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Abstract. About 100 years ago, N.J. Walsh’s fundamental paper [25] was
published, in which he introduced the digital version of the trigonometric
system. In remembrance of this and the 50th anniversary of Walsh’s death,
the authors of the paper [2] presented the role of Walsh functions in dyadic
analysis and technical applications. 35 years ago, a collaboration between
researchers from the Department of Numerical Analysis, Eötvös Loránd
University and Professor W.R. Wade (University of Tennessee, USA) re-
sulted in the publication of the first monograph on dyadic analysis. This
provided an overview of the significant results in the field before 1990.
Since then, several promising results have been achieved that may deter-
mine the future direction of research. This paper provides a brief overview
of these results.
In the commemorations prepared for the anniversary of the department’s
establishment, we present in detail our contributions to the achievements
in the field. Here, the author only highlights the following. Regarding
the Vilenkin generalization of the Walsh system, the interpretation of the
concept of the conjugate function and the proof of the corresponding fun-
damental inequalities were significant [21]. The author of the [11] paper
introduced the dyadic analogues of Hermite functions as eigenfunctions of
the dyadic derivative and pointed out their application possibilities. In
harmonic analysis, the examination of multiplier operators and the cor-
responding filtering procedures in signal processing is a central theme of
research. The strong approximation, two-sided Sidon-type inequalities,
and Hardy-type spaces related to this have proven to be of fundamen-
tal importance in both the trigonometric and dyadic cases [4]. It would
be worthwhile to extend these results to Malmquist–Takenaka systems.
New, significant results have also been achieved in the extension of mul-
tivariable dyadic analysis, traditional stochastic structures, and function
spaces [26, 27]. The [6] paper provides insights into the studies related to
the direct product of finite, non-commutative groups.
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1. Introduction

Nowadays, one of the determining factors in the development of mathe-
matics is computer science. Computers have entered every area of life, and
digitization has become a fashionable buzzword.

In the field of harmonic analysis, digitization began with a paper written by
Walsh in 1923 [25]. In this work, the author introduced a system of functions
that depends only on the binary digits of the independent variable, takes only
the values 1 and −1, and mimics the sign changes of the trigonometric sine and
cosine systems. This system of functions, named after Walsh, can represent
the first 2N terms without error on N -length bytes. Since the 1960s, this
property has led engineers working in communication technology to replace
the traditionally used trigonometric system with the Walsh system [7, 8].

Studies related to Walsh series, which are nowadays often included in the
topic of dyadic analysis, have influenced the development of several branches of
mathematics, such as probability theory and martingale theory [14, 16]. They
have played a significant role in solving problems related to bases and in the
development of fundamental concepts and procedures [14].

The results in this field up to 1990 are summarized in the monograph Walsh
series, an introduction to dyadic harmonic analysis (Adam Hilger, Bristol-New
York, 1990) [14]. Since then, numerous results have been achieved in this
area. In this compilation, we draw attention to some problems where the
digital approach may prove useful and may serve as a starting point for further
investigations.

In computers, information is represented by bit sequences (bytes), and
classes of bit sequences are used to model tasks. Various operations (algebraic,
logical, etc.) are interpreted among the elements of these classes. From the
point of view of numerical and algebraic calculations, it is useful to consider
continuous algebraic structures which form a complete space and are closed
under arithmetic operations.

Let B denote the set of (left-finite) bit sequences ẋ = (xn ∈ Z2, n ∈ Z)
(Z2 := {0, 1}, limn→−∞ xn = 0). For every ẋ ∈ B, ẋ ̸= ȯ := (on = 0, n ∈ Z),
there exists a number π(x) ∈ Z such that xn = 1 if n = π(x) and xn = 0 if
n < π(x). Using the mapping ẋ → x :=

∑∞
n=π(x) xn2

−(n+1) (using the binary

expansion of the number x ∈ R+), we associate a non-negative real number with
the elements of B. Let B0 be the set of right-finite bit sequences ẋ = (xn, n ∈
Z) ∈ B (limn→∞ xn = 0). The image of these, Q := {x : ẋ ∈ B0} ⊂ R+,
is called dyadic rational numbers. The mapping ẋ → x is not bijective: each
number x ∈ Q has two preimages. Let B1 denote the (countable) set of bit
sequences for which limn→∞ xn = 1. Then the mapping ẋ → x is a bijection
between the sets B \ B1 and R+. Based on this, in many cases, the set of
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bit sequences can be identified with non-negative real numbers, and the Lp(B)
spaces with the Lp(R+) spaces.

