
Annales Univ. Sci. Budapest., Sect. Comp. 56 (2024) 227–247

CELL-ORIENTED PROGRAMMING

Zoltán Horváth, Zoltán Porkoláb, Dániel Balázs Rátai

and Melinda Tóth (Budapest, Hungary)

Communicated by Péter Burcsi

(Received January 9, 2024; accepted June 18, 2024)

Abstract. In the currently existing distributed architectures, there are
different components that are optimized to fulfill different roles (e.g.
databases, message brokers, load-balancers) in the whole architecture. Dis-
tributed architectures are highly complex. Several competencies are needed
to be able to create and maintain such an environment. Furthermore, these
systems have strict limitations in performance optimization as well because
the interaction between the components is limited to their interfaces.
The Object-oriented programming (OOP) paradigm uses encapsulation to
bind together the data and the functions that manipulate the data. How-
ever, OOP does not encapsulate one very important factor, the process that
executes the functions themselves. (They are executed simply on threads.)
On the other hand, the actor model binds the process to the data, but it
does not have the high-level programming features of the OOP paradigm.
COP aims to encapsulate the process as well to the corresponding data
and functions and bring the best from these two approaches. With this
new programming approach, the COP aims to make it possible to create a
homogeneous system where all the nodes can form one single huge logical
computer, which makes the whole architecture much more simple. COP
aims to make it possible to write code to a distributed system as easy as we
would to one single computer and make distributed computing magnitudes
more effective, reliable, safe, and easier to code.

Key words and phrases: Distributed system, object-oriented programming, adaptive system.
2010 Mathematics Subject Classification: 68M14.

Supported by the ÚNKP-23-3 New National Excellence Program of the Ministry for Culture
and Innovation from the source of the National Research, Development and Innovation Fund.
Project no. TKP2021-NVA-29 has been implemented with the support provided by the
Ministry of Culture and Innovation of Hungary from the National Research, Development
and Innovation Fund, financed under the TKP2021-NVA funding scheme.
This work is a detailed version of a MaCS 2020 presentation.



228 Z. Horváth et al.

1. Introduction

Most of today’s organizations are moving aggressively to adopt more agile,
efficient software delivery and IT management practices to meet customers’
evolving expectations. While agile development teams are focused on speed
and agility, the traditional mantra of IT operations is maintaining application
stability, even if that means slowing down the development [26].

Autonomous teams can select the programming language best suited to
their project. This may include older languages like Java and C++, or rela-
tively new platforms and languages to support specific development use-cases
or design requirements (e.g., Node.JS, Go, and Rust). In other cases develop-
ment teams are eschewing traditional relational databases in favor of NoSQL
or document style data stores. These could be advantageous in projects where
data requirements are indeterminate or evolving and where speed and scalabil-
ity is more critical than up-front logical design and data integrity. Examples
include MongoDB, PostgreSQL, and Cassandra [26].

The variety of the necessary tools for solving a non-evident problem gener-
ates many other challenges. The team responsible for the delivery must have
well-skilled people for the many different competencies needed for the various
tools and languages, making the development of distributed systems very ex-
pensive. On the other hand, as complexity increases, the risk of having serious
security vulnerabilities might increase exponentially [29].

Moreover, we see the world moving towards a hybrid computing architecture
that includes large centralized cloud data centers, smaller regional edge data
centers, and even smaller, local edge micro data center sites. This environment
presents unique management challenges that, require a cloud-based software
management architecture to thrive in this complex ecosystem [11].

Building a centralized cloud-computing based infrastructure can be already
a highly complex problem to solve for many enterprises. Many architectural
questions have to be made respectively to the requirements that the system
needs to achieve. Often, huge teams, hundreds of developers or more are work-
ing on systems that can solve a single business problem. As 5G is increasing
the need for edge computing, the task of a developer is becoming an even more
complex problem. Therefore as designing, deploying, and maintaining modern
distributed systems becomes more and more complex, the necessity of radically
new, simple, and effective software solutions might increase drastically.

In this paper we propose a new programming approach, Cell-oriented Pro-
gramming, aiming to simplify the development of complex distributed applica-
tions.

When we write a standalone application, we do not need to care about fault
tolerance, consistency, atomic transactions [19], network throughput, latency,



Cell-oriented programming 229

containers, container orchestration, canary deployment, etc. Everything can
synchronously run in the memory; we only need to care with the core logic of
our application. The essence of the Cell-oriented Programming is what if we
would not have to care about all those things that make distributed scalable
computing so hard, and it would be as easy or close as easy as writing a
standalone application.

Cell-oriented Programming is based on the entities called Cells. Cells have
behavior and a state just like objects in OOP, but they are encapsulating the
corresponding process as well.

