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Abstract. We summarize some known results concerning the iterates of
multiplicative functions and prove two new results.

1. Introduction

We shall use the following standard notation: N, R and C. Let P the set

of primes. Let
w(n) = Z 1 and Q(n) = Z 1.

pln p*In
pEP pEP

Let M be the set of multiplicative, M* be the set of completely multiplicative
functions.

Let
M={feM | f(n)eN forevery neN}, M =MnM*
One can easily show that
if fieM, fo € M* hn)= fa(fi(n)) € M.
Let M¢ be the set of those f € M, for which

f(p) = constant for every p € P.
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Let
B ) =t{n=w-u | u; €N, j=1,... Kk}

It is clear that 7®)(p) =k if pe P, and so 7 € Mc.
It is known furthermore that
(4)( )
7 (n
> — = ¢(s)* (Res>1).
neN

Furthermore, we have

” r+0—-1\ .
T(e)(p)—< /o1 ) if peP.

Let 7(n) = 7?)(n). Then the above relation implies that

T(p") =r+1.

2. On the iteration of 7(n)

Let 71(n) = 7(n), 7v+1(n) = 7(7-(n)) for every r,n € N. Let

De(z) = 7(n).
n<xz
Bellman and Shapin [2] formulated the conjecture that
D, (z) = (14 04(1))zlog, x.

This conjecture is proved up to r < 4. We refer to the works of P. Erdés [3] for
case r = 2, of I. Kétai [6], [7] for r = 2,3, of P. Erdés and I. Kétai [4] for case
r=4.

The basic observation to get these results was the following:

If n=Km, u(m)#0, (K,m)=1,then 7(n)=7(K)2“™.

3. The Selberg—Delange method. The method of K. Ramachandra

Let K € N be fixed,
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Let z€C, |z|] <2,s€C,Res>1. Let

e Zw(m) wim
ST )
m=1
(m,K)=1
Then
FK(Sa Z) = aK(S7 Z)b(37 Z)C(S)z,
where 1
ot~ s
p|K p
1\~# z
b(s,z) = H (1 - E) (1—|— E)

peEP
Hence, by using the standard method, we can deduce that
6 1
Ni(z) = (H l)x +O(Va).

2
T p|K1+p

Let
Ng(z,k)=t{m < z: (m,K) =1, w(m) = k}.
bet o 1 (loglogz)**
k(@) = logz (k—1)!

Repeating the argument of A. Selberg [11] we can deduce that

NK(.’L‘,IC)

e :@k(g;)(1+o( 1 ))

loglog x
uniformly as
(3.1) k < R, :=loglogx + p,+/loglog z.

Here p, — oo, appropriately slowly. Especially, we obtain that

. 1 w(m) — loglog x
| _— <cz: K)=1 0, ——F———
Jim. NK(x)ﬁ{m <z (m,K) =1, p(m) #0, Toalos s
where
o ! ~5d
——J— e 2 du
(y) T

is the Gaussian law.

< y} = ®(y),
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By using the method of K. Ramachandra [10] and the observation of I

Kaétai [8] we can prove the following
Theorem A. Lete>0,K €N be fizred. Then
NK(x+h7k)7NK(z7k) _NK(Ivk) <e G)k(x)
h x ~ loglogx

max
z7/12+5§h§z2/3

uniformly as k satisfies (3.1), pr — oo slowly

4. On the function R(n)
A >0 forevery p e P, and

Let R(n) > 0 forevery n € N, R(p)

R(u)R(p) if (u,p)=1.
= R(K)A“(™),

assume that
R(up) =
It implies that if n = Km, (K,m) = 1, u(m) # 0, then R(n)
Let - )
ALL) m
)= 3 Al
m=1
(m,K)=1
From Theorem 1 of A. Selberg [11], we have
Yo A u(m)| =
m<x
(m, K):l
(4.1) 1\4 A r(logx)A~!
= 1--) (1+2) - +
H % pg) ( p) ( p) I'(A)

+0 (as(log z)Afz) .

