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(Received September 30, 2023; accepted January 7, 2024)

Abstract. The discrete maximum principle (DMP) is an important mea-
sure of the qualitative reliability of the numerical solutions for elliptic PDE
models. We are motivated by known results on the DMP and nonnegativ-
ity preservation of finite element (FE) solutions under the condition that
sufficiently small enough mesh size h is used. We extend the above results
by explicitly looking for how much the mesh size h should be small to guar-
antee the qualitative properties. We determine a threshold mesh size h0

in terms of the angle condition to ensure the validity of DMPs by Courant
FEM.

1. Introduction

The maximum principle forms an important qualitative property of second-
order elliptic equations [11], therefore its discrete analogs, the so-called DMPs
have been studied by many researchers [1, 2, 3, 6, 12]. The DMP is an impor-
tant measure of the qualitative reliability of the numerical scheme, otherwise
one could get unphysical numerical solutions like negative concentrations, etc.
Typical maximum principles arise either in the form

max
Ω

u = max
ΓD

u

Key words and phrases: Nonlinear elliptic problem, discrete maximum principle, finite ele-
ment method, angle condition on the mesh.
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(that is, the solution u attains its maximum on the boundary) or in the form
of

max
Ω

u ≤ max{0,max
ΓD

u}

(that is, the solution u can attain a nonnegative maximum only on the bound-
ary). Analogous minimum principles are defined by reversing signs. A physi-
cally important special case is nonnegativity preservation.

We are motivated by the articles [6, 7, 8] which deal with this topic and
use a sufficiently small mesh size to establish the qualitative properties, in
particular, DMP and nonnegativity. Compared to this, we explicitly look for
how much the step size h must be small to guarantee the qualitative properties.
We determine a threshold mesh size h0 in terms of the angle condition to ensure
the validity of DMPs by Courant FEM.
We formulate and prove the corresponding DMPs. Finally, an example of a real-
life problem, where the preservation of maximum principles plays an important
role, is presented.

2. The problem and its discretization

Let us begin with the following nonlinear elliptic model:

(2.1)


−div

(
b(x, u,∇u)∇u

)
+ r(x, u,∇u)u = f(x) in Ω,

b(x, u,∇u)
∂u

∂ν
= γ(x) on ΓN ,

u = g(x) on ΓD,

where Ω is a bounded domain in R2 under the assumptions below:

(a) Ω has a piecewise smooth and Lipschitz continuous boundary ∂Ω; ΓN ,
ΓD ⊂ ∂Ω are measurable open sets, such that ΓN∩ΓD = ∅, ΓN∪ΓD = ∂Ω
and meas(ΓD) > 0.

(b) The scalar functions b : Ω × R × R2 → R and r : Ω × R × R2 → R
are continuous. Further, f ∈ L2(Ω), γ ∈ L2(ΓN ) and g = g∗|ΓD

with

g∗ ∈ H1(Ω).

(c) The functions b and r are bounded such that
(2.2)
0 < µ0 ≤ b(x, ξ, η) ≤ µ1, 0 ≤ r(x, ξ, η) ≤ β ∀(x, ξ, η) ∈ Ω× R× R2,

where µ0 ,µ1 and β are positive constants. The weak formulation of the
problem (2.1) and its unique weak solution u ∈ H1(Ω) are defined as follows:

(2.3) u = g on ΓD in trace sense and
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(2.4)

∫
Ω

[
b(x, u,∇u) ∇u · ∇v + r(x, u,∇u)u

]
dx =

=

∫
Ω

fv dx +

∫
ΓN

γv dσ ∀v ∈ H1
D(Ω).