Just like living biological cells, the Cells in COP have a survival strategy,
and they are able to move between computing nodes or even spread themselves
to several nodes at the same time. (It is hard to find a helpful analogy to
a complex and abstract concept. In our case the cells are rather similar to
unicellular amoebas, which can highly change their shapes. However, even this
analogy would not be perfect, since the location of the cells is not concrete,
they can exist at multiple locations at the same time. There are no such objects
in nature, except in quantum physics, but that analogy would be confusing in
many other ways. Therefore we are using the cell analogy despite the imperfec-
tion.) This way, the Cells can optimize performance and ensure fault tolerance
at the same time. Furthermore, this way the architecture of the overall system
adapts automatically respective to the load that the system gets. Therefore
we have an automatically self-organized architecture with a bottom-up logic
instead of a classical manually designed top-down approach. Developers do
not need to care about all the architectural questions and decide about the
different components that should be used. They can just code as they would
write a standalone application, only in a bit different style than we got used to
in the case of Object-oriented Programming.

This paper is structured as follows. In Section 2 we will give a high-level
overview of the Cell-oriented Programming approach. The technical details of
the possible implementation are discussed in Section 3. In Section 4 we compare
the COP approach with the most relevant currently existing technologies and
frameworks. In Section 5 we discuss some examples of how the current tech-
nologies were used to solve problems related to the COP approach. Finally,
this paper concludes in Section 6.

2. The COP approach

In this section we describe the high level concept of Cell-oriented Program-
ming. More technical details about the implementation can be found in Sec-
tion 3.



230 Z. Horváth et al.

Cells are the fundamental building blocks of Cell-oriented Programming.
They can both process and store data, and they can also communicate with
other Cells. But they can also grow and shrink, they can move, and they
can hibernate themselves. Think about Cells like small living entities, like
biological cells. In the real physical world living organisms like cells have a
survival strategy. They want to avoid the potential dangers and try to survive
in a constantly changing environment. We can think about the Cells of COP
similarly. They try to survive in a continuously changing environment as well.
They are trying to avoid losing the data that they store, not to be able to
respond fast enough when they are asked or to use too much memory when
they are not in use.

To avoid these threats, they can do different things. If their state was read
too many times, they can grow to more and more computer nodes to be able
to balance their load. If they are becoming rather write-intensive, they can
shrink so that not so many nodes have to be involved in changing their state
all the time. If their hosting node is about to run out of memory or computing
sources, they can migrate to other safer nodes. If they are not used for a while,
they can automatically hibernate themselves to avoid consuming memory, just
keep themselves in the mass storage using the minimum necessary space. If
some other Cells from another computing node are always calling them, they
can move to that node to minimize the network traffic and process their task
locally and magnitudes faster.

All these activities can be done automatically. We do not need to code this
behavior into the Cells. They can have their own survival strategy. Therefore,
we do not need to care about such architectural questions. There is no need to
decide which process should run where, nor where the data should be stored, or
design everything with a top-down approach. The architecture optimizes itself
with a bottom-up logic. As a result, we got a huge single logical computer
built from many physical computers. We do not need to care about all the
complexity of the different computing nodes and environments.

Furthermore: client computers can also store and handle Cells; therefore,
they also can be part of the huge collective logical computer. This way, a
high performing, fault-tolerant, and cost-effective, architecture can be achieved,
which balances automatically between cloud-computing, edge-computing, and
P2P computing. Furthermore, this behavior can come out of the box; therefore,
writing code in a COP way can be close as easy as writing a standalone single
node application.

2.1. Nucleus & CellMemory

The cells have two basic components: the behavior (we will call it ”Nu-
cleus”) and the state (”CellMemory”). The Nucleus of the Cell contains the



Cell-oriented programming 231

Figure 1. Structure of the Cells

methods, and functions that belong to a Cell, and the CellMemory contains the
state of the Cell. The Nucleus is similar to a class in OOP and the CellMemory
is similar to a concrete instance.

Figure 2. Nuclei and CellMemories

2.2. Bubbles

Cells are encapsulating the data with the corresponding methods, just like
the Objects in the Object-oriented Programming. However, Cells are abstract
entities. They do not exist physically on a particular computer node. They
are spread across many different nodes. This gives them fault tolerance and
scalability at the same time.



232 Z. Horváth et al.

Despite the abstractness of the Cells, they still must exist somehow physi-
cally on the computing nodes. Therefore, we need to represent them physically
on the different computer nodes. These representations we call Bubbles. Bub-
bles are the physical replications of a Cell on the different computer nodes. A
Cell is built from Bubbles. The Bubbles of a Cell store the references of each
other, they communicate, they synchronize themselves, and they can repair
each other if there is a failure somewhere. In this way, Bubbles make the Cells
fault-tolerant. Bubbles contain both the CellMemory and a reference to their
Nucleus. Therefore they are not just storing a state, but they can make calcu-
lations on each node in parallel, ensuring that Cells are not only fault-tolerant,
but also horizontally scalable.

