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Abstract. We prove that if an odd positive integer k and a completely
multiplicative function F : N → C satisfy the conditions

F (p2) = F (p2 − 1) + 1 and F (pk) = F (pk − 1) + 1 for every prime p,

then F is the identity function. We also investigate completely functions
F : N → R such that F (p2) = F (p2 − 1) + 1 is satisfied for every prime p.

1. Introduction

In the following let P, N, and C denote the set of primes, positive inte-
gers and complex numbers, respectively. We denote by M (M∗) the set of
all complex-valued multiplicative (completely multiplicative) functions, respec-
tively.

Let I(n) = n for every n ∈ N and we define the function A,B ∈ M∗ as
follows{

A(2) = 0, A(3) = −1, A(p)2 = 1 for every p ∈ P, p > 3

B(2) = −1, B(3) = 0, B(p)2 = 1 for every p ∈ P, p > 3.
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In the following for a k ∈ N and T ⊆ C we denote by Fk(T) the set of all
F ∈ M∗ such that F (N) ⊆ T and

(1.1) F (pk) = F (pk − 1) + 1 for every p ∈ P.

Let Fk := Fk(C). It is obvious that A ∈ F2, B ∈ F2 and I ∈ Fk for every
k ∈ N.

In [1] and [2] we are given all solutions (D,G,F ) of the equation

G(n) = F (n2 − 1) +D for every n ∈ N,

where G,F are completely multiplicative functions and D ∈ C.
In this paper we would like to give all solutions F of the equation (1.1).

The question is simple if k = 1.

Theorem 1. We have
F1 = {I}.

It seems to be hard even in the case k = 2. We can solve (1.1) for k = 2, if
additionally some other property is assumed to be hold.

Conjecture 1. For each prime Q > 2 there is a prime π ∈ P such that

Q
∣∣∣(π − 1)(π + 1) and P

( (π − 1)(π + 1)

Q

)
< Q,

where P (n) denotes the largest prime divisor of n.

Theorem 2. If Conjecture 1 holds, then

F2(R) = {A, B, I}.

Conjecture 2. If F ∈ M∗, F (2) = 2 and

(1.2)

{
F (p2) = F (p2 − 1) + 1

F (p2) = F (p2 − 4) + 4

for every p ∈ P, then F = I.

Conjecture 3. Let c be a fixed positive number. Then for every Q ∈ P, Q > c
there exists some π ∈ P, for which

Aπ := (π + 1)(π − 1)(π + 2)(π − 2) ≡ 0 (mod Q)

and

π + 2 < Q2, P
(Aπ

Q

)
< Q.
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Theorem 3. Assume that Conjecture 3 is true with some c > 1. Let F ∈ M∗,
for which F (p) = p holds for every prime p < c. Assume that (1.2) is satisfied.
Then F = I.

For Fℓ ∩ Fk we would like to prove the following

Conjecture 4. If ℓ, k ∈ N and (ℓ, k) = 1, then

Fℓ ∩ Fk = {I}.

In this note we prove Conjecture 4 for the cases ℓ = 2 and k is odd number.

Theorem 4. We have

F2 ∩ Fk = {I} for every k ∈ N, (k, 2) = 1.

2. Proof of Theorem 1

Since I ∈ F1, therefore we shall prove that if F ∈ F1, then F = I.
Let F ∈ F1. Then F ∈ M∗ and

(2.1) F (p) = F (p− 1) + 1 for every p ∈ P,

which with F (1) = 1 implies that

F (2) = F (1) + 1 = 2, F (3) = F (2) + 1 = 3, F (5) = F (4) + 1 = F (2)2 +1 = 5.

Assume that F (n) = n for every n < P , where P > 5. We have F (P ) = P
if P ̸∈ P. Thus we can assume that P ∈ P, P ≥ 7 and F (P − 1) = P − 1. We
infer from (2.1) that

F (P ) = F (P − 1) + 1 = (P − 1) + 1 = P.

The proof of Theorem 1 is thus completed. ■

3. Proof of Theorem 2

First we prove the following

Lemma 1. If F ∈ F2, then

(3.1) (F (2), F (3)) ∈
{
(0,−1), (−1, 0), (2, 3)

}
and

(3.2) |F (n)| ≤ n for every n ∈ N.
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Proof. Let x := F (2). Since F ∈ F2, we have F (p)2 = F (p − 1)F (p + 1) +
1 for every p ∈ P, therefore

x2 = F (2)2 = F (1)F (3) + 1 = F (3) + 1 and F (3)2 = F (2)F (4) + 1 = x3 + 1.

These imply that

(x2 − 1)2 = x3 + 1 and so x2(x+ 1)(x− 2) = 0.

Consequently, x ∈ {0,−1, 2}. This with F (3) = x2 − 1 proves (3.1).

Now we prove (3.2). It is clear from (3.1) that (3.2) holds for n ∈ {1, 2, 3, 4}.
Assume that (3.2) holds for every n < N , where N ≥ 5. Thus,

|F (N)| ≤ N if N ̸∈ P.

If N ∈ P, then we infer from F ∈ F2 that

|F (N)2| = |F (N − 1)F (N + 1) + 1| ≤
≤ |F (N − 1)||F (N + 1)|+ 1 ≤ (N − 1)(N + 1) + 1 = N2.

This proves (3.2), therefore the proof of Lemma 1 is finished. ■

Now we prove Theorem 2. It is obvious that {A, B, I} ⊆ F2(R). Now we
prove that F2(R) ⊆ {A, B, I}.