To find the finite element solution, we solve the following problem (which is
the counterpart of (2.3)–(2.4) in Vh): Find uh ∈ Vh such that

uh = gh onΓD and

(2.5)

∫
Ω

[
b(x, uh,∇uh) ∇uh · ∇vh + r(x, uh,∇uh)uhvh

]
dx =

=

∫
Ω

fhvh dx +

∫
ΓN

γhvh dσ

∀vh ∈ V 0
h . Let the vector c̄ = (c1, ..., cn+m)T contain the values of the finite

element solution uh at all the nodal points i.e. ci = uh(Pi) and uh =
n+m∑
i=1

ciϕi,

where ϕ1, ....ϕn are the interior basis functions and ϕn+1, ..., ϕn+m are the
boundary basis functions. Furthermore, b̄ = (b1, ..., bn, g1, ..., gm)T . Here, a
nonlinear algebraic system of equations is obtained:

(2.6) Ā(c̄)c̄ = b̄,

and the structure of the matrix in (2.6) is

(2.7) A(c) =

A(c) Ã(c)

0 I

 ,

where I is an m×m identity matrix and 0 is a m× n zero matrix and Ā(c̄) is
(n+m) by (n+m) matrix.

3. DMPs for linear systems

If equation (2.5) is in particular linear (when b and r are independent of u),
then the algebraic system of the equations and the structure of the matrix are
respectively

(3.1) Āc̄ = b̄ and Ā =

A Ã

0 I

 ,
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where the matrix Ā has a dimension of (n + m) by (n + m). The DMPs for
such linear systems have been studied, e.g., in [5, 9].

Definition 3.1. The matrix Ā in (3.1) satisfies

� the discrete weak maximum principle (DwMP) if for any vector
c̄ = (c1, ..., cn+m)T ∈ Rn+m satisfying (Āc̄)i ≤ 0, i = 1, ..., n, one has

max
i=1,...,n+m

ci ≤ max{0, max
i=n+1,...,n+m

ci};

� the discrete strict weak maximum principle (DWMP) if for any vector
c̄ = (c1, ..., cn+m)T ∈ Rn+m satisfying (Āc̄)i ≤ 0, i = 1, ..., n, one has

max
i=1,...,n+m

ci = max
i=n+1,...,n+m

ci.

Theorem 3.1. Let the matrix Ā in (3.1) satisfy the following conditions, where
aij denote the entries of Ā:

(i) aij ≤ 0 (∀i = 1, . . . , n, j = 1, . . . , n+m; i ̸= j),

(ii)
n+m∑
j=1

aij ≥ 0 (∀i = 1, . . . , n),

(iii) A is positive definite.

Then Ā possesses the DwMP. If the inequality in condition (ii) is replaced by
equality, then Ā possesses the DWMP.

This theorem is proved in [6].

4. DMPs for nonlinear elliptic problems

Now, we are ready to state theorems related to problem (2.1).

4.1. The general result

Definition 4.1. The family F of triangulations of triangular meshes of a
bounded polygonal domain is said to be uniformly acute if there exists α0 < π

2
such that αn ≤ α0 for any angle αn in all Tk in all Th, where Th ∈ F .

Definition 4.2. The mesh width h is the longest diameter occurring in the
triangulation Th. i.e. h := max

k=1,...,M
diam(Tk) , where diam refers to diameter.
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Theorem 4.1. Let the conditions (a)–(c) hold and the Courant finite element
method be used with triangulations satisfying Definition 4.1. Let the mesh size
h satisfy

(4.1) 0 < h ≤ h0 =
( 12 cos(α0)µ0

β

)
1
2 ,

where α0 is the angle that obeys Definition 4.1, µ0 and β are positive constants
from (2.2). Then the matrix in (2.7) satisfies the following properties, where
aij(c̄) denotes the entries of Ā(c̄).

(i) aij(c̄) ≤ 0, i = 1, ..., n, j = 1, ..., n+m (i ̸= j),

(ii)
n+m∑
j=1

aij(c̄) ≥ 0, i = 1, ..., n,

(iii) A(c̄) is positive definite.

Proof. Let ϕi and ϕi be any basis functions. Then the entries of the matrix
Ā(c̄) are:

(4.2) aij(c̄) =

∫
Ω

[
b(x, uh,∇uh) ∇ϕi · ∇ϕj + r(x, uh,∇uh) ϕiϕj

]
dx.

We now prove the properties (i)–(iii).

