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Abstract. We summarize some known results concerning the iterates of
multiplicative functions and prove two new results.

1. Introduction

We shall use the following standard notation: N, R and C. Let P the set
of primes. Let

ω(n) =
∑
p|n
p∈P

1 and Ω(n) =
∑
pk|n
p∈P

1.

Let M be the set of multiplicative, M∗ be the set of completely multiplicative
functions.

Let

M = {f ∈ M | f(n) ∈ N for every n ∈ N}, M∗ = M∩M∗.

One can easily show that

if f1 ∈ M, f2 ∈ M∗, h(n) = f2(f1(n)) ∈ M.

Let MC be the set of those f ∈ M, for which

f(p) = constant for every p ∈ P.
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Let
τ (k)(n) = ♯{n = u1 · · ·uk | uj ∈ N, j = 1, . . . , k}.

It is clear that τ (k)(p) = k if p ∈ P, and so τ (k) ∈ MC .

It is known furthermore that∑
n∈N

τ (ℓ)(n)

ns
= ζ(s)ℓ (Re s > 1).

Furthermore, we have

τ (ℓ)(pr) =

(
r + ℓ− 1

ℓ− 1

)
if p ∈ P.

Let τ(n) = τ (2)(n). Then the above relation implies that

τ(pr) = r + 1.

2. On the iteration of τ (n)

Let τ1(n) = τ(n), τr+1(n) = τ(τr(n)) for every r, n ∈ N. Let

Dr(x) =
∑
n≤x

τr(n).

Bellman and Shapin [2] formulated the conjecture that

Dr(x) = (1 + ox(1))x logr x.

This conjecture is proved up to r ≤ 4. We refer to the works of P. Erdős [3] for
case r = 2, of I. Kátai [6], [7] for r = 2, 3, of P. Erdős and I. Kátai [4] for case
r = 4.

The basic observation to get these results was the following:

If n = Km, µ(m) ̸= 0, (K,m) = 1, then τ(n) = τ(K)2ω(m).

3. The Selberg–Delange method. The method of K. Ramachandra

Let K ∈ N be fixed,

NK(x) =
∑
m≤x

(m,K)=1

|µ(m)|.
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Let z ∈ C, |z| < 2, s ∈ C, Re s > 1. Let

FK(s, z) =

∞∑
m=1

(m,K)=1

zω(m)|µ(m)|
ms

.

Then
FK(s, z) = aK(s, z)b(s, z)ζ(s)z,

where

aK(s, z) =
∏
p|K

1

1 + z
ps

,

b(s, z) =
∏
p∈P

(
1− 1

ps

)z(
1 +

z

ps

)
.

Hence, by using the standard method, we can deduce that

NK(x) =
6

π2

(∏
p|K

1

1 + 1
p

)
x+O(

√
x).

Let
NK(x, k) = ♯{m ≤ x : (m,K) = 1, ω(m) = k}.

Let

Θk(x) =
1

log x

(log log x)k−1

(k − 1)!
.

Repeating the argument of A. Selberg [11] we can deduce that

NK(x, k)

NK(x)
= Θk(x)

(
1 +O(

1

log log x
)
)

uniformly as

(3.1) k ≤ Rx := log log x+ ρx
√
log log x.

Here ρx → ∞, appropriately slowly. Especially, we obtain that

lim
x→∞

1

NK(x)
♯
{
m ≤ x : (m,K) = 1, µ(m) ̸= 0,

ω(m)− log log x√
log log x

< y
}
= Φ(y),

where

Φ(y) =
1√
2π

y∫
−∞

e−
u2

2 du

is the Gaussian law.
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By using the method of K. Ramachandra [10] and the observation of I.
Kátai [8] we can prove the following

Theorem A. Let ϵ > 0,K ∈ N be fixed. Then

max
x7/12+ϵ≤h≤x2/3

∣∣∣NK(x+ h, k)−NK(x, k)

h
− NK(x, k)

x

∣∣∣ ≤ c
Θk(x)

log log x

uniformly as k satisfies (3.1), ρx → ∞ slowly.

4. On the function R(n)

Let R(n) ≥ 0 for every n ∈ N, R(p) = A > 0 for every p ∈ P, and
assume that

R(up) = R(u)R(p) if (u, p) = 1.

It implies that if n = Km, (K,m) = 1, µ(m) ̸= 0, then R(n) = R(K)Aω(m).
Let

FK(s,A) =

∞∑
m=1

(m,K)=1

Aω(m)|µ(m)|
ms

.

From Theorem 1 of A. Selberg [11], we have

SK(x) =
∑
m≤x

(m,K)=1

Aω(m)|µ(m)| =

=
∏
p|K

1

1 + A
p

∏
p∈P

(
1− 1

p

)A(
1 +

A

p

)
− x(log x)A−1

Γ(A)
+

+O
(
x(log x)A−2

)
.

(4.1)

The error term is true up to K ≤ log x, say.

Let K be the set of squarefull integers. Let

E(x) =
∑
n≤x

R(n).

From (4.1) we obtain:

Theorem B. Assuming that R(K) = O(K1/4) (K ∈ K) we have

E(x) = dx
(
log x

)A−1

+O
(
x
(
log x

)A−2)
,

where

d =
1

Γ(A)

∏
p∈P

(
1− 1

p

)A(
1 +

A

p

) ∑
K∈K

R(K)

K

∏
p|K

1

1 + A
p

.
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5. On the distribution of τ (ℓ)(τ (k)(n))

Let

r(n) = τ (ℓ)(τ (k)(n)) ℓ, k ≥ 2.

