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Abstract. In this paper, we propose a new primitive called updatable
threshold encryption (UTE) which is motivated by real-world applications.
Namely one would like to encrypt extremely sensitive data, handle post-
compromise and forward security and distribute trust amongst many par-
ties for decryption. As one is interested in long-term security we also would
like the scheme to be quantum-resistant.
UTE can be seen as a variant of updatable encryption (UE) with certain
threshold properties. We introduce algorithms and security definitions for
UTE and provide an instantiation with cryptographic group actions. In
order to handle shares being revoked and new parties being added we
introduce the first post-quantum dynamic secret sharing scheme based on
group actions.

1. Introduction

Once large-scale quantum computers are built, currently deployed protocols
will become insecure. This is particularly important in certain use cases where
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secrets need to stay secret for long periods of time. For instance one might
want to encrypt classified data to avoid leakage of important information even
if quantum computers become a reality in only 20–30 years.

In the case of these documents one might have extra requirements. Namely,
one would like to handle a situation where secret keys get compromised and
one would like to distribute trust amongst several parties. More precisely, one
needs to satisfy these conditions:

1. The encryption should be quantum-safe.

2. The scheme should have threshold properties, i.e., only a set of authorised
parties can decrypt encrypted data.

3. In case a secret key gets leaked, it should be easy to update ciphertexts
to ensure forward and post-compromise security.

4. One should be able to handle changes in access structure, i.e., if autho-
rizations are added or revoked.

Our starting point is an existing primitive called updatable encryption (UE)
which was defined by Boneh, Levi, Montgomery and Raghunathan [3]. The
motivation for (UE) comes from secure storage. Clients want to store en-
crypted data on a server and be able to issue updates without decrypting the
ciphertexts. The only post-quantum instantiation of UE is [18] which uses
cryptographic group actions coming from isogeny-based cryptography. UE has
strong security properties that fit our framework but clients hold entire secret
keys.

1.1. Our contribution

In this paper, we make the following contributions:

1. We introduce a new primitive called updatable threshold encryption
(UTE) which (informally) is an updatable encryption scheme which is
simultaneously a threshold encryption scheme.

2. We provide a precise definition of this new primitive (algorithms and
security properties) and provide an instantiation using isogenies.

3. In order to handle accesses being revoked and added one could just issue
a new update every time this happens. This might be enough for cer-
tain applications but in certain cases this is quite costly. We provide a
more efficient way to handle changes in the access structure. Namely we
integrate a dynamic secret sharing scheme into our UTE construction.
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4. We introduce the first post-quantum dynamic secret sharing scheme
(again using group actions) which might be of independent interest. To
the best of our knowledge, there does not exist a quantum-resistant dy-
namic secret sharing scheme in the literature.

The paper is structured as follows. In Section 2 we introduce the basic prop-
erties of updatable encryption and cryptographic group actions. In Section 3
we provide a formal definition of updatable threshold encryption and in Sec-
tion 4 we propose a quantum-resistant instantiation of UTE. A major part of
Section 4 is devoted to our dynamic secret sharing scheme.

2. Preliminaries

In this section we describe most of the necessary background needed for
later sections, such as hard homogeneous spaces, updatable encryption and
instantiations of crytographic group actions from isogenies.

2.1. Notations

λ denotes the security parameter for updatable encryption and←$ S denotes
sampling uniformly from a set S. We use AO to denote that an algorithm A
has access to the oracle O.

2.2. Hard homogeneous spaces

Hard homogeneous spaces (HHS) were introduced by Couveignes [10].

Definition 2.1. If G is a group with identity element e, and X is a set, then
a (left) group action α of G on X is a function

α : G×X → X,

that satisfies the following two axioms:

(i) Identity: α(e, x) = x.

(ii) Compatibility: α (g, α (h, x)) = α (gh, x) .

For simplicity, we denote action α(g, h) by g ∗ h. A principal homogeneous
space for a group G is a non-empty set X on which G acts freely and transitively
(meaning that, for any x, y ∈ X, there exists a unique g ∈ G such that g∗x = y).

Couveignes defines a HHS as a finite principal homogeneous space with some
additional algorithmic properties. He requires that the following problems can
be solved efficiently:
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(i) (Group Operations) Given strings g1 and g2 decide if they represent el-
ements in G and if these elements are equal or not. Given g1, g2 ∈ G,
compute g−1, g1g2 and decide if g1 = g2.

(ii) (Random Element) Find a random element in G with uniform probability.

(iii) (Membership) Given a string h0 decide if h0 represents an element in X.

(iv) (Equality) Given h1, h2 ∈ X decide if h1 = h2.

(v) (Action) Given g ∈ G and h ∈ X compute g ∗ h.

Furthermore, the following problems should be hard (e.g., not known to be
solvable in polynomial time):

(i) Vectorization: Given h, h′ ∈ X find g ∈ G such that g ∗ h = h′.

(ii) Parallelization: Given h, h′, F ∈ X, such that h′ = g ∗ h, find F ′ = g ∗ F .

As a simple example, let X be a group of prime order q, then G = Z/qZ×

acts on X\{1} by a ∗ g = ga. In this case, the Vectorization problem is the
discrete logarithm problem in X, and the Parallelization problem is the Com-
putational Diffie–Hellman problem. Hence any discrete logarithm group is a
HHS. However, the discrete logarithm problem carries more structure (instead
of an abelian group action one has Z/qZ-module as one can multiply and add
exponents) which is the reason it is vulnerable to Shor’s algorithm. CSIDH [26]
is an example of a cryptographic group action which satisfies most properties
of HHS (uniform sampling is conjectured as in many CSIDH instantiations it
is hard to compute the structure of the group). We will expand on this in
Section 2.6.

2.3. Updatable encryption

An updatable encryption scheme is a symmetric encryption scheme defined
by Boneh, Lewi, Montgomery and Raghunathan in 2013 [3] to periodically
update ciphertexts stored in the cloud using a new key.

The main goal behind this scheme is to grant the organizations an extra level
of security for their encrypted data stored in the cloud against unauthorized
use and access by their former employees who are keeping the corresponding
secret key[3].

The updatable encryption scheme consists of the following PPT (proba-
bilistic polynomial-time) set of algorithms(UE.Setup, UE.KeyGen, UE.Enc,
UE.Dec UE.TokenGen, UE.Upd) that operate in epoch times. The Figure 1
illustrates the Updatable Encryption scheme.
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Algorithm Input Output Syntax
Setup
(UE.Setup)

Security
parameter
λ

Public
parameter pp

pp← UE.Setup(1λ)

Key generation
(UE.KeyGen)

Public
parameter
pp

Epoch key ke Ke ← UE.KeyGen(pp)

Encryption
(UE.Enc)

m, ke Ce Ce ←$ UE.Enc(ke,m)

Decryption
(UE.Dec)

Ce, ke message m or
⊥

{m′,⊥} ←
UE.Dec(ke, Ce)

Token
generation
(UE.TokenGen)

ke, ke+1 ∆e+1 ∆e+1 ←
UE.TokenGen(ke, ke+1)

Update
(UE.Upd)

Ce,∆e+1 Ce+1 Ce+1 ←
UE.Upd(∆e+1, Ce)

Figure 1: Updatable Encryption scheme’s algorithms

Definition 2.2. Correctness [3, 6, 17]: For all messages m ∈M , the updat-
able encryption scheme is correct if it always holds that Pr[UE.Dec(ke, Ce) =
= m] = 1. For all Ce = UE.Enc(ke,m) and Ce = UE.upd(∆e−1, Ce−1).
In other words, the correctness notion for updatable encryption means that
decryption of both fresh and updated ciphertexts leads always to the correct
message m.

