StepListpretty. The notation r :: rest means that r is appended to the front
of list rest. The value of the first expression will be appended to the end of the
value list in the constructor AList if it is a value by the mk result function;
however, in case of an exception this attribute of AList becomes the mentioned
exception. We repeat this process until all parameter expressions are evaluated,
or an exception occurs inside the AList. In the latter case, ExcListpretty fin-
ishes the evaluation, and the stored exception will be propagated. When there
is no exception, we use FinListpretty to finish the parameter list evaluation.
At this point, we can notice that this a general approach to evaluating a list of
expressions, so it can be used for ECall expressions too.

Finally, if there was an exception during parameter evaluation, instead of
the parameter values, an exception is stored in AApp2, and this can be propa-
gated with ExcApppretty2 . Otherwise, all parameters were correctly evaluated
and FinApppretty2 can be applied, when the first saved value (the evaluated
application function expression) is a closure, moreover, the number of formal
parameters in this closure is the same as the actual parameters, which are
also stored in a value list in AApp2. However, if the first stored value is not
a closure, we use ExcApppretty2,badfun and a badfun exception will be the result,

otherwise, we can apply ExcApppretty2,badarity if the number of formal and actual
parameters mismatch to create a badarity exception.

Brief evaluation. Compared to the traditional semantics, in the pretty-big-
step approach we see the increase in the number of inference rules, while the
premise redundancy is eliminated and the number of premises drops to two at
most. Obviously, pretty-big-step semantics cannot overcome all weaknesses of
the big-step approach, but provides a good alternative in terms of readability
and usability. Transforming the big-step semantics to pretty-big-step style was
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a straightforward process, except the transformation of expression lists: if there
were two or more derivation steps in the big-step premises, the intermediate
results were turned into terms like AApp1, and the rule was split. These steps
could have been automated, however, in case of expression lists, the use of
accumulation in AList instead of ⇓all was not as simple.

We should also note, that the pretty-big-step definition is a relational se-
mantics just like the traditional one. This means, we need a tactic again to
execute this semantics, however, unlike in the traditional case, here backtrack-
ing is not needed, because the evaluation is syntax-driven (with the exception
of the last step of application evaluation: FinApppretty2 , ExcApppretty2,badfun and

ExcApppretty2,badarity). Although, the use of this evaluation tactic is still not effi-
cient enough.

There are interesting applications of the method in related research, such
as deriving pretty-big-step style semantics from small-step semantics [2] or
certified abstract interpretation using this definition style [6].

4. Functional ways to define big-step semantics

We have summarised two ways to create a relational big-step semantics,
however, both of them suffer mainly from the same problem: they cannot be
executed efficiently. In this section, we discuss a functional approach, called
functional big-step semantics [21] and its origin, the definitional interpreter [23].

4.1. Functional big-step semantics

The idea of functional big-step semantics was developed by Owens et al. [21].
A semantics in this style is basically a recursive function. In order to assure
its termination for arbitrary inputs (e.g. for diverging expressions too), there
is also a “clock” variable which decreases in the steps of the execution. We
note that the functional big-step semantics is essentially a definitional inter-
preter [23] equipped with a clock, and it is defined in a “higher-order logic
rather than a programming language” [21].

This approach is also used in research, for example in the FEther project [26]
and the type soundness proof for System F by Amin and Rompf [1] uses defi-
nitional interpreters, while a verified compiler backend for CakeML [21, 25] in
based on functional big-step semantics. Now, let us see how can we create such
a semantics for our case study language.

When we define a function (in Coq), it should explicitly implement be-
haviour for all inputs (i.e. the function is total). However, in practice, there
can be syntactically valid programs or expressions with undefined or unspecified
behaviour (we note that the relational semantics are partial). Moreover, be-
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cause of the “clock” variable which ensures the termination of the function, an
expression evaluation could terminate before finding the right result for small
“clocks”. This means, we can have three different results: correct termination,
failure, and timeout (see Figure 8). In our case study language, there is no
undefined behaviour, so we never get failure as result, however, we do not omit
this from the result definition, because if we extend this definition e.g. with
Core Erlang-like case expressions, then the guards of these expressions cannot
produce observable side effects [7], so the semantics of case expressions with
such guards would be failure.