2.3. CellContainer

Cells are stored in the so-called CellContainers indirectly. The Bubbles
and the Nuclei that are building up the Cells and the Bubbles are stored in
CellContainers directly. In the general case, each computer node has one Cell-
Container, but they may contain more for testing purposes or for optimizing
to multicore CPU-s. All the operations or methods of any Cells can be trig-
gered through a CellContainer. Therefore CellContainers are responsible for
managing and encapsulating the corresponding state, behavior, and process of
the Cells. The CellContainers are also responsible for communication over the
network. The CellContainers together are building up a CellContainer Grid.
CellContainers can take place on a cloud servers, edge servers, and client com-
puting machines too. Therefore, cloud, edge, and P2P architectures are also
achievable and a combination of these as well.

2.4. COP structure

COP is built on Cells. We have seen that Cells are built from Bubbles, and
the Bubbles are stored in Containers. Figure 1. shows how this structure looks
like. We can see a CellContainer Grid that stands from four Containers. We
have four Cells altogether, and their Bubbles are spread across the Containers.

One might realize that Cells are abstract. They are just the sum of their
Bubbles. However, it is important to distinguish the Bubbles from Cells be-
cause we cannot make any references to Bubbles. The developer who writes
code in COP does not need to know anything about Bubbles. The developers
are using the Cells, and the Bubbles are generated and organized automatically.
Therefore, only Cells can be referenced and not Bubbles.

Figure 2. describes the inner structure of Container1 more detailed. The
Bubbles are storing the state of the Cell in the CellMemory, and they have a
reference to a Nucleus that contains the behavior, i.e. the methods of the Cell.
It is shown that more Cells can use the same Nucleus. This is similar like in the



Cell-oriented programming 233

case of the objects and classes. More Objects can be instantiated from the same
class. Here the Nucleus also represents the type of a Cell. However, Nuclei are
also Cells. They are special Cells that contain the code of the methods which
belong to their Cells. Their methods are automatically converted to in-memory
functions when they are created or changed. The Nucleus Cells have a factory
default Nucleus for handling these basic behaviors.

2.5. Encapsulation of the process

The OOP paradigm encapsulates the data with the corresponding functions.
COP has the same encapsulation, but it encapsulates the corresponding process
as well. This is necessary because COP is designed to execute in a distributed
environment where the executing process is not as trivial as in the case of the
OOP paradigm. OOP itself does not say anything about how the functions of
an object should be executed. However, in general, threads are used for this
purpose. Using threads for OOP is relatively simple, we have only a couple of
threads maximum that are used. COP, on the other hand, can be executed on
thousands of computing nodes, and managing the executing process is much
more complicated.

In the actor model [12] the actor is the universal primitive of concurrent
computation. It encapsulates the corresponding data, functions, and process.
However, none of them can be reached from the outside. Actors can only inter-
act through messages. Therefore the actor model does not provide a determin-
istic behavior, making the actor model based computation very complex. The
actor model also misses the abstraction level of the OOP, which also implies
limitations and added complexity [28].

To overcome those challenges we created a new concurrency model called
the Traquest model [24, 25]. Discussing the Traquest model in more detail
would be out of scope in this paper, but it can be reached in our previous
paper. Here we only mention the core properties of the Traquest model to help
the understanding of the COP programming approach.

Traquests are similar entities to promises [10], but it holds an extra refer-
ence for the nested Traquests, and it can form an atomic transaction through
building Traquests-trees.

The Traquests should have transactional behavior for many reasons. If the
developer has to care with all the variations when a Traquest fails that makes
the code much more complicated. Also, in many use cases, ACID [19] proper-
ties are a must-have. The Traquest model provides a fully ACID concurrency
model.

Every function in a Cell is executed in a Traquest, and every Cell can call
other Cells only through Traquests. This way the Cells are encapsulating their
corresponding processes, and they can be executed asynchronously, but still in



234 Z. Horváth et al.

a deterministic way. Therefore creating algorithms in a COP style can be as
straightforward and simple as writing a simple synchronous algorithm, but it
can even be distributed to many computing nodes.

3. Coding in COP

There are many programming languages built for OOP, functional program-
ming, procedural programming, or other paradigms. However, COP is a new
programming approach. We wanted to avoid creating a new programming
language and looked for a more optimal solution.

To only purely assemble a Cell, store its state in the memory, and execute
the relating methods is relatively easy to solve. Cells could be built manually
and injected into CellContainers. However, that would be very hard to code
and maintain. Therefore, we used the TypeScript and TypeScript decorators
[5], and built a library, called CellParser, which can convert Cells that are
coded in a nearly traditional OOP style into Cell Nuclei. This way, we could
avoid the need to create an entirely new programming language or a dialect
for TypeScript. However, there are three minor conventions of what needs to
be followed. Those conventions would not be necessary if a language was built
for COP, but still, we could make the syntax easy to read and write, and the
conventions are making a minor compromise. Figure 3. shows an example of
how the code of a Cell looks like.