2.4. Security of UE

We follow the previous works on updatable encryption schemes [6, 17, 18],
where the security notions are game-based and described as challenges (exper-
iments) run between a challenger and an adversary A.

During each experiment and depending on the desired security notion, the
Adversary A is allowed to issue queries to some specific oracles O described in
the Figure 2.

All the oracles in updatable encryption security games are controlled by the
challenger. We summarize the functionality of each oracle as follows:

Initialize(1λ) : initialize the challenger’s state CS = {L, L̃, C,K, T } and
the system’s state {pp, k0,∆0, e = 0, CS} s.t:
L: list of honestly generated ciphertexts, i.e non-challenge ciphertexts of

the form (c, C, e) which are generated through a call to O.Enc or O.Upd, c is
a counter that increments with each call to O.Enc.
L̃: list of updated versions of challenge ciphertexts of the form (C̃, e) auto-

matically updated via a call to O. Next,an adversary A gets the C̃e via a call
to O.UpdC̃ oracle.
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Initialize(1λ):
pp← UE.Setup(1λ)
k0 ← UE.KeyGen(pp)
e, c, ph, twf ← 0
∆0 ←⊥
L, L̃, C,K, T ← ∅

O.Enc(M)
C ← UE.Enc(ke,M)
c ← c+ 1
L ← L ∪ {(c, C, e)}
return C

O.Dec(C)
if (ph = 1 and C ∈ L̃)
then

twf ← 1
M or ⊥←
UE.Dec(ke,C)
return M or ⊥

O.Next()
e← e+ 1
Ke ← UE.KeyGen(pp)
∆e ← UE.TokenGen
(ke−1, ke)
if (ph = 1) then

C̃e ←
UE.Upd(∆e, C̃e−1)

O.Upd(Ce−1)
if ((j, Ce−1, e− 1) /∈ L)
then

return ⊥
Ce ←UE.Upd
(∆e, Ce−1)
L ← L ∪ {(j, Ce, e)}
return Ce

O.Corr(input,ê)
if (ê > e) then

return ⊥
if (input=key) then
K ← K ∪{ê}
return Kê

if (input=token) then
T ← T ∪{ê}
return ∆ê

O.UpdC̃
if (ph ̸= 1) then

return ⊥
C ← C ∪ {e}
L̃ ← L̃ ∪ {(C̃e, e) }
return C̃e

O.TryC̃
if (ph = 1 ) then

return ⊥
ph ← 1
if (e ∈ K∗ or C̃ ∈ L∗)
then

twf ← 1
M or
⊥←UE.Dec(Ke, C̃)
if (M ̸=⊥) then

winForgery ← 1

O.Chall(M̄ ,C̄)
if (ph ̸= 1) then

return ⊥
ph ← 1
ẽ ← e
if (( . ,C̄ ,e− 1)/∈ L )
then

return ⊥
if (b = 0) then

C̃e ←UE.Enc
(ke,M̄)
else

C̃e ←UE.Upd
(∆e, C̄)
C ← C ∪ {e}
L̃ ← L̃ ∪ {(C̃e, e)}
return C̃e

Figure 2: Overview of oracles used in security experiments for updatable en-
cryption

C: list of epochs e in which an adversary A learned the updated version of
the challenge ciphertexts by calling O.challC̃ or O.UpdC̃.

K: list of all epochs e in which an A corrupted the key of certain epoch e.
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T : list of all epochs e where an adversary corrupted the underlying token
∆e.

O.Enc: this oracle is used to encrypt a message M using the current epoch
key ke, stores its ciphertext C and the underlying epoch to the list L and
returns the resulting C.

O.Dec: this oracle is used to decrypt a ciphertext C using the current
epoch key ke and returns the decryption result (plaintext M , or ⊥ for invalid
result).

O.Upd: this oracle is used to re-encrypt the ciphertext C of certain epoch
e. Ce must be honestly generated(Ce contained in L ) i.e generated by O.Enc
or O.Upd otherwise it returns ⊥.
O.Corr: this oracle is used to corrupt epoch keys or tokens depends on the

input, if the Adversary A call the Corruption oracle and set:

(i) input = Key and ê, ∀ ê≤ e, the oracle will update the listK : K ← K∪{ê}
and return the corrupted key to the adversary A.

(ii) input = Token and ê,∀ ê ≤ e, the oracle will update the list T : T ←
← T ∪ {ê} and return the corrupted token to the adversary A.

O.Next: this oracle is used to move to the next epoch e + 1 and hence
generating a new epoch key and new update token.

O.Chall: the challenge oracle that challenges the adversary with either the
encryption of M̄ or the update of C̄.it returns ⊥ if the ciphertext C̄ corresponds
to a plaintext of length ̸= |M̄ |.
O.UpdC̃: this oracle is used to acquire the challenge ciphertext C̃ corre-

sponding to the current epoch e from the updated version list L̃ .

O.TryC̃: a special oracle which called only during an INT-CTXT challenge
by an adversary A who will win the challenge if his forgery attempt C̃ is valid.

2.4.1. Security properties

We recall the required security properties for updatable encryption from [17]:

(i) Token Security: No additional benefit is gained for breaking the UE
scheme if the ciphertexts or all the tokens are exposed.

(ii) Forward Security: No additional advantage is gained by an adversary
who may compromise a secret key ke of certain epoch e to decrypt the
ciphertexts of previous epochs e′ < e already obtained before.

(iii) Post-Compromise Security: No additional advantage is gained by an
adversary who may compromise a secret key ke of certain epoch e to
decrypt the ciphertexts of next epochs e′ > e that he will obtained after
this compromise.
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(iv) IND-CPA Security(IND-CPA [6, 18]): An updatable encryption
scheme is called secure under IND-CPA if for any PPT adversary A
the following advantage is negligible for the security parameter λ while
expIND−CPA represents the experiment between the adversary and the
challenger.

AdvIND−CPA
UE,A =

∣∣∣∣Pr[ExpIND−CPA−1
UE,A = 1]− Pr[ExpIND−CPA−0

UE,A = 1]

∣∣∣∣.
(v) IND-CCA Security(IND-CCA [6, 18]): An updatable encryption

scheme is called secure under IND-CCA if for any PPT adversary A
the following advantage is negligible for the security parameter λ while
expIND−CCA represents the experiment between the adversary and the
challenger.

AdvIND−CCA
UE,A =

∣∣∣∣Pr[ExpIND−CCA−1
UE,A = 1]− Pr[ExpIND−CCA−0

UE,A = 1]

∣∣∣∣.
(vi) Plaintext Integrity: Requires that it be computationally infeasible to

create a ciphertext decrypting to a new plaintext (never encrypted before
by the sender).More formally, an updatable encryption scheme is called
secure under (INT-PTXT) if for any PPT adversary A the following
advantage is negligible for the security parameter λ.

AdvINT−PTXT
UE,A = Pr[ExpINT−PTXT

UE,A = 1].

(vii) Ciphertext Integrity: Requires that it be computationally infeasible
to create a fresh ciphertext (not created before by the sender) regardless
of whether the corresponding plaintext is new or not. In more detail, a
scheme achieves the INT-CTXT security if no adversary with access to
the encryption oracles (O.Enc, O.Next, O.Upd and O.Corr) can produce
a valid ciphertext (its decryption outputs a message) and differ from
all the ciphertexts which he obtained from the oracles. This produced
ciphertext is usually called a ciphertext forgery. More formally, an up-
datable encryption scheme is called secure under (INT-CTXT) if for any
PPT adversary A the following advantage is negligible for the security
parameter λ.