Inductive ResultType : Type :=
| Result (res : Value + Exception)
(eff : SideEffectList)

| Timeout
| Failure.

Inductive ResultListType : Type :=
| LResult

(res : list Value + Exception)
(eff : SideEffectList)

| LTimeout
| LFailure.

Figure 8: The possible results of the functional big-step semantics

As we have seen before, we have to define the semantics for lists of ex-
pressions too. For these lists, we can define the functional big-step semantics
distinctly, just like in case of the other discussed semantics (see the defini-
tions of ⇓all, ⇓up to: i in Section 3.1 and the AList constructor, StepListpretty,
ExcListpretty and FinListpretty in Section 3.2). So we define also a result type
for list evaluation (Figure 8).

Now, we have the result types, we can define the functional semantics (Fig-
ure 10 shows a representative part of it). The first step of this function is to
check whether the clock is already consumed, in this case, the function returns
the Timeout value. Otherwise, the expression evaluation can begin. For calls
and applications, we need the above-mentioned list evaluation. This problem
is solved by the other semantics function (see Figure 9), where we pass the
partially applied version of the original functional big-step semantics as an ar-
gument (we decrease clock only in the original functional big-step semantics,
so that Coq can find the decreasing argument of the function to ensure termi-
nation, moreover it enables us to use simple, yet powerful induction over the
clock). Note that we decided to decrease the clock value on every nested recur-
sive call, otherwise Coq cannot find the decreasing argument of the semantics
function (however, this problem could be solved with the Program construc-
tion possibly too). We also note, that exceptions, failures and timeouts were
be handled together (except in the semantics of ETry), because these results
just needed to be propagated resulting in a short semantics definition.
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Fixpoint eval elems
(f : Environment → Expression → SideEffectList → ResultType)
(Γ : Environment) (exps : list Expression) (eff : SideEffectList)
: ResultListType :=
match exps with

| [] ⇒ LResult (inl []) eff
| x ::xs ⇒
match f Γ x eff with

| Result (inl v) eff’ ⇒ let res := eval elems f Γ xs eff’ in
match res with

| LResult (inl xs’ ) eff’’ ⇒ LResult (inl (v ::xs’ )) eff’’
| r ⇒ r
end

| Result (inr ex ) eff’ ⇒ LResult (inr ex ) eff’
| Failure ⇒ LFailure
| Timeout ⇒ LTimeout
end

end.

Figure 9: The functional big-step semantics of list evaluation

5. Discussion

In this section we evaluate and compare the semantics definitions given in
the previous sections, and we also discuss a coinductive approach to handle di-
vergence. In the diagrams below, we measure the complexity of proofs in lines
of code (“Proof length”), number of case distinctions (“Case separations”),
number of expressions not inferrable from the context (“Hand written input”),
number of used derivation rules (“Rules”), how many times the inversion

tactic was used (“Inversions”) and how many times helper lemmas were used
(“Use of helpers”). Moreover, we used examples of different sizes below to com-
pare the efficiency of the evaluation: “Small example” contains 11, “Medium
example” consists of 167, while “Large example” includes 3328 constructs.

5.1. Evaluation

First of all, we can notice that all the three semantics can handle the
evaluation of list of expressions separately from the body of the semantics:
⇓all and ⇓up to: i in the traditional big-step, ExcListpretty, FinListpretty, and
StepListpretty in the pretty-big-step, and eval elems in the functional big-step
semantics.

In terms of definition size and complexity, the functional big-step definition
is superior, it is much more compact than the other two. Besides, the pretty-
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Fixpoint eval fbos expr (clock : nat) (Γ : Environment) (exp : Expression)
(eff : SideEffectList) {struct clock} : ResultType :=
match clock with

| 0 ⇒ Timeout
| S clock’ ⇒

match exp with

| EApp exp l ⇒
match eval fbos expr clock’ Γ exp eff with

| Result (inl v) eff’ ⇒
let res := eval elems (eval fbos expr clock’ ) Γ l eff’ in
match res with

| LResult (inl vl) eff’’ ⇒
match v with

| VClos Γ′ ext varl body ⇒
if Nat.eqb (length varl) (length vl)
then eval fbos expr clock’ ((get env Γ′ ext)[varl 7→ vl]) body eff’’
else Result (inr (badarity v)) eff’’
| ⇒ Result (inr (badfun v)) eff’’
end

| LResult (inr ex ) eff’’ ⇒ Result (inr ex ) eff’’
| LFailure ⇒ Failure
| LTimeout ⇒ Timeout
end

| r ⇒ r
end

· · ·
end

end.