Assume that n = Km, (K,m) = 1, µ(m) ̸= 0,K ∈ K.

Let k = πa1
1 · · ·πar

r , where π1, · · · , πr are distinct primes. Let τ (k)(K) =
= K1∆K,k, where (K1, k) = 1 and ∆K,k = πb1

1 · · ·πbr
r , bj ≥ 0.

Then

τ (k)(n) = K1

r∏
j=1

π
ajω(m)+bj
j .

For given K let

PolK(u) =

r∏
j=1

(
aju+ bj + ℓ− 1

ℓ− 1

)
.

Then we have

r(m) = τ (ℓ)(K1)PolK(ω(n)).

Let K ∈ K be fixed, NK(x) and NK(x, k) as in Section 3. Then we have

Theorem C. We have

max
x7/12+ϵ≤h≤x2/3

∣∣∣NK(x+ h, t)−NK(x, t)

h
− NK(x, t)

x

∣∣∣ ≤ c
Θt(x)

log log x

up to t ≤ log log x+ ρx
√
log log x.

We define the interval JK,x(u, v) as follows:

JK,x(u, v) =
[
PolK(log log x+ u

√
log log x, PolK(log log x+ v

√
log log x

]
.

From the previous results we have

Theorem D. Let K ∈ K, (u, v) ∈ (−∞,∞). Then

1

NK(x)
♯
{
m ≤ x : (m,K) = 1, µ(m) ̸= 0,

rK(Km)

τ (ℓ)(K1)
= PolK(ω(m)) ⊂ JK,x(u, v)

}
→ Φ(v)− Φ(u).

The same is true if m runs in the short interval [x, x + y] when x7/12+ϵ ≤
≤ y ≤ x2/3.
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6. New results

Theorem 1. Let H ∈ M, |H(n)| = 1 for every n ∈ N, furthermore H(p) = κ
for every p ∈ P, κ ̸= 1. Assume that Y = Y (x) ∈ [x7/12+ϵ, x2/3]. Then

lim
x→∞

1

Y

∑
x≤n≤x+y

H(τr(n)) → 0.

Proof. The first observation is the following.

(1) If κℓ = 1, then
∑ℓ−1

k=0 κ
j = 0

(2) If κ = e2πiα, α is an irrational number, then

lim
L→∞

inf
1

L

∣∣∣ L−1∑
h=0

κh
∣∣∣ = 0,

thus for every δ > 0 there exists an integer L = Lδ for which

1

Lδ

∣∣∣ Lδ−1∑
h=0

κh
∣∣∣ < δ.

We have∑
x≤n≤x+y

H(τr(n)) =
∑
K∈K

H(K)
∑

x≤Km≤x+y

(K,m)=1

κω(m)|µ(m)| =
∑
K∈K

H(K)ΣK .

Let T be a positive number. We have

(6.1)
∑
K∈K
K>T

|H(K)ΣK | ≤
∑

T<K≤y

y

K
+

∑
K∈K

y<K<x+y

1.

Since ∑
K∈K
K>u

1 ≤ c
√
u,

the right hand side of (6.1) tends to 0 as T → ∞.

Let δ > 0 be a given small number, T = Tδ be such a number for which the
right hand side of (6.1) is less than δ. We shall estimate

ΣK =
∑

x
K ≤m≤ x

K + y
K

(K,m)=1

κω(m)|µ(m)|
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for K ≤ Tδ. Let xK = x
K , yK = y

K . Then

x
7/2+ϵ/2
K ≤ yK ≤ x

2/3
K

holds if x is large enough.

We shall prove that

lim
x→∞

max
K≤Tδ

∣∣∣ 1

yK

∑
(m,K)=1

xK≤m≤xK+yK

κω(m)|µ(m)|
∣∣∣ = 0.

Let
Ux =

[
(1− σx)x2, x2 + ρx

√
x2

]
,

where x2 = log log x, ρx → ∞ and σx → 0 slowly.

From Theorem A we obtain that

max
K≤Tδ

1

yK

∑
(m,K)=1

ω(m) ̸∈Ux

|µ(m)| → 0 as x → ∞.

By using Theorem A we obtain that

ΣK = yK
∑
k∈Ux

κhρh(x) + o(yK).

Since

max
ℓ≤L

∣∣∣ρh+1(x)

ρh(x)
− 1

∣∣∣ → 0 as x → ∞,

therefore

ρh(x) =
1

L

L∑
ℓ=1

ρh+ℓ(x) + ox(1)

and so ∣∣∣ ∑
k∈Ux

κhρh(xK)
∣∣∣ ≤ 1

L

∑
t∈Ux

ρt(xK)|
t∑

j=1

κt−j | ≤ δ + ox(1).

Thus
1

yK

∣∣∣ΣK

∣∣∣ → 0 for every K ∈ K,K ≤ Tδ.

The proof of Theorem 1 is therefore complete. ■

The following theorem is a corollary of Theorem 1:
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Theorem 2. Let λ be the Liouville function, λ(r) = −1. Then

1

y

∑
x≤n≤x+y

λ(τr(n)) → 0 as x → ∞,

when x7/12+ϵ ≤ y ≤ x2/3.

Proof. We have λ(τr(p)) = λ(r) = −1. Thus, Theorem 2 is a special case of
Theorem 1. ■
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