AdvINT−CTXT
UE,A = Pr[ExpINT−CTXT

UE,A = 1].

2.5. UE from group actions

In this subsection we recall constructions of UE from group actions. In [18],
they introduced two methods for updatable encryption. One is called GAINE,
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and another is ETOGA (Efficient TOGA). Since our work is based on TOGA
(Triple Orbital Group Action), we introduce it here.

TOGA consists of three group actions, for more details of this setting, we
refer to [18].

As a starting point we have a main action (A,S, ⋆A) for an abelian group A
and a set S. Group A has a congruence relation ∼A. We could use this relation
and the group action ⋆A to induce a relation ∼S in S. Namely,

s1 ∼S s2, ⇐⇒ ∃a1, a2 ∈ A, with a1 ∼A a2 such that a1 ⋆A s1 = a2 ⋆A s2.

It’s not hard to see that this is indeed a relation in S. For the transitivity
of ∼S , assume s1 ∼S s2, and s2 ∼S s3, we have a1 ⋆A s1 = a2 ⋆A s2, and
b2 ⋆A s2 = b3 ⋆A s3, therefore a1b2 ⋆A s1 = a2b3 ⋆A s3 and a1b2 ∼A a2b3 since A
is an abelian group and ∼A is a congruence relation.

We also have a second group action: A/ ∼A acts on S/ ∼S . To see this is
a group action, the only non-trivial thing is to show that this is a well-defined
group action. In other words, to prove when a1 ∼A a2, and s1 ∼S s2, we have
a1 ⋆A s1 ∼S a2 ⋆A s2. Because we have b1 ⋆A s1 = b2 ⋆A s2 for some b1 ∼A b2,
hence (a2b1) ⋆A (a1 ⋆A s1) = (a1b2) ⋆A (a2 ⋆A s2) and here a2b1 ∼A a1b2.

Last but not least, we need to find the third group action: (H,S, ⋆H) for
which we can treat our messages as group elements of H. For decryption to be
possible, we also need this action to be efficiently invertible. Specifically, for
any s ∈ S and h ∈ H, we have h ⋆H s ∼S s and for all s′ ∼S s, there exists h
such that s′ = h ⋆H s.

Moreover, we need the third group action to be free in order to make this
action invertible and ⋆H , ⋆A commute. Finally, for any a1, a2 ∈ A with a1a2 ∼A

∼A 1A there exists a unique element h(a1a2) ∈ H such that

a1a2 ⋆A s = h(a1a2) ⋆H s

for all s ∈ S.
When a1a2 ∼A 1A, we have h(a1, a2) = InvertH((a1a2) ⋆A s, s). We fix a

starting element s0 ∈ S, and also assume the existence of an invertible map
ψ :M→ H whereM is the space of the messages. We will use this function
ψ to map the messages to the group H and encrypt them with group action
⋆H . Decryption will rely on InvertH . We sometimes apply the action ⋆A on
the elements of S/ ∼S to obtain the canonical representative. Our secret key
will consist of elements in A × H. The updatable encryption from TOGA is
described in Figure 3.

2.6. Class group action and orientations

The goal of this section is to introduce some preliminaries which are needed
for instantiating TOGA.
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Setup(1λ)

1 : (A,H, S, ⋆A,∼A, starH)← T OGA(λ)
2 : choose ψ, s0

3 : pp← (A,H, S, ⋆A,∼A, ⋆H , ψ, s0)

4 : return pp

TokenGen(ke, ke+1)

1 : (ae, he)← ke+1

2 : (ae+1, he+1)← ke+1

3 : ce ← ReduceA(a
−1
e ae+1)

4 : compute h = h(a−1
e ae+1, c

−1
e )

5 : return ce, hhe+1h
−1
e

Enc(ke,M)

1 : r′ ←$ A

2 : r ← ReduceA(r
′)

3 : s = ReduceS(r ⋆A s0)

4 : (ae, he)← ke

5 : return (ψ(M)he) ⋆H (ae ⋆A s)

KeyGen(pp)

1 : a←$ A

2 : h←$H

3 : return ReduceA(a), h

Upd(∆e+1, Ce)

1 : a, h← ∆e+1

2 : return h ⋆H (a ⋆A Ce)

Dec(ke, Ce)

1 : (ae, he)← ke

2 : be ← ReduceA(a
−1
e )

3 : h′ ← h(ae, be)

4 : s′ ← (heh)
−1 ⋆H (be ⋆A Ce)

5 : s← ReduceS(s
′)

6 : M ′ ← ψ−1(InvertH(s′, s))

7 : return M ′

Figure 3: TOGA-UE

Definition 2.3. AK-orientation of E is an embedding: ι : K ↪→ End(E)⊗ZQ.
(E, ι) is an O-orientation if ι(O) ⊆ End(E). It is primitive if ι(O) = End(E)∩
∩ι(K). In that case, the couple (E, ι) is called an O-oriented curve and E is
an O-orientable curve.

If E is supersingular, then End(E) is a maximal order in a quaternion
algebra. Let φ : E → F be an isogeny. Then ϕ induces a K-orientation φ⋆(ι)
on F .

φ⋆(ι) =
1

deg(φ)
φ ◦ ι(α) ◦ φ̂

If F already possesses aK-orientation, then the above isogeny isK-oriented
if this orientation coincides with the orientation induced by φ A K-oriented
isogeny ψ : (E, ιE) → (F, ιF ) is a K-oriented isomorphism if it has an inverse
isogeny F → E that is also K-oriented (F, ιF ) → (E, ιE). With all the above
knowledge, we can now build our TOGA.
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Our main group will be the group of all invertible O-ideals. Before intro-
ducing the set S, we need the following definition:

Definition 2.4. SO(p) is the set ofO-oriented curves (E, ι) up to isomorphisms
and Galois conjugacy.

When we consider invertible O-ideals, we get an abelian group (for the
multiplication operation). This group acts on the elements of SO(p) transitively
by an operation that we denote as ⋆A. This action is computed concretely using
isogenies. Given an integral ideal a, and E, ι ∈ SO, the kernel of a is

E[a] := ∩
α∈a

ker(ι(α)).

There exists a unique(up to isomorphism) separable isogeny with this kernel
i.e., ψa : E −→ Ea = E/E[a] and this also maps ι to ιa which satisfying

ιa(x) =
1

N(a)ψa ◦ ι(x) ◦ ψ̂a. We can write the action of a as:

a ⋆ (E, ι) := (F, (ψa)∗(ι)).

Since principle ideals act on the set trivially, we get an action of the ideal
class group

cl(O)× SO(p) −→ SO(p).