Figure 3. Cell source code example



Cell-oriented programming 235

Figure 3. shows the implementation of a very simple Cell, i.e. the Nucleus of
a Cell. This Cell is a basic “Hello world!“ example, with an extra functionality
with a reference to itself to show how a reference to a Cell can be created.
When the hello() method of the Cell is called, it answers with a greeting,
but in a linked list we can call the siblings hello() method as well. Let us go
through step by step on the code and see how this works exactly.

We can simply use the @cell() decorator and extend the Cell class to
convert a class to a Cell’s Nucleus. The first convention we must follow is that
a class that will be converted can have a constructor, but it cannot have any
arguments. This is because the Nuclei are storing an initial state for the Cells.
To be able to figure out this initial state, the CellParser calls the constructor
of the class. Therefore, to be able to do that, only no-args constructors can be
used. However, if we want to describe some initialization logic, we can create
a so-called request function which can be responsible for that. We will talk
about request functions later.

3.1. Encapsulation and data hiding

The first thing we need to notice on Figure 3. is that there is not just one
class converted to a Cell but a class and an interface. Here we immediately
arrived at the second convention what we need to follow, which would not
be necessary if this would be a new programming language. Cells have data
encapsulation, just like objects. However, they have very different rules for
data hiding. In case of OOP, we have the visibility-scopes defined by the
private, public and protected keywords. In case of the Cells, we would
need remote, private and protected keywords and even the private and the
protected visibility restrictions should act differently. The remote interfaces like
the MainCellRemote interface are existing to be able to handle these modified
visibility scopes.

Remote scope. The remote scope properties are the only ones that Cells
can see from each-other. This is like the public scope of the objects, but there
is a difference. The remote scope properties can only be functions that are
returning Traquests.

We need the remote scope because Cells can exist on any nodes. It is not
ensured that a Cell can call the other Cell synchronously. Even if the called
Cell has an available Bubble locally, it still might be in a hibernated state, and
in that case, it requires time to read it from the storage.

Therefore, Cells can only reach each other asynchronously. This gives much
freedom because many things can be done between the calling of a Cell begins
and the answer arrives. The remote scope methods have two different types.
They can be request or reference methods.



236 Z. Horváth et al.

Request functions. The request functions are asking the Cell to make
some operations: calculating something, reading from its own state, or writing
something to its state, and they can also call other Cell’s remote functions.
We need to add a @request() decorator to our request functions, and the
CellParser will automatically consider the function as a request function.

Reference functions. In the OOP, we have the principle of composition.
This means that objects can store references to other objects and like that it is
possible to reach any directly or indirectly linked objects through the references
between the objects. In COP we also have composition. However, because Cells
are abstract entities and they can be physically anywhere, therefore referencing
to a Cell works differently than just storing a pointer in the memory. The
reference functions are similar to request functions, but they are restricted to
return a Request with a CellReference object that addresses the targeted Cell.

In the example code the sibling() reference function, however, does not
have a Traquest return type, but instead, it has a fully synchronous return type,
which seemingly gives back the referred Cell itself. This is one of the features
that make COP very easy to code. The asynchronous behavior of a reference
function is hidden. It can be called like a normal synchronous function. Since
there is always a request function at the end of the references, it was possible
to achieve this. Therefore, no nested callbacks are needed. This makes the
code very clean and easy to write.

To create a reference function, we need to add the @reference() decorator
to the function. To hide the asynchronous behavior of the reference function we
should use the cellRefer() function. This function requires an asynchronous
Request with a CellReference object as an argument and returns with the same
object, but it fakes the type, and it says that the return type is the remote
interface that belongs to the referenced Cell. This way, TypeScript believes it
is a standard object reference, and it can still recognize potential syntax errors
compile time.

3.2. Proposed UML extension for COP

The Unified Modelling Language (UML) [14] has notations for OOP, which
is very useful when we want to discuss how an object-oriented architecture
works. We believe that it would be useful for COP as well, but UML has no
components for that since COP is a new programming approach.

Therefore, we propose an extension to UML with new notations to describe
the elements of COP. Of course, at this moment, these are not official compo-
nents of the UML, these are just recommendations, but these new notations are
very useful to be able to talk about COP. We will investigate in the future how
to handle these with standard UML elements or extensions. Figure 4. shows
an example, how these notations look like.



Cell-oriented programming 237

Figure 4. COP extensions for UML

Please remember, that even though in COP there are protected and private

visibility scopes just like in OOP, but their meaning is different.