For any a = k2−n ∈ Q, k ∈ N, n ∈ Z, introduce the sets of the form
In(a) := {x ∈ R+ : a ≤ x < a+2−n} (and their preimages), the dyadic intervals
of R+ (or B). These not only serve as the basis for representing numbers and
interval arithmetic but also enable the introduction of an important stochastic
structure, called dyadic martingales [14].

On the set B, starting from the set B0 identified with dyadic rational num-
bers, we can introduce three algebraic structures (three fields), each of which
plays a decisive role in describing the real world. The first structure is the
dyadic (or 2-series) field [22], in which the operations of addition and multipli-
cation are defined by the formulas

ẋ⊕ ẏ = (xn + yn (mod 2), n ∈ Z),

ẋ⊙ ẏ = (zn, n ∈ Z), zn =

∞∑
k=−∞

xkyn−k (mod 2) (n ∈ Z).

The set of bytes B with these operations forms a field, where the zero element
is the sequence ȯ, the unit element is the sequence ė = (δk0, k ∈ Z), each
element is its own additive inverse, and every element different from ȯ has a
multiplicative inverse. The function ∥ẋ∥ := 2−π(x) (ẋ ∈ B) is a (non-Euclidean)
norm:

∥ẋ⊕ ẏ∥ ≤ max{∥ẋ∥, ∥ẏ∥}, ∥ẋ⊙ ẏ∥ = ∥ẋ∥∥ẏ∥ (ẋ, ẏ ∈ B).

From the above, it follows that the field operations are continuous, B0 is dense
in B, and the field B is complete. The operation ⊕ is identical to the EOR
logical operation. On this basis, the dyadic field will also be referred to as the
logical field. The statement formulated now can be interpreted as embedding
the algebraic structure (B0,⊕,⊙) (ring) into a complete field.

The preimages of the intervals In(0) denoted by İn(0) (n ∈ Z), are sub-
groups of (B,⊕). Specifically, the subgroup D = İ0(0) is called the Cantor
group.

On the set of dyadic rational numbers Q ≡ B0, the usual operations of
+ and · (multiplication and addition) are defined, as well as the Euclidean
distance ρE(x, y) := |x − y| (x, y ∈ Q). It is known that Q can be embedded
in a complete field (with respect to the ρE metric) in which Q is a dense
subset everywhere. Through this process, starting from B0, we can reach the
field of real numbers (R,+, ·) and the Euclidean geometry compatible with it.
One consequence of this is that segments of arbitrary (large and small) lengths
exist. This property of real numbers is usually highlighted under the name of
the Euclidean axiom.
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On the set B0, introduce the mapping π−(x) ∈ Z, where xn = 1 if n = π−(x)
and xn = 0 if n > π−(x) (x ∈ B0). On the semigroup (Q,+) ≡ (B0,+), the
mapping ∥x∥∗ := 2−π−(x) (x ∈ B0) is a non-Euclidean norm:

∥x+ y∥∗ ≤ max{∥x∥∗, ∥y∥∗} (x, y ∈ B0).

The algebraic structure (B0,+, ·) ≡ (Q,+, ·) (semiring?) can be embedded in
a complete field (B∗,+, ·) with respect to the norm ∥ · ∥∗, in which B0 is dense.
The field thus obtained is called the 2-adic field in the literature. Hereafter,
we will refer to this as the arithmetic field [22].

According to some views, in physics, sizes smaller than the Planck constant
and, in astronomy, sizes larger than the radius of the universe have no physical
reality. The Archimedean axiom of real numbers ensures that segments of any
length, both very long and very short, exist. This is often used to argue that
real numbers should be replaced with non-Archimedean fields [24].

Among other reasons, this is the background for mentioning the arithmetic
field in addition to the logical field [23]. The book Transforms in Normed
Fields [15] was written with the intention of transferring the Fourier techniques,
which form the basis of wavelet constructions, to the mentioned fields.

In this compilation, we only deal with the logical field. In R, by using
the logarithmic function, we can establish a connection between the additive
and multiplicative structures. It follows that there is essentially no difference
between the corresponding Fourier and Mellin transformations. In the case of
logical and arithmetic fields, the relationship between the additive and multi-
plicative structures is not so simple, consequently, the examination of the coun-
terparts of the Mellin transformation requires new, special considerations [15].
It would be worthwhile to study these types of Fourier transformations and
their applications in depth.