So here we have our first group A which is the invertible O-ideals, and relation
∼A means that ideals differing by principal ideals are equivalent. Hence, the
second group G is cl(O). In order to compute this group action efficiently,
usually we choose a basis which consists of prime ideals l1, . . . , ln. They are all
split in O, i.e., for any prime number li, liO = ll l̄i. Here l̄i is the inverse ideal
of li in cl(O) which denoted as l−1

i . The elements of this basis have small norm
and represent elements of cl(O) as:

a =

n∏
i=1

lei

where (e1, . . . , en) ∈ Zn. To get the third group action [18] uses the group of
points of the orientable elliptic curves. Take N a split integer in O coprime
with all the li for 1 ≤ i ≤ n. Assuming O = Z[θ] and ν is an eigenvalue of θ,
we can consider elements of the form (E, ι, P ) where P ∈ E[N ]∩ ker(ι(θ)− ν)
is a generator of this cyclic group. Since N is split, ν exists. Let us take the
set

S = {(E, ι, P )|(E, ι) ∈ SO(p) and ⟨P ⟩ = E[N ] ∩ ker(ι(θ)− ν)}

The group of fractional ideals of norm coprime to N acts on this set in the
following way: any fractional ideal can be written as (a/b)a where a is an
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integral ideal, we have the action (a/b)a ⋆ (E, ι, P ) = (Ea, ιa, ψ
E
a (P )). Indeed,

if there are two equivalent fractional ideals a1, a2 act on (E, ι, P ) ∈ S, the result
will be (E, ι, P ′) where P ′ is another generator of E[N ] ∩ ker(ι(θ) − ν). This
means there is a µ ∈ H = Z/NZ× such that P = µP ′. This µ depends only on
two equivalent ideals a1, a2(by the principal ideal between them), and µ will be
our h(a1, a2) in the definition of TOGA.

In summary, for any scalar h ∈ H, we define h ⋆H (E, ι, P ) as (E, ι, [h]P )
and one can show that (A,H, S, ⋆A,∼A, ⋆H) is a TOGA.

Note that here our basis li may not cover generate all the elements in cl(O),
and there might be non trivial relations between them. In general, it is hard to
compute the exact structure of the ideal class group cl(O) (even its cardinality
is rather hard to compute). However, heuristically one may assume that the
li generate the class group, for further details see [26]. Hence, technically, this
TOGA is not ETOGA if one uses a generic CSIDH instantiation. Here we
used the group A′ = ⟨l1, . . . , ln⟩ is a subgroup of our main group A, but when
restricting the exponents of li to [−B,B], such that(2B + 1)n ≥ #cl(O), it’s
most likely they are evenly represented the elements of cl(O). Alternatively,
we can use the structure of cl(O) in CSI-FISH[2]. For the prime of CSIDH-512,
they managed to compute the exact structure of cl(Z[π]) which happens to be
cyclic.

3. Updatable threshold encryption

In this section, we propose a new primitive called updatable threshold en-
cryption (UTE) by combining updatable encryption and threshold encryption.
We replace the secret keyKe in the updatable encryption scheme with a thresh-
old secret key (distributed across multiple parties) and only K out of n parties
can recover it, and therefore they can launch the encryption and decryption
process that will be performed by a trusted party which is the same entity
responsible for distributing the secret key Ke to the parties as shown in the
Figure 4.

3.1. Motivation

The main motivation behind UTE scheme is that one might want to decrypt
sensitive data now that stays secure for a long period of time. A potential (but
not only) situation that would fit this scenario would be some military secret. In
such scenarios a key compromise is a dangerous issue and updatable encryption
seems like a viable candidate. However, if one requires long-term security,
one might want to distribute trust amongst many parties as access structures
might change throughout long periods of time. In a military scenario high
ranking officers who have some sort access to classified data might get replaced
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Figure 4: Threshold updatable encryption scheme

throughout time and it is paramount that unauthorised people do not leak
classified data.

Other motivations could be to improve the security of the existing updat-
able encryption by using the threshold encryption or to capture the spirit of
updatable encryption and key rotation schemes without performing the de-
cryption. Nowadays it is a common requirement in some contexts, such as the
payment card industry data security standard (PCI DSS) as mentioned by [15].

Suppose we have stored our data in some cloud, and we want to make sure
it’s secure for a long time. We need to update our secret key in the server and
the encryption data in the cloud. After we updated the key, the server can
distribute the secret key to n parties. We can use (k, n) threshold here to make
sure at least k parties can recover the key and access the data.

3.2. Construction

We begin by formalizing the notion of our UTE scheme. In a UTE scheme,
epoch e defines the timeframe during which a specific key remains valid and it
is represented as an index incremented with each key update. A UTE scheme
is the following tuple of algorithms:

1. UTE.Setup: Initiate the State of the System and setup the environment
(Choose appropriate message space, appropriate map function,. . . ).

2. UTE.KeyGen: A probabilistic algorithm to generate the secret key, say
ke for epoch e.

(3.1) Ke ←$ UTE.KeyGen()

3. UTE.Enc: The encryption algorithm uses ke to encrypt the message M
in some epoch e.

(3.2) C ← UTE.Enc(ke,M)
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4. UTE.Dis: The distribution algorithm distributes this secret key ke to n
parties in a way that at least k parties are needed to recover the secret.

The distribution algorithm of the secret key ke to those n parties, return-
ing a set of n shares {ke1 , ke2 , . . . , ken}, such that :

(3.3) kei ← f(i),∀i ∈ {1, . . . , n}

Where f(i) is a secret polynomial of degree k − 1 represented by the
following Shamir’s Secret Sharing equation:

(3.4) f(i) = α+

k−1∑
j=1

cji
j

With:

(3.5) α← ϕ(ke)

Here ϕ is an invertible function chosen a priori to maps the secret key ke
to some Z/qZ secret α, and clearly f(0) = α.

5. UTE.Rec:The recovery algorithm enables the dealer (server) to recover
the secret ke once he receive the shares {ke1 , ke2 , . . . , ken} from n par-
ties with n ≥ k(The threshold),by evaluating f(0) = α using Lagrange
interpolation as follows:

(3.6) α =
∑
i∈S

kei ·
∏

j∈S&j ̸=i

j

j − i

Once the dealer get the secret α,he easily can recover the secret key ke
from it by computing the inverse of ϕ(α):

(3.7) ke ← ϕ−1(α)

6. UTE.Dec: A deterministic algorithm use the recovered key ke of some
epoch e to decrypt the ciphertext Ce and outputs some message M or ⊥
(non valid message).

(3.8) M ← UTE.Dec(ke, C)

7. UTE.TokenGen: Generating a token ∆e+1 for updating the cipher-
texts.

(3.9) ∆e+1 ← UTE.TokenGen(ke, ke+1)

8. UTE.Update: A deterministic algorithm used to update the ciphertext
Ce to the next epoch using the generated token.

(3.10) Ce+1 ← UTE.Update(∆e+1, Ce)
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3.3. Security of UTE

In this subsection, we will discuss the security notions of our scheme. Some
notions come from updatable encryption and were already defined in Section 2.
However, to make the section more self-contained we define them here as well.

(i) Post-compromise Security: No additional advantage is gained by an
adversary who may compromise a secret key ke of certain time epoch e
to decrypt the ciphertexts of next epochs e′ > e that he will obtained
after this compromise.

(ii) UTE Forward security: No additional advantage is gained by an ad-
versary who may compromise a secret key ke of certain epoch e to decrypt
the ciphertexts of previous epochs e′ < e already obtained before.

(iii) UTE detIND-atk: For an UTE encryption scheme {UTE.Setup,
UTE.KeyGen , UTE.Enc, UTE.Dis, UTE.Rec, UTE.Dec, UTE.TokenGen,
UTE.Update} the advantage of an adversary, who has access to any set
of unauthorised shares (i.e., a set of shares that does not have access to
the secret), A for atk ∈ {CPA,CCA} is
(3.11)

AdvdetIND−atk
UTE,A =

∣∣∣∣Pr[ExpdetIND−atk−1
UTE,A = 1]−Pr[ExpdetIND−atk−0

UTE,A = 1]

∣∣∣∣.
(iv) INT-CTXT: Let UTE=UTE.Setup, UTE.KeyGen, UTE.Enc, UTE.Dec,

UTE.Dis, UTE.Rec, UTE.TokenGen, UTE.Upd be an Updatable thresh-
old encryption scheme, we define ciphertext integrity INT-CTXT of any
adversary, who has access to any set of unauthorised shares (i.e., a set of
shares that does not have access to the secret), A as:

(3.12) AdvINT−CTXT
UTE,A (λ) = Pr[ExpINT−CTXT

UTE,A = 1]

Remark 3.1. Ciphertext integrity is strictly stronger than INT-PTXT,The
INT-CTXT experiment for UTE scheme without share leakage is same as the
one described for updatable encryption UE.