(i) Let i = 1, ..., n, j = 1, ..., n+m with i ̸= j and let Ωij denote the interior
of supp ϕi ∩ supp ϕj . If Ωij = ∅ then aij(c̄) = 0. If Ωij ̸= ∅, then to determine
(4.2) we should find the bound of the following integrals:

(4.3)

∫
Ω

∇ϕi · ∇ϕj dx and

∫
Ω

ϕiϕj dx.

From Definition 4.1 we have the maximum angle α0 such that cos(α0) := σ0 ≥ 0
which is independent of i, j and h. The goal here is to find an upper bound of
the stiffness matrix obtained from the first part of (4.3). Now let us begin with
the inner product of the basis functions on a given triangle. For any angle αij ,
we have

∇ϕi · ∇ϕj = |∇ϕi| · |∇ϕj | cos(1800 − αij) =

=
1

hi
· 1

hj
(− cos(αij)) ≤

− cos(αij)

h2
≤

≤ − cos(α0)

h2
∀hi, hj ≤ h, ∀αij ≤ α0.
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Therefore,

(4.4) ∇ϕi · ∇ϕj ≤ −σ0

h2
< 0.

Hence, using Definition 4.2 and (4.4),

(4.5)

∫
Ω

∇ϕi · ∇ϕj dx =

∫
Ωij

∇ϕi · ∇ϕj dx ≤ −σ0

h2
meas(Ωij).

To estimate the mass matrix obtained from the second part of (4.3) for general
triangles, we use a reference triangle. If especially E is the reference triangle
that is placed in the coordinate system with vertices (0, 0), (h, 0), and (0, h)
then one can calculate

(4.6)

∫
E

ϕiϕj dx =
h2

24
.

Based on the reference triangle, we can calculate the mass matrix for general
triangles Tk using affine mappings from the reference element onto Tk such that
Lk : E → Tk. We also define Jk = L′

k. If the reference triangle E is considered
with h = 1 in (4.6) and Tk is a fixed general triangle then

(4.7)

∫
Tk

ϕiϕj dx = det(Jk)

∫
E

ϕ̃iϕ̃j dx =
|Tk|
12

by change of variables and using the fact that det(Jk) = 2|Tk|, see [4], where |Tk|
is the area of the triangle, and ϕ̃i and ϕ̃j are respectively given by ϕ̃i = ϕi ◦Lk,

ϕ̃j = ϕj ◦ Lk. Therefore, (4.7) implies

(4.8)

∫
Ωij

ϕiϕj dx =
∑

Tk∈Ωij

∫
Tk

ϕiϕj dx =
1

12
meas(Ωij),

where Ωij := supp ϕi ∩ supp ϕj . Using (2.2), (4.4) (4.5) and (4.8) in (4.2) we
have

aij(c̄) ≤ µ0

∫
Ω

∇ϕi · ∇ϕj dx+ β

∫
Ω

ϕiϕj dx ≤

≤ − σ0

h2
µ0 meas(Ωij) +

β

12
meas(Ωij) =

= meas(Ωij)
(−σ0

h2
µ0 +

β

12

)
.
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Let

(4.9) aij(h) := meas(Ωij)
(
−σ0

h2
µ0 +

β

12

)
,

then

(4.10) aij(c̄) ≤ aij(h).

Therefore, the sum of the terms in the bracket in (4.9) tends to −∞ as h → 0.
(The first term goes to −∞ as h → 0 and the second term remains unchanged).
This implies aij(h) ≤ 0 if h is small. The main task here is to find how much h
should be to get the nonpositivity of (4.2). To determine the threshold h = h0,
the following equation must hold,

−σ0

h2
0

µ0 +
β

12
= 0.

This implies h0 =
(

12σ0µ0

β

)
1
2 . In summary, if 0 < h ≤ h0 =

(
12σ0µ0

β

)
1
2 , then

aij(c̄) ≤ 0 from (4.10).