2. The Rademacher and Walsh systems

In a paper written 100 years ago [25], Walsh introduced a system that has
since been named after him, which, in today’s fashionable terminology, can be
considered the digital version of the trigonometric system (see Figure 1). The
Walsh functions take only the values 1 and −1 and the number of sign changes
matches that of the trigonometric system. Furthermore they form a complete
orthonormal system in the space L2[0, 1]. Hereafter, using the mapping ẋ → x,
we identify the dyadic group D with the interval [0, 1).
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Figure 1. The Walsh and the trigonometric systems.

Walsh defined his system with a complex recursion that is difficult to handle.
The Walsh system is a subsystem of the system (rk, k ∈ N) introduced by
Rademacher in 1922 (see Figure 2). The values of the functions rk can be
expressed using the binary digits of the number x ∈ [0, 1):

rk(x) = (−1)xk

(
x =

∞∑
k=0

xk/2
k+1 ∈ [0, 1)

)
.

Studies related to the Rademacher system later contributed to the theoret-
ical foundations of probability theory [16].

In a fundamental paper written in 1932 [10], Paley demonstrated that the
Walsh functions, apart from the order, can be generated using the Rademacher
functions. Specifically, Paley introduced all possible finite products formed
from the Rademacher functions. Using the binary digits nk ∈ {0, 1} of the
number

ṅ → n =

∞∑
k=0

nk2
k ∈ N,

we can write them in the form

wn = rn0
0 rn1

1 . . . rnk

k . . . .

Using the terminology that has since become widespread, we say that the
W = (wn, n ∈ N) (the so-called Walsh–Paley system) is the product system
of the Rademacher system. It can be shown that the original Walsh system it-
self can also be generated as a product system of the (rkrk−1, k ∈ N) (r−1 := 1)
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Figure 2. The Rademacher system.

system. From this, it follows that the two systems consist of the same functions,
written in different orders.

The digital nature of the connection becomes even more striking when the
group D is written in the form of the direct product

D = Z2 × Z2 × · · ·Z2 × · · · ,

where Z2 = ({0, 1},⊕, ·) denotes the finite field with two elements. The sub-
group D0 := D ∩ B0 can be identified with the set of natural numbers N based
on the mapping ṅ → n :=

∑∞
k=0 nk2

k. Accomrdingly, D can be considered a
(complete) linear normed space (Banach space) over the field Z2. The function

⌊n, x⌋ =
∑
k∈N

nkxk (mod 2) (n ∈ N ≡ D0, x ∈ [0, 1) ≡ D)

is a Z2 bilinear mapping on the space D0 ×D. The Walsh-Paley system can be
expressed using binary digits:

wn(x) = (−1)⌊n,x⌋ (n ∈ N, x ∈ [0, 1)).

For every Z2-linear mapping T : N → N, there exists a unique Z2-linear map-
ping T ∗ : D→ D such that

⌊Tn, x⌋ = ⌊n, T ∗x⌋ (n ∈ N, x ∈ D)
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is satisfied. If T : N → N is bijective, then T ∗ : D → D is measure-preserving,
and furthermore,

wTn(x) = wn(T
∗x) (n ∈ N, x ∈ D).

Measure-preserving mappings transform orthonormal systems into orthonormal
systems. Applying the mapping T ∗, we do not obtain a new system, but rather
a rearrangement of the original system [18, 14, 12].

We can reach several systems widely used in mathematics with this con-
struction. Specifically, the original Walsh system can be derived from the
Walsh–Paley system using the

(2.1) Ṫ :=


1 0 0 0 · · ·
1 1 0 0 · · ·
0 1 1 0 · · ·
0 0 1 1 · · ·
...


Z2-linear transformation. With this mapping, we have established a well-
manageable passage between the original Walsh system, preferred in technical
applications, and the Walsh-Paley system used in mathematical literature.

In the literature, other Z2-linear mappings are also used. For example, the

Fk :(n0, n1, · · · , nk−1, nk, nk+1, · · · ) →
→ (nk−1, nk−2, · · · , n0, nk, nk+1, · · · ) (k ∈ N)

bit-reversal transformations define the Hadamard matrices and the Kaczmarz
rearrangements. Note that these transformations also play an important role
in FFT algorithms [19, 14].