Remark 3.2. Note that the main difference between security definitions for
UE and UTE is that an adversary has generally more information in a UTE
scheme (as they can access a set of unauthorised shares).

4. UTE from isogenies

In this section we instantiate our updatable threshold encryption scheme
based on CSIDH. We draw our main inspirations from [18] and [12]. First
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we instantiate our UTE that naturally fulfills all the security properties but
requires a new update every time a share gets revoked. Then we propose a post-
quantum dynamic secret sharing scheme and apply it in the UTE context to
construct a scheme which can support revoking shares/providing shares without
performing update operations.

4.1. Simple UTE construction

In order to get a quantum-resistant instantiation based on isogenies, we
could use CSIDH [26] on GAINE [18, Section 3.1.] and it really makes our secret
key distribution much easier. However, we face the challenge of encrypting
messages, since it’s hard to hash messages into a j value of some elliptic curve
[5]. To circumvent this issue, we will use TOGA. Instead of hashing messages
into elliptic curves, we can encrypt our messages by mapping them into a group,
which then acts on the set of elliptic curves to achieve encryption.

To get our three group actions, we consider orientations on elliptic curves.
We have already introduced some concepts of it in section 2.6. In CSIDH,
the O = Z[

√
−p] = Z[θ], and it can be treated as a special case of orientated

elliptic curve, in which the orientation ι maps θ to the Frobenius morphism π:
(x, y) 7→ (xp, yp).

For instantiating the updatable part, we need to fulfill the following steps.

1. Membership test: Verifing three things: First, E is supersingular and its
j-invariant is in Fp. These can all be accomplished efficiently (and are
well-known in the context of CSIDH). Second ι is a correct orientation,
this can be checked by verifying the norm and trace of ι(θ). Third P
is in ker(ι(θ) − µ) and has order N . What we need here is to perform
efficient operations on the N -torsion and find an efficient way to compute
a canonical point PE of order N in E[N ]∩ ker(ι(θ)− ν) from E, ι. Good
news is all these operations are efficient and well studied.

2. Parameters finding: Choose a prime p has a form c
∏n

i=1 li − 1, with all
the primes li being split in O and with efficient li-isogeny computations.
Those li divide the norm of ideals which are the generators of our main
group A.We also need to chose a smooth integerN which must be coprime
with all the li in order to get our third group action. Usually this N is
chosen to be a smooth divisor of #E(Fpk) for a small value k for which
can increasing the size of N torsion points.

3. Computing class group actions: This step may involve the computation of
the lattice of relation which will be the major time consuming process. In
general, it needs subexponential classical complexity due to it’s equivalent
to compute the structure of class group of O. Fortunately, for the prime
of CSIDH-512, this structure and the corresponding lattice of relations
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was computed in CSI-fish[2]. One can find explicit instantiation of TOGA
in the section 5 of [18].

From section 2.6, after we generate the secret key (a, h) i.e., we should write
it as (e1, . . . , en, h). Each ei has some range [−B,B] for some small integer B.
In CSI-FiSh [2], they managed to compute the structure of the class group of
size CSIDH-512, which happens to be cyclic. In particular, they found out
that the ideal l1 = ⟨3, π − 1⟩ generates cl(Z[π]). Once we have a generator of
the class group, we can represent the secret ideal as an exponent which can be
treated as an element in some finite field. Because the third groupH = Z/NZ∗,
we can concatenate the exponent of the secret ideal and h ∈ H, then map this
concatenation to a finite field, say Z/qZ, where q need to fulfill some security
level and the smallest factor of q should be lager than the number of parties(see
[1] for details).

Then using Shamir’s secret sharing scheme to distribute this number to m
parties. If at least k of them want to recover the key and access the data, they
could combine their share to recover the secret key ke and use it to decrypt
data.

Remark 4.1. The perfect security of Shamir’s secret sharing scheme relies
on Z/qZ being a field, but this restriction can be loosed to a ring, as long
as the denominator in Lagrange’s formula is not “0”. In order to allow more
participants, one should choose l31 or l1111 . More details about this can be found
in [12].

Remark 4.2. As SHINE scheme[6] and GAINE[18] did, here we can also use
some nonce space N and concatenate N ∈ N with the secret key to make it
random. This can make our secret key more secure.

If we only give the decryption permission to the server(i.e., a trusted party),
then these parties have to send their share to the server, and the server will
recover the key and decrypt data for them. If some party’s share gets revoked,
then the server would generate a new key ke+1 and update the ciphertext, and
redistribute ke+1 to new n parties. We summary our scheme in the figure 5.

With above instantiation which is named as TOGA-UTE, we can achieve
almost all the security properties defined in Section 3 (except detIND-CCA).
The correctness of TOGA-UTE follows directly from the correctness of TOGA
and Shamir’s secret sharing scheme.

4.1.1. TOGA-UTE security

1. TOGA-UTE is post compromise share secure. Based on our construc-
tion, in epoch e, the secret key (ae, he) has no relation with the key in
the future.
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UTE.Setup(1λ)

1 : (A,H, S, ⋆A,∼A, starH)← T OGA(λ)
2 : choose ψ, s0, ϕ

3 : Fq ← Z/qZ
4 : pp← (A,H, S, ⋆A,∼A, ⋆H , ψ, s0, π)

5 : return pp

UTE.TokenGen(ke, ke+1)

1 : (ae, he)← ke+1

2 : (ae+1, he+1)← ke+1

3 : ce ← ReduceA(a
−1
e ae+1)

4 : compute h = h(a−1
e ae+1, c

−1
e )

5 : return ce, hhe+1h
−1
e

UTE.Enc(ke,M)

1 : r′ ←$ A

2 : r ← ReduceA(r
′)

3 : s = ReduceS(r ⋆A s0)

4 : (ae, he)← ke

5 : return (ψ(M)he) ⋆H (ae ⋆A s)

UTE.Rec({αi})
1 : α =

∑
i∈S αi ·

∏
j∈S&j ̸=i

j
j−i

2 : ke ← ϕ−1(α)

3 : Parse ke as (ae∥he)

4 : return (ae, he)

UTE.KeyGen(pp)

1 : a←$ A

2 : h←$H

3 : return ReduceA(a), h

UTE.Upd(∆e+1, Ce)

1 : a, h← ∆e+1

2 : return h ⋆H (a ⋆A Ce)

UTE.Dis(ke)

1 : c1, . . . , ck−1 ←$ Fq

2 : α← ϕ(ke)

3 : f(x) = α+
∑k−1

i=1 cix
i

4 : α1, . . . , αn = f(1), . . . , f(n)

5 : return α1, . . . , αn

UTE.Dec(ke, Ce)

1 : (ae, he)← ke

2 : be ← ReduceA(a
−1
e )

3 : h′ ← h(ae, be)

4 : s′ ← (heh)
−1 ⋆H (be ⋆A Ce)

5 : s← ReduceS(s
′)

6 : M ′ ← ψ−1(InvertH(s′, s)

7 : return M ′

Figure 5: TOGA UTE Scheme

2. TOGA-UTE has forward security. UTE ensure the forward security
directly. An adversary A who compromises (only) a secret key of some
epoch e cannot decrypt the ciphertexts which he obtained in a previous
epoch e′ s.t. e′ < e.