4. Comparison with existing technologies

To investigate how a suitable scalable backend is achievable, there are sev-
eral architectures that should be examined. First, we present a use-case exam-
ple, and next, we investigate the potential alternative technologies.

Exemplary is use case. However, COP is a general-purpose programming
approach; it is worth examining it through a concrete use case example. COP
can provide most of the benefits when facing problems that require complex
real-time, high throughput, and low latency systems. Such a use can be a real-
time IoT navigation service. IoT devices can be consumer drones, smartphones,
smart watches, or any devices that can capture its location, send it to the cloud,
and modify its behavior based on other IoT devices’ location.

Let us say we need to build an IoT device control service (IDCS) where IoT
devices located nearby each-other can locate themselves. Suppose that each
device has to continuously send its own location to the IDCS, and the IDCS
has to reply with the location of the 10 nearest devices. Suppose that each
device can update its location 20 times each second, and the latency in getting
the newest location of the 10 nearest devices should not be bigger than 200 ms.
Suppose we use an octree [18] space partitioning algorithm for partitioning the
location coordinates in the 3D space.

In COP, we can easily create Cells for the nodes in the octree and references
to the other nodes. The neighboring cells will automatically be optimized for
the same computing nodes, and most of the operations will happen in-memory
time.



238 Z. Horváth et al.

Multitier architectures. Probably the most standard solution for cre-
ating scalable backends is the multitier architecture [22]. In a multitier archi-
tecture, the applications must communicate with the databases to change or
read the global state. Every read or write operation implies a message on the
network. Therefore, no matter how efficient the database is, simply only com-
municating with the databases generates too much load. Pipelining [27] could
be a possible solution in theory, but since we are using octree, many operations
depend on each other. When we modify the tree structure of an octree, we
need to read the properties of a node to decide if new nodes should be created
or existing ones should be erased, and we need to do this in many iterations. If
we need to reach the database in each iteration, the latency will be very high,
and we have limitations in pipelining.

For the sake of simplicity let us use a quadtree example instead of octree.
Suppose that we need to modify a node and therefore we need a function
called setNode with the following signature: setNode(address,properties).
Suppose we have the following function call:
setNode("3120",someProperty). This single function call will implicate the
following operations:

1. Get the root node =⇒ 1 read operation

2. Get its 3rd child.

3. Check if it is a leaf in the tree.

4. If yes

� Create four children =⇒ 5 write operation

� Set the neighbors =⇒ 4 read & 8 write operation

� Recursively refresh the parents =⇒ ≈ 4 read & 3 write operation

5. else

� Get the 0th children and check if it is a leaf =⇒ 1 read operation

� Change the node property =⇒ 1 write operation

� Recursively refresh the parents =⇒ ≈ 4 read & 3 write operation

� Recursively check and erase homogeneous parents and modify the
neighbors =⇒ ≈ 6 read & 22 write operation

The above-mentioned quadtree structure can be visually represented by the
Figure 5. for better understanding.

This is a simple example with around 15 read and 20 write operations per
changing one single node. This means one device can easily generate more than



Cell-oriented programming 239

Figure 5. Modifying a quadtree

500 network operations per second to the database. It is no matter how many
types of databases are investigated, the multitier-architectures will not solve
the problem.

COP, on the other hand, optimizes its topology automatically. In most
cases, all the operations will be made inside one single computing node; there-
fore, there is no need to communicate on the network each time. For the fault
tolerance, the Bubbles have to be kept in synch of course, but those messages
can be bulked together (we can assume around three separate network mes-
sages will be necessary only). Calculating with the 200 ms latency, this means
approximately 15 messages are required instead of 500. The difference gets
even more interesting when we calculate with 1000 devices. In this case, with a
multitier architecture, we need 500 000 network messages per second. In com-
parison, COP will still implicate only 15 messages since only the operations for
synchronizing the Bubbles are necessary, and they can be bulked together.

This optimization can be achieved thanks to two factors. On one hand, the
survival strategy of the Cells optimizes the topology of the Bubbles, therefore
minimizing the necessary number of the network interactions. And on the other
hand the Traquest model has the buffering and lazy synchronization capabilities
which allows to await the messages and send them in larger bulked packages.

Actor model. The actor model originated in 1973 [13]. The Actor model
is a very widely used concept from programming to business process modeling.
In programming, it refers to a very effective concurrency model where the so-
called “Actors” behave as universal primitives of computation [12]. They can
store a small piece from the global state, and they can also process a small piece
of information. They are bound together with a message queue. Therefore they
can communicate with each other through messages. They are extremely fast
because if two Actors are on the same computer node, the whole messaging



240 Z. Horváth et al.

process between them can be done in the local memory. They are also flexible
to use and scalable since the Actors can take place on different nodes and move
between them to optimize their performance.

