
Annales Univ. Sci. Budapest., Sect. Comp. 56 (2024) 331–338

SPECTRAL SYNTHESIS ON CONTINUOUS IMAGES
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Abstract. Recently we introduced the concept of localizability of ideals
in the Fourier algebra of locally compact Abelian groups. It turns out
that localizability can be used to characterize synthesizability of varieties.
Based on this we show that spectral synthesis holds on continuous images
of varieties which have spectral synthesis.

1. Introduction

Let G be a locally compact Abelian group. Spectral synthesis deals with
uniformly closed translation invariant linear spaces of continuous complex val-
ued functions on G. Such a space is called a variety. We say that spectral
analysis holds for a variety, if every nonzero subvariety contains a one dimen-
sional subvariety. We say that a variety is synthesizable, if its finite dimen-
sional subvarieties span a dense subspace in the variety. Finally, we say that
spectral synthesis holds for a variety, if every subvariety of it is synthesizable.
On commutative topological groups, finite dimensional varieties of continuous
functions are completely characterized: they are spanned by exponential mono-
mials. Exponential polynomials on a topological Abelien group are defined as
the elements of the complex algebra of continuous complex valued functions
generated by all continuous homomorphisms into the multiplicative group of
nonzero complex numbers (exponentials), and all continuous homomorphisms
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into the additive group of all complex numbers (additive functions). An expo-
nential monomial is a function of the form

x ÞÑ P
�
a1pxq, a2pxq, . . . , anpxq

�
mpxq,

where P is a complex polynomial in n variables, the ai’s are additive func-
tions, and m is an exponential. If m � 1, then we call it a polynomial. Ev-
ery exponential polynomial is a linear combination of exponential monomials.
One dimensional varieties are exactly those spanned by an exponential, and
finite dimensional varieties are exactly those spanned by exponential monomi-
als (see [5]). The variety of the continuous function f , denoted by τpfq, is the
intersection of all varieties including f . For more about spectral analysis and
synthesis on groups see [4, 5].

In [3], the authors characterized those discrete Abelian groups having spec-
tral synthesis: spectral synthesis holds for every variety on the discrete Abelian
group G, if and only if G has finite torsion free rank. In particular, from this
result it follows, that if spectral synthesis holds on G and H, then it holds on
G ` H. Unfortunately, such a result does not hold in the non-discrete case.
Namely, by the fundamental result of L. Schwartz [1], spectral synthesis holds
on R, but D. I. Gurevich showed in [2] that spectral synthesis fails to hold on
R�R. A complete description of those locally compact Abelian groups where
spectral synthesis holds for the space of all continuous functions was obtained
in [7], where the present author proved the following two theorems:

Theorem 1.1. Spectral synthesis holds on the compactly generated locally com-
pact Abelian group G if and only if it is topologically isomorphic to Ra�Zb�C,
where C is compact, and a, b are nonnegative integers with a ¤ 1.

Theorem 1.2. Spectral synthesis holds on the locally compact Abelian group
G if and only if G{B is topologically isomorphic to Ra�Zb�F , where B is the
subgroup of all compact elements in G, F is a discrete Abelian group of finite
rank, and a, b are nonnegative integers with a ¤ 1.

These characterization theorems describe those groups where all varieties
are synthesizable – another question is if spectral synthesis holds for a given
particular variety, even if it does not hold on the whole group. In [8], we intro-
duced the concept of localization, which is an effective tool to prove spectral
synthesis on varieties. In this paper we apply this method to show that any
continuous image of a synthesizable variety is synthesizable as well. It will
follow that spectral synthesis holds for every continuous image of a variety, for
which spectral synthesis holds.



Spectral synthesis on continuous images 333

2. Preliminaries

Given a locally compact Abelian group, the space of all continuous complex
valued functions on G is denoted by CpGq. It is a locally convex topological
vector space, when equipped with the topology of uniform convergence on
compact sets. It is known that the dual space of CpGq can be identified with
the space McpGq of all compactly supported complex Borel measures on G.
This space is called the measure algebra of G – it is a topological algebra
with the linear operations, with the convolution of measures and with the
weak*-topology arising from CpGq. On the other hand, the space CpGq is a
topological vector module over the measure algebra under the action realized
by the convolution of measures and functions. The annihilators of subsets in
CpGq and the annihilators of subsets in McpGq play an important role in our
investigation. For each closed ideal I inMcpGq and for every variety V in CpGq,
Ann I is a variety in CpGq and AnnV is a closed ideal in McpGq. Further, we
have

AnnAnn I � I and AnnAnnV � V

(see [5, Section 11.6], [6, Section 1]).