(ii) For any i = 1, ..., n,

(4.11)

n+m∑
j=1

aij(c̄) =

∫
Ω

b(x, uh,∇uh) ∇ϕi · ∇(

n+m∑
j=1

ϕj) dx+

+

∫
Ω

r(x, uh,∇uh) ϕi(

n+m∑
j=1

ϕj) dx =

∫
Ω

r(x, uh,∇uh) ϕi dx ≥ 0,

using the fact that
∑n+m

j=1 ϕj ≡ 1, 0 ≤ ϕi ≤ 1, and (2.2).

(iii) To verify that Ā(c̄) is positive definite, let d ̸= 0 be an arbitrary vector
in Rn, formed by the coefficients di, and let

vh =

n∑
j=1

djϕj ∈ Vh.

Then vh ̸= 0. The vector c̄ ∈ Rn+m contains the coefficients for uh as given in
(2.5)–(2.6). Then, using (2.5) and (2.2), we have

A(c̄)d · d =

n∑
i,j=1

aij(c̄)didj =
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=

∫
Ω

(
b(x, uh,∇uh)∇

( n∑
i=1

diϕi

)
· ∇

( n∑
j=1

djϕj

)
+

+r(x, uh,∇uh)

n∑
i=1

diϕi

n∑
j=1

djϕj

)
dx =

=

∫
Ω

(
b(x, uh,∇uh)|∇vh|2 + r(x, uh,∇uh)v

2
h

)
dx ≥

≥ µ0

∫
Ω

|∇vh|2 = µ0|vh|21 > 0.

Hence, A(c̄) is a positive definite matrix.

Altogether, equation (4.9) shows that for small enough h, we have aij(h) ≤
≤ 0, but we gave a bound h0 such that aij(h) ≤ 0 for all h ≤ h0 and all i, j. ■

Theorem 4.2. Under the conditions of Theorem 4.1 and letting

(4.12) f(x) ≤ 0 (x ∈ Ω) and γ(x) ≤ 0 (x ∈ ΓN ),

we have

(4.13) max
Ω

uh ≤ max{0,max
ΓD

gh}.

In particular, if max gh ≥ 0, then

(4.14) max
Ω

uh = max
ΓD

gh,

and if gh ≤ 0, then we have the nonpositivity property

(4.15) max
Ω

uh ≤ 0.

Proof. Let c̄ = (c1, ..., cn+m)T ∈ Rn+m and b̄ = (b1, ..., bn, g1, ..., gm)T ∈
∈ Rn+m be the vectors that appear in (2.6 ). Then

(4.16) (b̄)i =

∫
Ω

fϕi dx +

∫
ΓN

γϕi dσ ≤ 0 (i = 1, . . . , n)

owing to f ≤ 0, γ(x) ≤ 0 and 0 ≤ ϕi ≤ 1 . Then equation (2.6) and (4.16) imply
Ā(c̄)c̄ = b̄ ≤ 0. Using these arguments and the conditions of Theorem 4.1 one
can apply Theorem 3.1 to conclude that the matrix Ā(c̄) possesses the DwMP,
and as a result, we have

(4.17) max
i=1,...,n+m

ci ≤ max{0, max
i=n+1,...,n+m

ci} ≤ max{0, max
i=n+1,...,n+m

gi},
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since ci = gi for all i = n, ..., n+m. Owing to 0 ≤ ϕi ≤ 1 and
∑n+m

i=1 ϕi ≡ 1,
the solution vectors uh and gh can be estimated as follows:

(4.18) uh =

n+m∑
i=1

ciϕi ≤ max
i=1,...,n+m

ci

n+m∑
i=1

ϕi ≤ max
i=1,...,n+m

ci,

(4.19)
gh =

n+m∑
i=n+1

giϕi ≤ max
i=n+1,...,n+m

gi

n+m∑
i=n+1

ϕi ⇒

⇒ max
ΓD

gh ≤ max
i=n+1,...,n+m

gi.