3. detIND-CPA
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Theorem 4.1. TOGA-UTE is detIND-CPA. For the UTE discussed
in the Figure 5. Let GA group action family where GA(1λ) is (G,T,⋆G)
induced by A ∈ T OGA(1λ). ∀ Adversary A, there exist a reduction B s.t.

(4.1) AdvdetIND−CPA
TOGA−UTE,A(λ) ≤ O(1)(n+ 1)3 ·AdvWeak−PR

GA,B (λ)

AdvWeak−PR represent the advantage of weak pseudorandom group ac-
tion (a group action with a specific property that an adversary cannot
distinguish tuples (xi, g ⋆ xi) from those of the form (xi, vi) where g ∈
∈ G is a secret group element chosen randomly and xi and vi are sam-
pled uniformly from X.) as defined by Navid Alamati et al. in [1].

Proof. Because in the TOGA-UTE, the updatable part is similar to
updatable encryption in the [18], we follow the proof strategy of it. ■

4. detIND-CCA: As the definition on section 3, it seems hard that TOGA-
UTE can achieve detIND-CCA. We leave this as future work.

5. Shares leakage security As our UTE scheme is for threshold (m, k),
therefore even k − 1 shares got leaked, they can’t reconstruct the secret
key from it.

There are two additional scenarios that require consideration: first, there
is the possibility that an individual’s share could be disclosed to unauthorized
parties, who may then collude with others to reconstruct the secret key. Second,
should an individual’s share be lost, the (m, k) threshold would effectively
become an (m − 1, k) threshold. These situations can be remedied by having
a server update the secret key and redistribute new shares to the participants.
Nonetheless, there exists the potential issue that the server may not perform
the update promptly. In such instances, consider the verification function which
will be in the dynamic secret share.

4.2. Dynamic secret sharing scheme

From the above one can see that we need to redistribute the key whenever
some share gets revoked. However, this may be considered as system resource
consuming and sometimes impractical. To eliminate these weaknesses, we may
use a dynamic secret sharing scheme which allows some participants to join
(exit) dynamically without changing the shares of the other old participants.
With the development of secret sharing, we have a lot of options, for example
[7] and [21]. In 2015, Mashhadi et al. [20] constructed two verifiable multi-
secret sharing schemes, which can realize that the number of participants can
be dynamically changed, and multiple secrets can be shared. Also in 2019,
Yuan et al. [28] presented a fully dynamic secret sharing scheme, which can
adapt to the changed access structure and the shared secrets. Recently in [19]



88 C. He, F. Kouider and P. Kutas

they claim that they build a fully dynamic multi-secret sharing scheme with
redundant authorization, which has a general access structure. All the schemes
we mentioned above have their own advantages and disadvantages. However,
they are not quantum-resistant.

In CSIDH, the secret key consists of multiple values, more specifically, ke =
(e1, . . . , en, h) which can be treated as n+ 1 secrets. We should use multi-use
and multi-secret sharing. A secret sharing scheme(SSS) is said to be multi-
use if even after a secret is reconstructed by some participants, the combiner
cannot misuse their submitted information to reconstruct some other secrets.
In making a scheme multi-use, the participants provide the combiner not with
the original share but with a shadow or image of that share, which is actually
an entity that depends on the original share. This image or shadow is known as
the pseudo-secret share. Moreover, we will use group actions on elliptic curve
based on CSIDH to make this SSS quantum resistant.

Note that users should choose these two secret sharing schemes according to
the balance of updating and secret sharing. For example, if they don’t want to
update frequently, and they should use dynamically secret share, on the other
hand, if they want to update the data every month, so to speak, then it’s more
convenient to treat the secret key just as one share by using Shamir’s secret
sharing.

Inspired by [19], although it has some mistakes, we construct the first post-
quantum fully dynamical secret sharing scheme. We will present our SSS in
three main stages: initialization, construction, and recovery. After this, the
correctness, verifiability, and securities of our SSS are analyzed.

Before going into the details, we will highlight the mistakes on [19].

1. In Section 3.1 of [19] “Each participant Pi(i = 1, 2, ..., n) selects an integer
ri ∈ Z∗

p as his (her) own share and calculates Ri = ri · S,Bi = r′i · S ,
where r′i = Ri − ri.” Here Ri is a point of elliptic curve, yet ri is an
integer in Z∗

p.The operation “−” is undefined in this context, and thus
Bi is nonsensical.

2. In Section 3.2 “D calculates ti = j ·Ri = j ·riS by combining j with Ri for
i = 1, 2, . . . , n, where ti is recorded as the pseudo-share of the participant
Pi”. Again ti is supposed to be a point on elliptic curve, but the authors
incorrectly treat them as integers in order to do the ⊕ operation with
integers Mi and C in step 3.

We will fix all the mistakes in [19] and present a more generalized version.
Furthermore we will make a post-quantum secret sharing scheme. Before that,
let’s provide some comparison and short description of our dynamic scheme
which should make the scheme more understandable.
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Secret sharing schemes
name Shamir’s sharing

scheme
Dynamic Secret sharing
scheme

number of sceres one(S) multiple(S1, S2, . . . , Sm)
number of poly-
namials

one: S+a1x
1+· · ·+

ak−1x
k−1

multiple: (S ⊕ C) +
a1x

1+· · ·+ak−1x
k−1 and

some other polynamials
shares dealer chooses the

shares for parties
parties can choose their
own shares which are
called pseudo-share.

dynamic no yes
public bulletin
board

no yes

Figure 6: Comparison table of Shamir and Dynamic secret sharing schemes

The following conditions are needed for the dynamic secret sharing scheme:

1. m shared secrets: S1, S2, . . . , Sm.

2. n participants: P1,P2, . . . ,Pn.

3. H(·) is some suitable hash function.

4. We requires a public bulletin board for all public content, only the secret
dealer D can store and update the contents and others can only view or
download them.

5. We denote the access structure AS = {γ1, γ2, . . . , γd}, where d is repre-
sented as the number of qualified subsets in AS.

6. For any qualified subset γh = {Ph1, . . . ,Ph|γh|} in AS, where 1 ≤ h ≤ d,
|γh| represents the number of participants in the qualified subset γh, and
k ≤ |γh| ≤ n(k is represented as the threshold).

4.2.1. Initialization

1. Dealer(D) chooses a supersingular elliptic curve E0 over a finite filed
Z/qZ, and randomly chooses a secret ideal a0.

2. Each participant Pi(i = 1, 2, . . . , n) selects an ideal ai as his (her) own
secret and calculates Ei = ai ∗E0, Then Pi saves ai in privacy and sends
Ei to D.

3. D needs to ensure the uniqueness of Ei for i = 1, 2, . . . , n. In other
words, D needs to determine whether E1, E2, . . . , En, are different with
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each other. If not, D has to ask the corresponding participants to re-select
and resend Ei until they are different with each other.

4. D publishes (idi, Ei) and g0(x), where idi = i for i = 1, 2, . . . , n and
g0(x) is a polynomial which is constructed by using the n number pairs
(idi, Ei), here Ei are elliptic curves, but we could use Montgomery form,
i.e., y2 = x3 + Ax2 + x and the number A can uniquely determine a
curve up to Fp-isomorphism. idi is the unique identity information of the
participant Pi.