Figure 10: Functional big-step semantics of our case study language

big-step definition uses more inference rules than the traditional big-step se-
mantics, but these rules are much simpler (they have at most two premises).
This difference increases the number of subgoals in proofs in case of the pretty-
big-step semantics, but these goals are usually simpler than in the other case.
In turn, simpler goals could mean simpler proofs, but since the pretty-big-step
semantics is defined by mutually inductive types, the related proofs in some
cases can become rather complex due to involving mutual induction.

Expression evaluation. The first problem we encounter is that the tradi-
tional big-step and pretty-big-step semantics are relational semantics (defined
by an inductive type) and are not inherently executable. To describe an ex-
pression evaluation, we need to prove the evaluation step-by-step using the
inference rules (the constructors of the inductive type). As discussed before,
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we can also create an evaluation tactic, which can find the proof for expression
evaluation, however, the use of this tactic is not efficient: it takes unreasonable
amounts of memory and time (see Figures 11 and 12). The use of pretty-big-
step semantics is more efficient than the traditional one, because for one goal,
one derivation rule can match syntactically at most (except in case of different
application exceptions), thus no backtracking is needed. However, it is still not
efficient enough, especially compared to the functional approach.
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We can also see (Figure 13) that the proof length of simple expression eval-
uations in the traditional and pretty-big-step semantics is similar. However,
in the pretty-big-step semantics we used much more inference rules to reach
the result, while with the traditional semantics, we had to use inversion tactic
several times and specify results by hand. This is because expression list eval-
uation is not described step-by-step, but in universally quantified predicates,
we needed to input the result list of values and side effects (e.g. eff and vs
in the definition of ⇓all) during formal evaluation (alternatively, list unfolding
lemmas4 based on the length can also solve this problem). This issue is not
present in the pretty-big-step semantics, because lists are handled in a step-
by-step way by StepListpretty (again, resembling small-step evaluation). All
in all, the complexity of these proofs are similar in both relational approaches.

On the other hand, the functional big-step semantics is inherently exe-
cutable (because it is just a recursive function), so expressions can be simply
evaluated using it, we just have to pick an appropriate initial clock value (re-
cursion limit).

Expression equivalence proofs. As we can see (Figure 14), surprisingly
the expression equivalence proofs were the most complex in the traditional big-
step semantics, while the functional big-step style performed very well. This
is because in the traditional semantics we had to use list unfolding lemmas
several times, which quickly increased the size of the proofs. The use of pretty-
big-step semantics was quite straightforward, and the equivalence proofs were
not too complex. Once again, this is partly because no list unfolding lemmas
were needed.

4For example a list of length n can be described as [x1, x2, .., xn] with the x1, x2, .., xn

existential variables (which can be inferred from the context during the proof).
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Based on the diagrams, one could think that there is no disadvantage of us-
ing functional big-step semantics, but that is not the case. While interactively
proving the equivalences (and also semantics properties), the intermediate sub-
goals and assumptions were hard to read and understand, because Coq usually
oversimplified the function definition, and we often saw the whole definition of
this semantics, and not just necessary parts of it. We used remember tactics [12]
on the clock values which allowed us to simplify the semantics step-by-step,
however, this solution is not the most convenient one.

Semantics property proofs. For evaluating the complexity of semantics
property proofs (see Figure 15), we chose determinism in case of the pretty-
big-step and traditional big-step semantics, while a clock increasing lemma
in case of the functional big-step semantics5. The determinism proof for the
traditional approach is very complex. We needed to use various helper theorems
about (partial) evaluation of lists of expressions and a lot of case distinctions.
On the other hand, proving determinism in the pretty-big-step approach was
simple, we did not need to create any helper lemmas, we used only a few case
distinctions and the proof is short in spite of having to use mutual induction
principle.