Actors can be super-efficient, although there are disadvantages as well. It
is tough to implement transactions with the Actor model in an efficient way
[1]. Actors can call each other very fast, but they are just blindly consuming
and generating messages. There is no mechanism for handling deadlocks or
scenarios when Actors are infinitely sending each other messages in an infinite
loop. It is very easy to write deadlocks, and it is hard to create a complex yet
robust system [28] since mastering the actor model requires a steep learning
curve.

The most popular Actor model implementations are aiming to reach fault
tolerance by the so-called Supervisor Strategy [17]. However, Supervisor Strat-
egy does not do anything with data loss coming from a failing node or data
corruption. Therefore, it is rather a kind of distributed error handling mecha-
nism for a non-blocking Actor based environment than a real solution for fault
tolerance solution.

If any node of the quadtree in the IDCS gets lost, that means the whole
branch is lost. Any inconsistency in the tree structure would have the same
results. Therefore ACID properties is a required property for this use case.

Thanks to location transparency [15], Actors can move across the nodes
to distribute the load and to optimize efficiency. However, when a particular
Actor gets a massive load that a single server cannot handle, there is no solution
since the Actors are atomic particles. They physically belong to one node at a
given time.

For example, in our use case, the root node of the IDCS would get a mas-
sive load because all the IoT devices would read the root node at least once
when they update their location or query the surrounding devices. If an actor
represents this root node, there would be no chance for it to scale horizontally.
Meanwhile, if we represent the root node with a Cell this horizontal scaling
happens automatically thanks to the abstract location.

All in all, the Actor model is an amazing technology. However, it still has
many limitations and it requires a relatively low-level coding and keeps many
of the problems for the developer.

In the case of IDCS, the octree space partitioning nodes could be built
from actors, and the representations of the IoT devices could be actors as well.
However, persisting the unused nodes, and solving the fault tolerance issues,
moving the actors between computing nodes should be done manually, making
the overall system very complex.

Serverless. The serverless architecture [23] is a very interesting concept.
FaaS services like the AWS Lambda or the Google Cloud Functions can make



Cell-oriented programming 241

the whole development and DevOps process much easier since they can scale
automatically. But the functions do not store any state, and they are using
external resources for the state storage just like the Business Logic Layer of
the multitier architectures; therefore, they have the same limitations.

Stream processing. Stream processing technologies like Kafka are also
interesting to investigate. On the Apace Kafka homepage, we can read the
following: ”Kafka is used for building real-time data pipelines and streaming
apps. It is horizontally scalable, fault-tolerant, wicked fast, and runs in produc-
tion in thousands of companies.” [2]. It seems perfect in every way for IDCS,
yet stream processing has its limitations. However, simple location data can
easily be converted into a data stream; the octree structure of the IDCS makes
it very hard to stream up octree nodes. The nodes are all individual records of
data, and they have references to many directions. The clients are randomly
moving amongst those directions, accessing them, and writing them. It is way
more complex than, for example, a video stream or a message queue. Kafka
uses so-called “Topics” to handle different streams at the same time [2]. For
the IDCS, every octree node could be a Topic, but Topics were not designed
for that. Topics are created to handle the streaming of even Gigabytes of data,
not to have millions of them, which are handling a couple of bytes. Therefore,
Kafka is apparently not the solution for this case either.

Batch processing There are powerful technologies for distributed batch
processing too, like MapReduce [7] or Spark. However, as its name indicates,
the problem is when we have real-time data. Even Spark Streaming only uses
micro-batches. Batch processing cannot solve the problem, and in the case of
the IDCS the data is generated absolutely in real-time by the users.

5. Further related work

Object-oriented programming. In the software development industry, it is a
common understanding that Object-oriented Programming as a program-
ming paradigm has four fundamental principles, which we also might call the
four pillars of Object-oriented Programming [4]. However, when reviewing the
body of work on OOP development, most authors simply suggest a set of con-
cepts that characterize OOP, and move on with their research or discussion.
Thus, they are either taking for granted that the concepts are known or im-
plicitly acknowledging that a universal set of concepts does not exist. Several
authors, asserting there is no clear definition of the essence of OOP, have called
for the development of a consensus [3].

Since a comprehensive comparison of the OOP paradigm and the COP
approach would be out of scope for this paper and might require further research
we restrict hereby for the so called four pillars of OOP.



242 Z. Horváth et al.

Abstraction. Nuclei are similar entities to Classes, and they can be de-
fined in a way that they are entirely stateless. In this case, Nuclei practically
behave as abstract Classes, which means abstraction is not a principle that
could differentiate COP from OOP.

Inheritance. Inheritance expresses “is-a” and/or “has-a” relationship be-
tween two objects. Using inheritance in derived classes, we can reuse the code
of existing super classes. In COP the same effect can be achieved by refer-
encing the Nuclei on each other; therefore, inheritance is a non differentiating
principle as well.