4.2.2. Construction

1. D randomly pick an ideal a0 as his or her private key, and publishes
ED = a0 ∗ E0 and T = H(S1∥S2∥ · · ·∥Sm), where H is a hash function
and E needs to be ensured that ED ̸= Ei for i = 1, 2, . . . , n.

2. D calculates ti = a0 ∗ Ei = (a0 · ai) ∗ E0 for i = 1, 2, . . . , n, where ti is
recorded as the pseudo-share of the participant Pi.

3. D calculates Ti = xi ⊕ ti ⊕ C. xi = Mi ∗ E0 for i = 1, 2, . . . , n, where
the selections of Mi, which is an ideal class in cl(O) and C is an Elliptic
curve over Fp which equals to c ∗ ED for some random ideal c. We need
to ensure that x1, x2, . . . , xn, ED, E1, E2, . . . , En, are different with each
other and C, ti are also different with each other, “⊕” is denoted as
XOR operation(Note we can do this because we use Montgomery form of
elliptic curves). Subsequently, D saves C in privacy and publishes Ti for
i = 1, 2, . . . , n, where C is represented as the redundancy.

4. D constructs a polynomial g(x) of degree k − 1 by using S1, C and ran-
domly selected k − 1 integers a1, . . . , ak−1 ∈ Z/qZ, where ak−1 ̸= 0.

(4.2) g(x) = (S1 ⊕ C) + a1x+ · · ·+ ak−1x
k−1.

5. D calculates the n number pairs vi = (xi, yi), where yi = g(xi) for i =
= 1, 2, . . . , n.

6. D publishes two polynomials g1(x) and g2(x), where g1(x) is constructed
by using the n number pairs v′i = (ti, xi) and g2(x) is constructed by
using the n number pairs v′′i = (ti, yi) for i = 1, 2, . . . , n.

7. D constructs a new polynomial f1(x) by using S1 and a1, . . . , ak−1 in
step 4:

(4.3) f1(x) = S1 + a1x+ · · ·+ ak−1x
k−1.
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8. D calculates f1(2), f1(3), . . . , f1(m) by using (4.3) and {2, 3, . . . ,m}, and
constructs the following m − 1 polynomials of degree 1 containing the
remaining m− 1 secrets S2, . . . , Sm :

f2(x) = S2 + f1(2)x,

f3(x) = S3 + f1(3)x,

...

fm(x) = Sm + f1(m)x.

(4.4)

9. D calculates the m−1 number pairs wj = (j, fj(j)) by using (4.4), where
j = 2, 3, . . . ,m, and constructs a polynomial g3(x) by using the m − 1
number pairs w2, w3, . . . , wm. Then, D publishes the polynomial g3(x).

4.2.3. Recovery

Without loss of generality, we assume that the k participants {P1,P2, . . . ,
. . .Pk} = γ ⊂ γh want to recover the m shared secrets, then they need to
obtain the redundant C from the secret dealer D and exchange (idi, ti) with
each other, where i ∈ {1, 2, . . . , k}. The specific recovery steps are as follows:

1. Each participant in the set γ will send a request to D for recovering the
shared secrets. If the request is passed, D will generate T 1

i = c∗(a0∗Ei) =
= (c · a0 · ai) ∗ E0 and send it to the corresponding participant Pi for
1 ≤ i ≤ k. The participant Pi can obtain the redundancy C by using
their own secret ideal ai i.e., C = a−1

i ∗ T 1
i = c ∗ ED.

2. The participant Pi will exchange pseudo-share with other participants in
the set γ, thus obtaining the pseudo-shares ta of other participants Pa,
where i, a ∈ {1, 2, . . . , k}, and a ̸= i.

3. Do the verification procedure(see bellow 4.2.4). After this, we assume
that the (idi, ti) provided by these k participants are correct and valid,
i = 1, 2, . . . , k, then each participant will use the published polynomials
g1(x) and g2(x) to generate the k number pairs vi = (xi, yi) for i =
= 1, 2, . . . , k. Secondly, the polynomial g(x) can be reconstructed by
using the k number pairs vi , and then the polynomial f1(x) can be
obtained by using g(x) and C. Finally, the shared S1 = f1(0) is recovered.

4. Participants compute f1(2), f1(3), . . . , f1(m) by using the polynomial
f1(x) in step 3, and fj(j) = g3(j) can be obtained by using the pub-
lished polynomial g3(x), and then the m − 1 secrets S2, . . . , Sm can be
reconstructed by using f1(j) and (j, fj(j)) in 4.4.

5. The m shared secrets S1, S2, . . . , Sm can be verified with published T =
= H(S1∥S2∥ · · ·∥Sm).
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4.2.4. Verification

Each participant Pi can verify the honesty of other participants Pa, where
1 ≤ a, i ≤|γh| ≤ n, and a ̸= i. For example, Pa sends his or her pseudo-share t′a
to Pi, then Pi determines the honesty of the participant Pa by judging whether
the equation

(4.5) Ta ⊕ C ⊕ t′a = xa = g1(t
′
a)

holds. If (4.5) holds, Pi determines Pa is honest, otherwise Pa is dishonest.

4.3. Dynamic properties

With the above scheme, we can add new participants, delete old partici-
pants, change shared secrets, add a new qualified subset, and delete a qualified
subset without redistributing the shares every time.

4.3.1. Add a participant

1. D choose which access set should add Pn+1.

2. Then Pn+1 picks his or her secret an+1, calculates an+1 ∗ E0 = En+1

and sends En+1 to D. They both confirm the pseudo-share of Pn+1 is
tn+1 = a0 ∗ En+1 = an+1 ∗ ED.

3. D calculates and publishes Tn+1 = xn+1⊕tn+1⊕C, the xn+1 =Mn+1∗E0.

4. D calculates yn+1 = g(xn+1) and gets the new number pair vn+1 =
= (xn+1, yn+1).

5. D updates the polynomials g1(x) and g2(x) to g
′
1(x) and g

′
2(x) by using

these new n+1 pairs vi, i = 1, 2, . . . n+1. Moreover, D constructs a new
polynomial g0(x) by using n+ 1 pairs (idi, Ei). This polynomial will be
used for the judgement of the recovery request.

Note that when new participants are added, the shares of the old partici-
pants remain the same.

4.3.2. Delete a participant

If we want to delete Pu from the access set γh, for convenience, we assume
AS be a minimal access structure. Then we only need to delete the γh from the
access structure AS and delete (idu, Eu) of the participant Pu from the public
bulletin board.
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4.3.3. Update some secrets

We denote Se
i as the epoch e updates of the i-th secret. The Dealer only

needs to change any information related to the old secret Si, some polynomials
and T to T e = H(S1∥ · · ·∥Se

i · · ·∥Sm). One important update is the redundancy
C, because we used “⊕” to hide our secret. We summarize the updates here:
C, g(x), T 1

i , gj(x)(for j = 1, 2, 3) and fi(x) to C
e, ge(x), T e

i , g
e
j (x) and f

e
i (x).

Note that no matter how many times the secrets are changed, D only needs
to save and update Ce in privacy, the shares of the participants remain the
same.

Adding and deleting an access structure are similar to above adding and
deleting participants, we left this to interested readers.

4.4. Correctness and verifiability of the secret sharing scheme

4.4.1. Correctness

If both participants and Dealer honestly implemented the scheme, then any
qualified set can recover the shared secrets.