The proof complexity of the clock increasing lemma for the functional big-
step semantics is between the previous two. We had to create and prove one
helper theorem, and use several case distinctions. However, this proof is not
as complex as the determinism of the traditional style, we have used simple
induction over the clock variable. This style of induction is usable, because
the clock is decreased in every recursive call of the semantics6. We should also

5When we evaluate an expression and get a result with the constructor Result, then we
can increase the initial clock, and get the same result.

6We could have used functional induction (similar to the one mentioned by Owens et
al. [21]), however, we faced limitations of Coq when generating an induction principle.
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note that while interactively proving this theorem, the subgoals were difficult
to understand because of the reasons mentioned before.

In addition, we also proved the equivalence of these approaches: between
pretty-big-step and functional approaches, and between traditional big-step
and functional approaches by induction. Thereafter using the previous two, we
also proved the equivalence of traditional and pretty-big-step semantics. We
encountered one difficulty: while proving the equivalence of pretty and func-
tional big-step semantics, the mutual induction could not be used (in functional
big-step semantics, we can not give a meaning for “intermediate terms”). To
solve this problem, we followed the footsteps of Charguéraud’s [22] formalisa-
tion, and defined another (equivalent) version of the pretty-big-step semantics,
equipped with a counter which increased when using the derivation rules of
the semantics, in order to use induction over this counter. We proved the
equivalence using this semantics as an intermediate step.

5.2. Coinductive approach

There are two concept which were not investigated in detail: concurrency
and divergence. In general, a big-step semantics can not express concurrency
efficiently, because it can not handle interleaving. For this purpose, a small-step
approach is more suitable.
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We should note that functional big-step semantics can handle divergence in
the same way Owens et al. [21] described: the evaluation is divergent, when for
any possible clock value the result is Timeout. We also proved an expression
evaluation divergent using this idea and an induction on the clock.

The previously described relational approaches are suitable to describe se-
mantics of terminating expressions, however, they can not effectively express
divergence. If one wants to reason about divergence too, a coinductive big-step
semantics can be used. We have found the work of Leroy and Grall [16] the
most influential, where they define a semantics for λ-calculus extended with
constants. They also extend this semantics with traces, a similar feature to our
side effect logging approach. Moreover, they also implemented these semantics
in Coq and the source is available publicly. We followed their footsteps to define
a coinductive big-step semantics for our case-study language (in particular, for
applications) with a distinct relation. For the divergence rules, we needed in-
finite traces for side effects too. However, this approach is not straightforward
to use because of the guardedness of subgoals.

6. Conclusion and future work

In this paper we defined various approaches (primarily traditional big-step,
pretty-big-step and functional big-step semantics) to define the semantics of a
functional programming language, and used a small subset of sequential Core
Erlang as a case study.

We proved the equivalence of the various styles of semantics, and evaluated,
compared them from different aspects in order to choose the most fitting way
to reason about refactoring correctness. Each has its advantages and disad-
vantages. Our main three aspects were the executability of the approach, the
complexity of expression equivalence proofs and proofs about the properties
of the semantics, and from this point of view, the functional big-step style
semantics proved to be the most useful.

We highlight the fact that the semantics definitions and the proofs are all
formalised in the Coq proof management system [24].

In the future, we are planning to formalise functional big-step semantics
for sequential Core Erlang to enable effective testing of the semantics and then
use comparative testing of our Core Erlang semantics and a small-step Erlang
semantics [15] defined by one of our former project members. Naturally, we
also plan to prove the existing big-step and the mentioned functional big-step
semantics equivalent, after having finished the implementation. We also plan
to investigate the coinductive approach more in detail. Our long term goal is
to formalise entire Core Erlang and Erlang in Coq to reason about refactoring
correctness on Erlang programs.
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[9] Ciobâcă, Ş., From small-step semantics to big-step semantics, automat-
ically, in: E. B. Johnsen and L. Petre, Eds., Integrated Formal Methods
(Berlin, Heidelberg, 2013), Springer Berlin Heidelberg, 347–361.
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