In mathematics, several mappings have been introduced that can be simply
described in the language of bits. An example is the operation of bit interleav-
ing, which is related to the Peano mapping. This was suggested by Frigyes Riesz
for the mathematical treatment of multivariable problems [13]. The mapping

ẋ⊛ ẏ := (x0, y0, x1, y1, · · · ) (x, y ∈ D)

establishes a bijective, measure-preserving correspondence between the sets
D × D and D, whose restriction ⊛ : D0 × D0 → D0 is also a bijection. Based
on this, there is a relationship between the one- and two-variable Walsh–Paley
systems [14]:

(wn × wm)(x, y) = wn⊛m(x⊛ y) (x, y ∈ D,m, n ∈ D0).

Thus, some questions related to multivariable Walsh analysis can be reduced
to uni-variate problems. It would be worthwhile to reconsider Hilbert’s con-
struction given for the Peano curve based on the above.
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3. Special function and sequence spaces

The Walsh functions are the continuous solutions of the functional equation

w(x⊕ y) = w(x)w(y) (x, y ∈ D),

or, in other terms, they are the characters (trigonometric functions) of the group
(D,⊕). Following Fine’s observation in 1949, investigations related to Walsh
functions have been classified into the specific chapter of abstract harmonic
analysis known as dyadic analysis [3]. It is worth noting that two years earlier,
Vilenkin introduced a class of orthogonal systems that include the Walsh sys-
tem. Several instructors from our department have significantly contributed to
these research efforts [23].

In the monograph [14], most essential questions of harmonic analysis are
discussed in detail. Besides the traditional topics (convergence, summation,
dyadic derivative, approximation, Walsh–Fourier transform, etc.), we also ad-
dress related systems (Haar, Franklin, etc.), martingale spaces, and the basis
problem. The almost everywhere convergence is approached in a new manner
by extending the concept of martingales.

In this compilation, we highlight some issues that seem relevant since the
publication of the book.

Let Jn (n ∈ N) denote the set of dyadic subintervals of length 2−n in
the interval [0, 1), and let An := σ(Jn) (n ∈ N) denote the stochastic basis
generated by these. The set J with the inclusion relation ⊆ is a partially
ordered set, or in graph theory terminology, a binary tree.

In mathematics, physics, and the theory of stochastic processes, the time
domain is often modeled with a linearly ordered set (e.g., N or R+). In de-
scribing branching processes, their role is taken over by graphs (e.g., the J
binary tree). Recently (in connection with deep learning), concepts and meth-
ods of harmonic analysis (Euclidean spaces, harmonic functions, convolution,
etc.) have been successfully applied in connection with graphs. In addition,
we demonstrate that the results of dyadic analysis can be incorporated into
this perspective in the context of binary trees [1]. In addition to Euclidean
structures, other important Banach spaces can be introduced in the sequence
space indexed by the elements of the J tree.

In the space of sequences indexed by N, the ℓ2 space plays a distinguished
role. According to the Riesz-Fischer theorem, every separable Hilbert space is
isometrically isomorphic to the sequence space ℓ2. Assigning the sequence of
Fourier coefficients according to some complete orthonormal system to the ele-
ments of the Hilbert space, the isomorphism can be explicitly described. Such
a characterization does not exist for other types of Banach spaces. However,
certain classes of function spaces (such as Lp, Hp, and VMO spaces) can be
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characterized using certain types of sequence spaces (utilizing Haar, Franklin,
wavelet, and Fourier coefficients).

The partial sums of Walsh-Fourier series with index 2n are identical to the
conditional expectation with respect to An:

S2nf :=

2n−1∑
k=0

⟨f, wk⟩wk = Enf = E(f |An) (f ∈ L1[0, 1), n ∈ N).

In his cited work, Paley proved a notable inequality, which was later found
to be crucial in the study of martingale theory and the rearrangements of
function series [10]. Let

Qf :=

( ∞∑
n=0

|Enf − En−1f |2
)1/2

(E−1f := 0, f ∈ L1)

be the quadratic variation of f . Paley proved that

(3.1) ∥Qf∥p ∼ ∥f∥p (1 < p < ∞).