The Fourier–Laplace transformation (shortly: Fourier transformation) on
the measure algebra is defined as follows: for every exponential m on G and
for each measure µ in McpGq its Fourier transform is

pµpmq � » qmdµ,

where qmpxq � mp�xq for each x in G. The Fourier transform pµ is a complex
valued function defined on the set of all exponentials on G. As the mapping
µ ÞÑ pµ is linear and pµ � νqp� pµ � pν, all Fourier transforms form a function
algebra. By the injectivity of the Fourier transform, this algebra is isomorphic
to McpGq. If we equip the algebra of Fourier transforms by the topology
arising from the topology of McpGq, then we get the Fourier algebra of G,
denoted by ApGq. In fact, ApGq can be identified with McpGq. We utilize this

identification: for instance, every ideal in ApGq is of the form pI, where I is an
ideal in McpGq. Based on this fact, we say that spectral synthesis holds for the

ideal pI in ApGq, if spectral synthesis holds for Ann I in CpGq.

We shall use the polynomial derivations on the Fourier algebra. A derivation
on ApGq is a linear operator D : ApGq Ñ ApGq such that

Dppµ � pνq � Dppµq � pν � pµ �Dppνq
holds for each pµ, pν. We say that D is a first order derivation. Higher order
derivations are defined inductively: for a positive integer n we say that linear
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operator D on ApGq is a derivation of order n� 1, if the two variable operator

ppµ, pνq ÞÑ Dppµ � pνq �Dppµq � pν � pµ �Dppνq
is a derivation of order n in both variables. The identity operator id is con-
sidered a derivation of order 0. All derivations form an algebra of operators,
and the derivations in subalgebra generated by all first order derivations are
called polynomial derivations. They have the form P pD1, D2, . . . , Dkq, where
D1, D2, . . . , Dk are first order derivations, and P is a complex polynomial in k
variables. In [8], we proved the following result:

Theorem 2.1. The linear operator D on ApGq is a polynomial derivation if
and only if there exists a unique polynomial fD such that

Dpµpmq � »
fDpxqmp�xq dµpxq

holds for each pµ in ApGq and for every exponential m on G.

Iin [8], we introduced the following concepts. Given an ideal pI in ApGq and
an exponential m, we denote by P

pI,m the family of all polynomial derivations

P pD1, D2, . . . , Dkq which annihilate pI at m. This means that

BαP pD1, D2, . . . , Dkqpµpmq � 0

for each multi-index α in Nk, for every exponential m, and for every pµ in pI.
The dual concept is the following: given a family P of polynomial derivations
and an exponential m we denote by pIP,m the set of all functions pµ which are

annihilated by every derivation in the family P at m. Then pIP,m is a closed
ideal. Obviously, pI �£

m

pIP
pI,m,m

holds for every ideal pI. We call pI localizable, if we have equality in this inclusion.
In other words, the ideal pI in ApGq is localizable if and only if it has the
following property: if pµ is annihilated by all polynomial derivations, which
annihilate pI at each m, then pµ is in pI. The main result in [8] is the following:

Theorem 2.2. Let G be a locally compact Abelian group. The ideal pI in the
Fourier algebra is localizable if and only if Ann I is synthesizable.

3. Main result

Let G be a locally compact Abelian group. Given a variety V in CpGq a
continuous image of V is a variety W on a locally compact Abelian group H
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such that there exists a continuous surjective homomorphism Φ : GÑ H such
that the function φ is in W if and only if the function φ � Φ is in V .

Theorem 3.1. Let G be a locally compact Abelian group and V a variety on
G. If V is synthesizable, then every continuous image of V is synthesizable.

Proof. In the light of Theorem 2.2, it is enough to show that if V is syn-
thesizable, then, for every continuous image W of V , the ideal pAnnW qp is
localizable.

Assume that W is a variety on the locally compact Abelian group H, and
Φ : G Ñ H is a continuous surjective homomorphism such that the function
φ is in W if and only if the function φ � Φ is in V . We denote AnnV , resp.
AnnW by I, resp. J .

First we observe that for every exponential m on H, the function m � Φ
is an exponential on G. Similarly, for every additive function a on H, the
function a � Φ is an additive function on G. From this we conclude that for
every polynomial p, resp. m-exponential monomial φ on H, the function p �Φ,
resp. the function φ �Φ is a polynomial, resp. an m �Φ-exponential monomial
on G.

The mapping Φ induces a continuous algebra homomorphism ΦH of the
measure algebra McpGq into the measure algebra McpHq in the following man-
ner: for each measure µ on G we let

xΦHpµq, φy � xµ, φ � Φy

whenever φ is in CpHq. It is easy to se that ΦH is a continuous linear functional
on CpHq, hence it is in McpHq. We can check easily that ΦH is a continuous
algebra homomorphism.