Let F ∈ F2(R). According (3.1), we need to consider three cases:

Case 1. (F (2), F (3)) = (0,−1). In this case, p2 − 1 ≡ 0 (mod 2) for every
p ∈ P, p > 2, and so F (p2 − 1) = 0 for every p ≥ 3. Consequently

F (p)2 = F (p2) = F (p2 − 1) + 1 = 1 for every p ∈ P, p ≥ 3,

which proves that F = A.
Case 2. (F (2), F (3)) = (−1, 0). It is easily seen that

p2 − 1 ≡ 0 (mod 3) and so F (p2 − 1) = 0 for every p ∈ P, p ̸= 3.

This implies that

F (p)2 = F (p2) = F (p2 − 1) + 1 = 1 for every p ∈ P, p ≥ 3,

which proves that F = B.
Case 3. (F (2), F (3)) = (2, 3).

Now we prove F = I. It is clear that F (n) = n holds for n ∈ {1, 2, 3, 4}.
Assume that F (n) = n holds for every n < Q, where Q ≥ 5. Assuming, by
contradiction, that F (Q) ̸= Q. Then Q ∈ P and

F (Q)2 = F (Q2) = F (Q2 − 1) + 1 = F (2)2F
(Q− 1

2

)
F
(Q+ 1

2

)
+ 1 =

= 4
Q− 1

2

Q+ 1

2
+ 1 = Q2,

consequently F (Q) = −Q.
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On the other hand, it follows from Conjecture 1 that there exists π ∈ P
such that

Q
∣∣∣(π − 1)(π + 1) and P

( (π − 1)(π + 1)

Q

)
< Q.

Consequently

F
(π2 − 1

Q

)
=

π2 − 1

Q

and

F (π)2 = F (π2) = F (π2 − 1) + 1 = F (Q)F
(π2 − 1

Q

)
+ 1 = −Q

π2 − 1

Q
+ 1 =

= −π2 + 2 < 0.

This is impossible by our assumption F ∈ F2(R).
Theorem 2 is proved. ■

4. Proof of Theorem 3

Assume that F (n) = n holds for every n < N . If N ≤ c or N is not a
prime, then F (N) = N is true as well. Assume that N = Q ∈ P and Q > c.
Since P ((Q− 1)(Q+ 1)) < Q, then (1.1) implies that F (Q) = Q2.

Let π be according to Conjecture 3. Thus π < Q2, Q|Aπ, P (Aπ

Q ) < Q. We
have two cases:

Case a): Q|(π − 1)(π + 1),

Case b): Q|(π − 2)(π + 2).

In case a) we have F (π2) = F (π2 − 4) + 4 = (π2 − 4) + 4 = π2, since
P (π2 − 4) < Q. Then we infer from the following relation

π2 = F (π2) = F (π2 − 1) + 1 = F
(π2 − 1

Q

)
F (Q) + 1 =

π2 − 1

Q
F (Q) + 1

that F (Q) = Q.

The proof in the case b) is similarly. Since Q|(π−2)(π+2) and P (π2−1) <
< Q, thus F (π2) = F (π2 − 1) + 1 = (π2 − 1) + 1 = π2 and

π2 = F (π2) = F (π2 − 4) + 4 = F
(π2 − 4

Q

)
F (Q) + 4 =

π2 − 4

Q
F (Q) + 4,

which implies that F (Q) = Q.

By using infinite induction we proved that F (Q) = Q for every Q ∈ P. The
proof of Theorem 3 is completed. ■
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5. Proof of Theorem 4

Lemma 2. If

(5.1) F ∈ F2 ∩ Fk for some k ∈ N, (k, 2) = 1,

then
F (n) = n for every n ∈ {1, 2, 3, 4}.

Proof. We shall prove that if F satisfies (5.1) then (F (2), F (3)) = (2, 3).
According (3.1), we need to show that

(F (2), F (3)) ̸∈
{
(0,−1), (−1, 0)

}
.

Assume first that (F (2), F (3)) = (0,−1). Since (k, 2) = 1, F (2) = 0 and
F ∈ Fk, we have

−1 = (−1)k = F (3)k = F (3k − 1) + 1 = 1,

which is a contradiction.

Now assume that (F (2), F (3)) = (−1, 0). Then

p2 − 1 ≡ 0 (mod 3) and F (p2 − 1) = 0 for every p ∈ P, p ̸= 3,

consequently

(5.2) F (p)2 = F (p− 1)F (p+ 1) + 1 = 1 for every p ∈ P, p ̸= 3.

On the other hand, we have

(5.3) −1 = F (2)k = F (2k) = F (2k − 1) + 1 and so F (2k − 1) = −2.

Since (2k − 1, 3) = 1, the relation (5.2) implies that F (2k − 1) = ±1, which
contradicts to (5.3). The proof of Lemma 2 is completed. ■

Now we prove Theorem 4.

By using Lemma 2, we assume that F (n) = n for every n < P , where
P > 4. We shall prove that F (P ) = P .

Assume by contradiction that F (P ) ̸= P . Then P ∈ P and P ≥ 5. It is
clear from F ∈ F2 and our assumptions that

F (P )2 = F (P − 1)F (P + 1) + 1 = F (2)(P − 1)F
(P + 1

2

)
+ 1 =

= 2(P − 1)
(P + 1

2

)
+ 1 = P 2.
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Thus we infer from our assumption F (P ) ̸= P that F (P ) = −P . Then from
(k, 2) = 1 and F ∈ Fk, we have

−P k = F (P )k = F (P k) = F (P k − 1) + 1

consequently
|F (P k − 1)| = | − P k − 1| = P k + 1,

which contradicts to (3.2).

Theorem 4 is proved. ■
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