Indeed, without loss of generality, we may assume k participants {P1,
P2,. . . , Pk} of a qualified set γh = {P1,P2, . . . ,Pn} ,where n is the cardinality
of γh, want to recover the secrets.

Step 1 These participants obtain the ED from the public bulletin board
and calculate their own pseudo-shares ti = ai ∗ ED for 1 ≤ i ≤ k.

Step 2 D sends T 1
i = c ∗ (a0 ∗ Ei) = (c · a0 · ai) ∗ E0 to the corresponding

participant Pi for 1 ≤ i ≤ k. so that the redundancy C = a−1
i ∗ T 1

i = c ∗ ED

can be obtained. And then, the participant Pi exchanges pseudo-share with
other participants Pa for a ∈ {1, 2, . . . k}, and i ̸= a.

Step 3 When the corresponding participants have obtained the redundancy
C and the k correct pseudo-shares t1, t2, . . . , tk, 1 ≤ k ≤ n, they will generate
xi and yi by using the published polynomials g1(x) and g2(x), respectively,
where xi = g1(ti), yi = g2(ti). That is to say, these participants got the k pairs
(xi, yi).

Step 4 They can use these k pairs to recover the polynomial g(x) using
Lagrange interpolation formula:

(4.6) g(x) =

k∑
i=1

yi

k∏
j=1,j ̸=i

x− xj
xi − xj

= (S1⊕C)+a1x+ · · ·+ak−1x
k−1 (mod p)

After this, based on the information of C and g(0), they can recover the
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secret S1 and get

(4.7) f1(x) = S1 + a1x+ · · ·+ ak−1x
k−1

Subsequently, calculate f1(2), f1(3), . . . , f1(m), and combine the m−1 number
pairs wi = (i, g3(i)) = (i, fi(i)) to recover the other secrets S2, . . . , Sm by using
those linear functions fi(x).

4.4.2. Verifiability of the dealer D

For verifying the honesty of D, participants can check whether

Ta ⊕ C ⊕ ta = xa = g1(ta)

holds or not, where ta = aa ∗ ED and Ta = xa ⊕ ta ⊕ C.

4.4.3. Verifiability of participants

In order to check the honesty of the participant Pu, others need to calculate
whether the formula

(Tu ⊕ C)⊕ t′u = xu = g1(t
′
u)

holds, where t′u is a pseudo-share of the participant Pu which sent to others, Tu
is a public value and C is the redundancy value computed by other participants.
If it holds, then Pu is honesty, otherwise not.

4.5. Security analysis of the secret sharing scheme

4.5.1. External attacks

The external attackers want to use some public information or intercept
the communication of participants, so that they can reconstruct the shared
secrets. However, this can be prevented (Even for a quantum computer) due
to the following reasons:

(i) The isogeny problem through group action on the elliptic curve is quan-
tum resistance. The attacker can’t get the secret ideal of Dealer from a
started curve E0 and the ended curve ED.

(ii) Even the attackers can listen the communication and get ti and T
1
i , they

can only reconstruct polynomial g(x) by using tis and the public poly-
nomials g1(x) and g2(x). But they cannot reconstruct f1(x) since it’s
quantum resistant for getting the secret ideal ai of Pi from ti = ai ∗ED.
Meanwhile, they can’t get c from T 1

i = c ∗ (a0 ∗ Ei).
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4.5.2. Internal attacks

There might be some dishonest parties exist during the secret recovery, and
they provide false pseudo-shares to other honest parties. Then they can obtain
the shared secrets, but honest parties couldn’t. Our verification process 4.2.4
can prevent this kind of attacks. However, in this setting, we need a trusted
combiner to verify the honesty of the parties and reconstruct the secrets.

4.6. Applying dynamic secret sharing to UTE

With the above new secret sharing scheme, we can make our UTE more
flexible, for which we don’t need the concatenation and update the secret shares
frequently. Recall that our secret key is a vector (e, h), then we can treat one
secret key as 2 secrets, i.e. S1 = e, S2 = h, and apply our dynamical secret
sharing scheme( section 4.2).

Note:

(i) In the above dynamical SSS, we used the idea of CSIDH to make our
SSS quantum resistant. However, one can of course use any other group
actions.

(ii) We publish the hash value T = H(S1∥S2), in order to make sure the in-
tegrity of the secrets. Because sometimes the shared secrets can be huge.
But here we can omit that, since we only have two secrets. Alternatively,
one can represent the concatenation of e and h as an element S in a finite
field, then randomly generated Si, where i = 1, 2, . . . ,m, whose sum is S.

(iii) If one just want to use CSIDH, the secret exponents ei are really small,
usually −5 ≤ ei ≤ 5. Although n is large(n = 74 in CSIDH), but
evaluating hash function is much faster than evaluating group action.
We leave this secret sharing without concatenation as future work.

For simplicity and clearness, we make the following table 7 for all the infor-
mation of secret sharing. In conclusion our scheme has the following properties:

(i) The share of each party is selected by their own, and after the shared
secrets are recovered, the share of each participant can be reused;

(ii) The scheme is verifiable secret sharing.

(iii) The scheme is fully dynamic, which allows parties to add (delete) dynam-
ically, and also allows the access structure and the shared secrets to be
changed dynamically, while the shares of the participants do not need to
be changed.
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E0 starting supersingular elliptic curve
over Fp

published

a0 Dealer’s secret ideal private
ED elliptic curve = a0 ∗ E0 published
T hashed value = H(e1∥e2∥ · · ·∥h) published
ai secret ideal of i-th party private
Ei elliptic curve = ai ∗ E0 send to the Dealer
ti Pi’s pseudo-share = ai ∗ ED used for recovery
g0(x) polynomial generated by the Dealer published(for verifying

identities)
C elliptic curve(redundancy) = c ∗ED private
g(x) polynomial = (S1⊕C)+a1x+ · · ·+

ak−1x
k−1

private

xi elliptic curve =Mi ∗ E0 private
yi value = g(xi) private
Ti public value = xi ⊕ ti ⊕ C send to Pi

g1(x) generated using pairs (ti, xi) published
g2(x) generated using pairs (ti, yi) published
f1(x) polynomial = S1 + a1x+ · · ·+

ak−1x
k−1

private

fi(x) polynomial = Si + f1(i)x private
g3(x) polynomial generated using pairs

(i, fi(i))
public

T 1
i first epoch value = c ∗ (a0 ∗ Ei) =

(c · a0 · ai) ∗ E0

send to Pi for getting
value C

Figure 7: Dynamic secret sharing scheme

Note: If some access parties want to get the data, they need to communicate
each other to recover all the secrets which later will be used as decrypt key.
Either they can decrypt the data by themselves, or they have to talk to the
trust server and the server will decrypt the data for them. In any case, once
the key has been recovered, the server should generate a new key and update
the ciphertexts. This time it doesn’t need to redistribute the new key.

5. Conclusion

In this paper, we have introduced an updatable Threshold Encryption
(UTE) that combines the merits of updateable encryption and threshold en-
cryption. We have also instantiated a quantum-resistant UTE using TOGA
and secret sharing schemes. It is worth mentioning that our primitive can also
be implemented using conventional group actions, such as the discrete loga-
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rithm in elliptic curves, along with Shamir’s secret sharing. Additionally, we
have introduced a post-quantum dynamic secret sharing scheme, which adds
flexibility and applicability to the UTE.Finally, we believe our UTE can be
utilized in numerous real-world scenarios. For future work, researchers can
explore more quantum-resistant instantiations.
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