It is also known that for the maximal function f∗ := supn∈N |Enf |,

∥f∗∥p ∼ ∥f∥p (1 < p ≤ ∞), ∥f∗∥1 ∼ ∥Qf∥1 ≁ ∥f∥1.

Using these, we can define the dyadic Hardy spaces:

Hp := {f ∈ L1 : ∥f∥Hp := ∥Qf∥p < ∞} (1 ≤ p < ∞).

Then based on (3.1),

Hp =Lp (1 < p < ∞), H1 ⊊ L1.

The dual of the H1 dyadic Hardy space can be given using the average
oscillation of the function f :

Onf := ∥(En|f − Enf |2)1/2∥∞

in the following form:

BMO := {f ∈ L1 : ∥f∥BMO := sup
n∈N

Onf < ∞}.

The space
VMO := {f ∈ BMO : lim

n→∞
Onf = 0}

is a (separable, closed) subspace of BMO, whose dual is the H1 Hardy space.
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The Walsh system is closely related to the orthonormal system introduced
by Alfred Haar in 1910, which later played a significant role in solving some
problems related to bases and became the starting point for research on wavelets
[16, 17, 14]. For indexing Haar functions, it is practical to use dyadic intervals
besides natural numbers, associating the Haar function with its support. In
the following, we restrict ourselves to functions f ∈ L1[0, 1) whose integral
over the interval [0, 1) is 0. This set is denoted by L1

0. Let h0 = 1, and for
I = [k/2n, (k + 1)/2n) ∈ J (0 ≤ k < 2n, n ∈ N), we introduce the notation

(3.2) h2n+k := hI := 2n/2rnχI = |I|−1/2rnχI

where χI is the characteristic function of the interval I and |I| := 2−n is the
length of the interval I. The partial sums of Haar–Fourier and Walsh–Fourier
series with index 2n are equal, consequently, the quadratic variation can be
simply expressed with the Haar–Fourier coefficients fJ := ⟨f, hJ⟩ (J ∈ J ):

(3.3) (Qf)(x) =
( ∑

x∈J∈J
|fJ |2 |J |−1

)1/2
(f ∈ L1

0, x ∈ [0, 1)).

The Haar system is a basis in the space of continuous functions on the
group D, denoted by C = C(D), in the spaces Lp (1 ≤ p < ∞), and in the
H1 and VMO spaces. It also follows from the Paley theorem (3.1) that any
rearrangement of the Haar system is also a basis in the Lp spaces for 1 < p < ∞.

Using the integrals of the Haar functions, Faber, Schauder, Franklin, and
Ciesielski constructed function systems with good convergence properties in
the space of smooth functions, addressing several problems related to bases.
Banach’s famous question, whether every separable Banach space has a basis,
remained unanswered for a long time [14, 16]. The answer was provided by
Enflo in 1973, who constructed a separable Banach space without a basis. In
Enflo’s construction, the Walsh system played an important role. In [20, 14],
we constructed a VMO-type space that has no basis. The space in question
is generated by a special (non-linearly ordered) stochastic basis. It would be
worth examining how the existence of a basis in such VMO-type spaces relates
to other properties (e.g., mixing) of the stochastic basis.

For the sequence a = (aI , I ∈ J ) and parameters 0 < p ≤ ∞, we introduce
the following weighted mixed norms:

∥a∥hp = sup
n∈N

( ∑
|I|=2−n

|I|
( ∑

I⊆J∈J

|aJ |2 |J |−1
)p/2)1/p

,

∥a∥bmo := sup
J∈J

(
|J |−1

∑
I⊆J

|aI |2
)1/2

.

(3.4)
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Let f := (fI , I ∈ J ) denote the Haar-Fourier coefficients of the function
f ∈ L1

0. Then, based on (3.3) and (3.4),

∥Qf∥p = ∥f∥hp
(0 < p < ∞), ∥f∥BMO = ∥f∥bmo.

It follows that the Haar–Fourier transform f → f = (fJ , J ∈ J ) is an isomor-
phism between the Hp and hp (0 < p < ∞) sequence spaces, as well as between
the BMO and bmo spaces. Specifically, the elements of the hp (1 < p < ∞)
sequence space can characterize the Lp spaces. We note that by using Franklin
or wavelet Fourier coefficients instead of Haar-Fourier coefficients, a similar
characterization can be given for the classical H1 and BMO spaces [14, 9].
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