In fact, ΦH is surjective. Indeed, for each u in H there is an x in G such
that u � Φpxq. It follows, for each φ in CpHq,

xΦHpδxq, φy � xδx, φ � Φy � φpΦpxqq � φpuq � xδu, φy,

hence ΦHpδxq � δΦpxq. As each measure in McpHq is a weak*-limit of finitely
supported measures, and all finitely supported measures are in the image of
ΦH , we conclude that ΦH is surjective.

The adjoint mapping of ΦH is a linear mapping fromMcpHq� ontoMcpGq
�.

As these spaces are identified by CpHq, resp. CpGq, we realize the adjoint of
ΦH as the mapping

Φ�
Hpφq � φ � Φ

for each φ in CpHq. As ΦH is surjective, so is Φ�
H , and we infer that every

function in CpGq is of the form φ � Φ with some φ in CpHq. We note that,
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in particular, every exponential on G is of the form m � Φ, where m is an
exponential on H.

Obviously, ΦH induces a continuous algebra homomorphism from the Fou-
rier algebra ApGq onto the Fourier algebra ApHq, which we denote by pΦH ,
satisfying pΦHppµq � ΦHpµqp
for each µ in McpGq. We claim that the ideal pI is mapped onto pJ by pΦH . Letpµ be in pI, then µ � f � 0 for each f in V . We need to show that pΦHppµq is inpJ , that is, ΦHpµq annihilates W . If φ is in W , then f � φ � Φ is in V , hence

ΦHpµq � φpuq �

»
H

φpu� vq dΦHpµqpvq �

»
G

φpΦpxq � Φpyq dµpyq �

»
G

φpΦpx� yqq dµpyq �

»
G

pφ � Φqpx� yq dµpyq �

»
G

fpx� yq dµpyq � µ � fpxq � 0.

On the other hand, if pν is in pJ , then ν is in J � AnnW , further ν � ΦHpµq
for some µ in McpGq. We want to show that µ is in AnnV � AnnAnn I.
Assuming the contrary, there exists an f in V such that µ � f � 0. We have
f � φ � Φ for some φ in W , and this implies

ν � φ � ΦHpµq � φ � µ � pφ � Φq � µ � f � 0,

a contradiction, as ν is in AnnW and φ is in W . We conclude that µ is in
AnnV , hence the mapping pΦH : pI Ñ pJ is onto.

Now we are ready to show that pJ is localizable, if V is synthesizable, i.e.pI is localizable. Let pν be in pJPm, pJ ,m
– we need to show that pν is in pJ . Here

m is an arbitrary exponential on H, hence m � Φ is an exponential on G. Letpν � pΦHppµq, where pµ is in ApGq. It is enough to show that pµ is in pI. We note

that Using the localizability of pI, it is enough to show that every derivation
in pIPm�Φ, pI ,m�Φ annihilates pµ at m � Φ. Let D be a polynomial derivation inpIPm�Φ, pI ,m�Φ. It has the form

Dpµpm � Φq �

»
G

fDpxqpm � Φqp�xq dµpxq

for each exponential m on H, where fD : G Ñ C is a polynomial. We have
seen above that fD can be written as fD � pD � Φ with some polynomial
pD : H Ñ C. Hence we have

Dpµpm � Φq �

»
G

fDpxqpm � Φqp�xq dµpxq �

»
G

ppD � Φqpxqpm � Φqp�xq dµpxq,
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or

Dpνpmq � DpΦHppµqpmq � DΦHpµqppmq �
»
G

pDpuqmp�uq dΦHpµqpuq.

This means that D induces a polynomial derivation on ApHq, which is inpJPm, pJ ,m
. By assumption, this derivation annihilates pν at m, which implies

that D annihilates pµ at m �Φ. As this holds for each D in pIPm�Φ, pI ,m�Φ, by the

localizability of pI, we conclude that pµ is in pI, thus pν is in pJ , and our theorem
is proved. ■

Corollary 3.1. If spectral synthesis holds for a variety on a locally compact
Abelian group, then it holds on every continuous image of it.

Proof. Spectral synthesis means that every subvariety is synthesizable. If
spectral synthesis holds for V on G, then every subvariety of V is synthesiz-
able, which implies that every subvariety of every continuous image of V is
synthesizable and our statement follows. ■
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[4] Székelyhidi, L., Spectral synthesis problems on locally compact groups,
Monatsh. Math., 161(2) (2010) 223–232.
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