In the last statement in fact equality holds because of the following arguments.
The piecewise linear basis functions satisfy

(4.20) ϕi(Pj) = δij :=

{
1 if i = j,

0 if i ̸= j,

for proper nodes P1, . . . , Pn ∈ Ω and Pn+1, . . . , Pn+m ∈ ΓD. Let gk :=
:= max

i=n+1,...,n+m
gi. Then, using (4.20)

gh(Pk) =

n+m∑
i=n+1

giϕi(Pk) = gk,

since ϕi(Pk) = 1 and 0 in the other nodes. That is, gh(Pk) = max
i=n+1,...,n+m

gi.

Hence, we obtained the equality

max
ΓD

gh = max
i=n+1,...,n+m

gi,

which implies

(4.21) max{0,max
ΓD

gh} = max{0, max
i=n+1,...,n+m

gi}.

Altogether, (4.17), (4.18) and (4.21) imply (4.13). The last two statements are
simple consequences of (4.13). ■

The corresponding discrete minimum principle for the problem (2.1) can be
verified in the same way by reversing signs.

Theorem 4.3. Under the conditions of Theorem 4.1 and letting

(4.22) f(x) ≥ 0 (x ∈ Ω) and γ(x) ≥ 0 (x ∈ ΓN ),



64 M. T. Bahlibi

we have

(4.23) min
Ω

uh ≥ min{0,min
ΓD

gh}.

In particular, if min gh ≤ 0, then

(4.24) min
Ω

uh = min
ΓD

gh,

and, if gh ≥ 0, then we have nonnegativity property

(4.25) min
Ω

uh ≥ 0.

Remark 4.1. Let us apply a uniformly acute triangulation of a bounded polyg-
onal domain for an elliptic problem using the Courant finite element method.

For a fixed mesh, it makes sense to check whether h ≤
(

12 cos(α0)µ0

β

)
1
2 to ensure

DMP and nonnegativity preservation. If it is not satisfied then you must try
with a finer mesh.

4.2. Semilinear problems

Let us consider a special case of problem (2.1) to illustrate the theorem:

(4.26)


−div

(
b(x)∇u

)
+ q(x, u) = f(x) in Ω,

b(x)
∂u

∂ν
= γ(x) on ΓN ,

u = g(x) on ΓD,

where Ω is a bounded polygonal domain in R2 and q ∈ C1(Ω×R). We assume
that there exists β > 0 such that

(4.27) 0 ≤ ∂q

∂ξ
(x, ξ) ≤ β and 0 < µ0 ≤ b(x) ≤ µ1, ∀(x, ξ) ∈ (Ω× R).

Let us first define a function r in terms of q :

(4.28) r(x, ξ) :=


q(x, ξ)− q(x, 0)

ξ
, if ξ ̸= 0

∂q

∂ξ
(x, 0), if ξ = 0

then

(4.29) r(x, ξ)ξ = q(x, ξ)− q(x, 0), ∀ξ ∈ R.
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We need to show that r(x, ξ) satisfies condition (2.2). For every t ∈ [0, 1] the
first part of (4.27) implies 0 ≤ ∂q

∂ξ (x, tξ) ≤ β, then by Newton–Leibniz Theorem,
we have

0 ≤
∫ 1

0

∂q

∂ξ
(x, tξ) dt ≤

∫ 1

0

β dt ⇒ 0 ≤ q(x, ξ)− q(x, 0)

ξ
≤ β

(4.30) ⇒ 0 ≤ r ≤ β .

Hence, 0 ≤ r(x, ξ) ≤ β on R .

Problem (4.26) can be written as:

(4.31)


− div

(
b(x)∇u

)
+ q(x, u)− q(x, 0) = f(x)− q(x, 0) in Ω,

b(x)
∂u

∂ν
= γ(x) on ΓN ,

u = g(x) on ΓD.

This implies

(4.32)


−div

(
b(x)∇u

)
+ r(x, u)u = f̃(x) in Ω,

b(x)
∂u

∂ν
= γ(x) on ΓN ,

u = g(x) on ΓD,

where r(x, u)u = q(x, u)− q(x, 0) from (4.29) and f̃(x) = f(x)− q(x, 0). Then
we can see that (4.32) is a special case of problem (2.1) from Theorem 4.3.