Polymorphism. It means one name many forms. Static polymorphism is
achieved using method overloading and dynamic polymorphism using method
overriding. Both hare similarly existing features of COP and OOP, and the
viability of generics is still up to be researched in COP. Polymorphism, as a
general concept, is not a differentiating factor either.

Encapsulation. In OOP encapsulation is the mechanism of hiding data
implementation by restricting access to public methods. Instance variables
are kept private and accessor methods are made public to achieve this. COP
encapsulates Cell variables and methods just as OOP, but it also encapsulates
the corresponding process. Therefore, COP must have completely different
scopes for information hiding as well since Cells can not modify the internal
behavior of an other Cell even if they share the exact same Nucleus and the a
Cell can be called only at its remote scope.

Self-adaptive systems for IoT. As COP can optimize the location of the Bub-
bles, it becomes a completely self-adaptive architecture. Self-adaptive systems
are highly used in the IoT sector and many other sectors already. However, in
the literature, we can mostly find use-cases where the system can scale hori-
zontally automatically adapt to the changes in the load, but the architecture
itself can not adapt to the changed requirements, and it is still designed man-
ually by a top-down approach. The article ”Self-adaptive IoT Architectures”
[21] investigates and compares several of such architectures but concludes no
solutions that can automatically detect, change, and optimize the pattern of
the architecture itself.

The authors in [9] highlight another important aspect of the self-adaptive
systems. Namely that realising the adoption of the system also can incur costs
and might reduce or eliminate the advantages of a self-adaptive architecture.
At COP the costs of the adoption depend on the efficiency of the algorithm
of the Cell survival strategy. Creating and optimizing this algorithm requires
further research; however, the migration of the Bubbles can be grouped, and
probably a highly optimal solution can be found later.

Self-adaptive microservice systems Microservice architecture is a very much
used approach in the industry since the separation of concerns makes it possi-



Cell-oriented programming 243

ble to design robust and easy to maintain distributed applications. However,
designing self-adaptive systems involves making design decisions about the en-
vironment while it is being observed and about the system itself, and then
selecting adaptation mechanisms that are thereafter enacted. In the context
of a microservice application, the design space for making self-adaptation de-
cisions is even more complex due to the large number of runtime components
and their independent and highly dynamic nature [20].

In the case of the COP approach, we do not need to face such problems.
The separation of concerns happens on the design pattern level, and we do
not need to deploy different services. Because the Nuclei are also Cells, they
can be deployed on the fly separately. Therefore similarly to the microservice
architectures we will not have a large monolith application, but still we can
avoid the complexity of the microservice solutions.

Natural computing There are many nature-inspired models of computation.
The article ”P Colonies with a Bounded Number of Cells and Programs” [6]
introduces a membrane computing method where ”cells are represented by a
collection of objects and rules for processing these objects, they are the basic
computing agents in this formal model of computing”. Our ”COP” method
is much less inspired literally by biological cells, their structure, and their
behavior. We had an abstract and complex model and the we have found
that ”cells” might be the least imperfect analogy. However, COP can not be
considered as a natural computing method as we first had the concept and later
we searched for an explanatory methodology. Also COP can not be considered
as a membrane computing method as it does not have any hierarchical or non-
hierarchical membranes. In COP all the cells are on the same hierarchical
levels. Using cells as an analogy that refers to a living entity is rather reflects a
model similar to OOP, where the objects can have survival strategies to adapt
to a changing environment.

6. Conclusion

It is well known that designing and developing a resilient, horizontally scal-
able distributed system is a highly complex task and will be even more complex
in the future. We discussed that the complexity of the distributed systems is
an enormous problem. It increases the cost and the risk of the development, it
makes it harder to make changes and work in an agile way therefore. Complex-
ity also results in unpredictable security vulnerabilities. Furthermore, as the
5G and edge computing is getting more and more widespread, the complexity
of the distributed systems will increase even more.

The necessity of radically new, simple, and effective software solutions might
increase drastically. Simplifying this process while keeping the performance
goals or even improving it is crucial.



244 Z. Horváth et al.

We have introduced a new way of creating distributed systems that are
built on top of the context of cells. We named this new approach Cell-oriented
programming (COP). COP is a concept that might bring a solution to the
complexity issue of the distributed systems. Cells are similar entities to objects
in OOP; however, cells are encapsulating the corresponding process as well, not
only the corresponding functions and data. This difference has led to many
conceptual changes and indicated a new programming approach for distributed
computing.

Significant progress was accomplished to create the first working prototype
of COP. A whole API was built to clean the concept in advance as much as
possible, and also some of the components are working and have been already
tested. It is easy to code with COP since it automatically handles all the
scalability issues and gives an environment where we can code just like we
would create a simple standalone application.