The error term is true up to K < logx, say
Let K be the set of squarefull integers. Let
x) = Z R(n).

n<z

O(KY*) (K € K) we have

From (4.1) we obtain:
Theorem B. Assuming that R(K) =
A-1 A—2
E(z) dx(logm) +O(m(logx) ),
A/ A R(K) 1
)2y oy

where )
d=—T] (1—5
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5. On the distribution of 7 (7(*)(n))

Let
r(n) = 7 (T(k)(n)) 0k > 2.

Assume that n = Km, (K,m) =1,u(m) # 0, K € K.

Let k = 7" --- 7% where 71,--- ,m, are distinct primes. Let 7(*¥)(K) =

ro

= K1Ak j, where (K1,k) =1 and Ak, = ﬂ'lfl ceemlr by > 0.
Then

,
T(k)(n) - K H W;‘jw(m)erj.
j=1

For given K let
Polic(u) = ﬁ (aju +£bi_|1— - 1>.
j=1
Then we have
r(m) = 7O (K1) Polg (w(n)).
Let K € K be fixed, Nk (z) and N (z, k) as in Section 3. Then we have

Theorem C. We have

e NGB - Ng@ ) Nled)| 0@
@7/ 12 e <p<g2/3 h T loglog x

up to t < loglogx + pz+/loglogx.
We define the interval Jg . (u,v) as follows:
Jr x(u,v) = | Polg (loglog z + um, Polk (loglog = + m/@} .
From the previous results we have

Theorem D. Let K € K, (u,v) € (—o00,00). Then

1
Nk@ﬁ&ngxwmj3=Lumw#Q
m = Polg(w(m)) C JK,:,;(u,v)} = d(v) — B(u).

The same is true if m runs in the short interval [z, + y] when z7/12te <
<y< a3
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6. New results

Theorem 1. Let H € M, |H(n)| =1 for every n € N, furthermore H(p) = k
for every p € P, k # 1. Assume that Y =Y (x) € [x7/12¢ 2%/3]. Then

. 1
lim % Z H(7(n)) — 0.

z<n<z+y

Proof. The first observation is the following.
(1) It k' =1, then 34t w7 = 0

(2) If k = €2™* « is an irrational number, then

hm mf—‘ Z ‘

thus for every § > 0 there exists an integer L = L for which

5l X <o

We have
Y H(nm) =Y HUE) Y wMum)| =) HE)Sk.
z<n<z+y KeKk r<Km<z+y Kek

(K,m)=1

Let T be a positive number. We have

Y
(6.1) > H(EK)Sk| < % oL

KeKk T<K<y Kek
K>T y<K<z+y

Since

> 1<eva,

KeKk
K>u

the right hand side of (6.1) tends to 0 as T" — co.

Let § > 0 be a given small number, T' = Ty be such a number for which the
right hand side of (6.1) is less than §. We shall estimate

Sk= Y R u(m)

T<’m<K+K
(K,m)=1
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for K <Ts. Let 2 = %,yx = +. Then

7/24¢€/2 2/3
TR

holds if z is large enough.
We shall prove that

lim max
z—o0 K<Ts

1

— > )| <o,
L

T <MSTK+HYK

Let
Uz = {(1 — 04)T2, T2 + px\/552}7

where x9 = loglog z, p, — 0o and o, — 0 slowly.

From Theorem A we obtain that

1
max e Z |u(m)] -0 as z — oo.
(m,K)=1
w(m)gUy

By using Theorem A we obtain that

Sk =yx Yy K"pn(x) + o(yx).

keU,
Since
max M—l‘—)o as T — 00,
(<L | pp(z)
therefore
1 X
on(e) = 73 prsele) + 02 (1)
=1
and so
1 t
‘ 3 nhph(xK)‘ <1 Y )| YRI5+ 0,(1).
keU, teU, j=1
Thus 1
—‘ZK‘ — 0 forevery K e K, K <Ts;.
Yk
The proof of Theorem 1 is therefore complete. |

The following theorem is a corollary of Theorem 1:
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Theorem 2. Let A be the Liouville function, A\(r) = —1. Then

1
— g AM7r(n)) =0 as x — oo,
Yy r<n<z+y

when x7/12Fe <y < 22/3,

Proof. We have A(7.(p)) = A(r) = —1. Thus, Theorem 2 is a special case of
Theorem 1. n
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