Corollary 4.1. Let us consider problem (4.32) with assumptions of (4.27) and
the conditions of Theorem 4.1 that is Definition 4.1 must hold, and h must
satisfy

(4.33) 0 < h ≤ h0 =
( 12σ0µ0

β

)
1
2 .

Then:

• if f̃ ≤ 0 and γ ≤ 0, then

(4.34) max
Ω

uh ≤ max{0,max
ΓD

gh}.

In particular, if max gh ≥ 0, then

(4.35) max
Ω

uh = max
ΓD

gh,
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and if gh ≤ 0, then we have the nonpositivity property

(4.36) max
Ω

uh ≤ 0.

• if f̃ ≥ 0 and γ ≥ 0, then we have

(4.37) min
Ω

uh ≥ min{0,min
ΓD

gh}.

In particular, if min gh ≤ 0, then

(4.38) min
Ω

uh = min
ΓD

gh,

and if gh ≥ 0, then we have the nonnegativity property

(4.39) min
Ω

uh ≥ 0.

This corollary is illustrated by the example stated below.

4.3. Example: diffusion-kinetics enzyme problem

A diffusion-kinetics equation governing the steady-state concentration u of
some substrate in an enzyme-catalyzed reaction has the following form, see in
[10], where we included mixed boundary conditions:

(4.40)


div (D(x)∇u) = q(x, u) in Ω,

D
∂u

∂n
= 0 on ΓN ,

u = u0 on ΓD,

where Ω is a bounded domain in R2, D(x) is the positive molecular diffusion
coefficient of the substrate in a medium containing some continuous distribution
of bacteria, q is the rate of the enzyme-substate reaction. In this example, the
DMP and nonnegativity of the solution are obtained for a particular case for
the reaction rate by Michaelis–Menten theory:

(4.41) q(x, ξ) =
ϵ−1ξ

ξ + k
for ξ ≥ 0,

where k > 0 is the Michaelis constant and ϵ > 0. The condition of D(x)
is given by 0 < µ0 ≤ D(x) ≤ µ1, where µ0 and µ1 are positive constants.
Further, u0 ≥ 0 and β = 1

ϵk . First, rewrite the equation in the form (4.32).

Then f̃(x) = 0 since q(x, 0) = 0 and r(x, ξ) := ϵ−1

ξ+k and it satisfies (4.30)

because 0 ≤ r ≤ 1
ϵk . We can also extend q(x, ξ) from ξ ≥ 0 to ξ ∈ R, by the

formula q(x,−ξ) = −q(x, ξ) for u ≤ 0 [6].
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Corollary 4.2. Let us consider the problem (4.40). If the geometric condition
in Theorem 4.1 holds and the mesh h satisfies

(4.42) h ≤ h0 =
(
12cos(α0)µ0ϵk

) 1
2

,

then the finite element solution uh of (4.40) is bounded by:

max
Ω

uh = max
ΓD

u0h and min
Ω

uh ≥ 0.

Proof. (4.40) is a special case of equation (4.26) for g := u0 ≥ 0, f(x) = 0,
γ(x) = 0, and the mesh size h when β = 1

ϵk in Theorem 2 equation (4.1) is:

h ≤ h0 =
( 12cos(α0)µ0

(ϵk)−1

) 1
2

=
(
12cos(α0)µ0ϵk

) 1
2

.

Both (4.34) and (4.37) are true, since f(x) = 0, γ(x) = 0. Moreover, (4.35)
and (4.39) are satisfied because g := u0 ≥ 0. Therefore, max

Ω
uh = max

ΓD

u0h

and min
Ω

uh ≥ 0 ∀x ∈ Ω. ■

Altogether, we are able to guarantee the nonnegativity and determine the
maximum of the solution of the PDE without knowing the numerical solution,
because the maximum of the solution is attained at the boundary.
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supervisor professor János Karátson for his patience, guidance, enthusiastic en-
couragement, and useful critiques of my research work. I thank the anonymous
referee for the useful comments on the manuscript.

References

[1] Brandts, J., S. Korotov and M. Kř́ıžek, The discrete maximum
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