Meanwhile, COP has some extreme abilities. The performance could not be
tested yet, since a full prototype implementation is necessary to measure the
performance, but it is already possible to make some estimations. In a theoret-
ical use case of the IDCS, where 1000 devices are using a given computing node
at the same time, COP requires roughly 30,000 times fewer messages between
the computing nodes than an architecture using databases, due to many factors

� the topology optimization,

� managing the global state with high probability right next to the location
of the computing and not on separate nodes dedicated to the persistence,

� buffering the syncronization messages and ensuring full consistency with
the Traquest model.

We published an article regarding the theoretical background of the Traquest
model [25], the concurrency model for COP. It shows why such a performance
improvement is possible in much more detail.

In general, COP will even be able to not only scale on servers but on client
computers too, resulting in a lightning fast, easy to code and cost-effective
cloud/edge/peer-to-peer hybrid system. COP can eliminate the boundaries
between cloud, edge, and peer-to-peer computing by creating a bottom-up self-
organizing architecture that automatically decides about the location where the
information should be stored and processed without any manual intervention.

With further research and clarification, COP might even go beyond the lim-
itations of the Object-oriented Programming paradigm for distributed systems
and might have a chance to become an entirely new programming paradigm of
its own. In this paper, we showed the basics of this new concept to serve as a
foundation to establish this new programming approach direction.



Cell-oriented programming 245

References

[1] Akka, Transactors (scala) (2018)
https://doc.akka.io/docs/akka/1.2/scala/transactors.html

[2] Apache Software Foundation, Apace kafka (2017)
https://kafka.apache.org/

[3] Armstrong, D., The quarks of object-oriented development, Communi-
cations of the ACM (2006)
https://www.researchgate.net/publication/220425366

[4] Chandel, M., What are four basic principles of object oriented pro-
gramming? Medium (2018)
https://medium.com/@cancerian0684/what-are-four-basic-
principles-of-object-oriented-programming-645af8b43727

[5] Cherny, B., Programming TypeScript, O’Reilly Media Inc., 2019.

[6] Csuhaj-Varjú, E., M. Margenstern and G. Vaszil, P colonies with
a bounded number of cells and programs, Membrane Computing. 7th In-
ternational Workshop, WMC 2006, Leiden, The Netherlands, (2006)

[7] Dean, J. and S. Ghemawat, MapReduce: simplified data processing
on large clusters, Communications of the ACM, (2008)

[8] Dénes, T., Real face of János Bolyai, Notices of the American Mathe-
matical Society (2011)
http://www.ams.org/notices/201101/rtx110100041p.pdf

[9] Donckt, J.V.D., D. Weyns, M.U. Iftikhar and R.K. Singh, Cost-
benefit analysis at runtime for self-adaptive systems applied to an internet
of things application, ENASE 2018: Proceedings of the 13th International
Conference on Evaluation of Novel Approaches to Software Engineering,
(2018)

[10] Friedman, D. and D. Wise, The impact of applicative programming on
multiprocessing, International Conference on Parallel Processing, (1976)

[11] Gillott, I., The role of edge computing in 5g, Data Economy Magazine
(2018)
https://data-economy.com/the-role-of-edge-computing-in-5g/

[12] Hewitt, C., Actor model of computation, ArXiv (2015)
https://arxiv.org/vc/arxiv/papers/1008/1008.1459v8.pdf

[13] Hewitt, C., P. Bishop and R. Steiger, A universal modular actor
formalism for artificial intelligence, IJCAI (1973)
https://www.ijcai.org/Proceedings/73/Papers/027B.pdf

[14] Jakimi, A. and M. El Koutbi, An object-oriented approach to UML
scenarios engineering and code generation, International Journal of Com-
puter Theory and Engineering, (2009)

https://doc.akka.io/docs/akka/1.2/scala/transactors.html
https://kafka.apache.org/
https://www.researchgate.net/publication/220425366
https://medium.com/@cancerian0684/what-are-four-basic-principles-of-object-oriented-programming-645af8b43727
https://medium.com/@cancerian0684/what-are-four-basic-principles-of-object-oriented-programming-645af8b43727
http://www.ams.org/notices/201101/rtx110100041p.pdf
https://data-economy.com/the-role-of-edge-computing-in-5g/
https://arxiv.org/vc/arxiv/papers/1008/1008.1459v8.pdf
https://www.ijcai.org/Proceedings/73/Papers/027B.pdf


246 Z. Horváth et al.

[15] Kim, W.Y. and G. Agha, Efficient support of location transparency
in concurrent object-oriented programming languages, Supercomputing’95:
Proceedings of the 1995 ACM/IEEE Conference on Supercomputing,
(1995)

[16] Lightbend Inc., Akka quickstart with java (2018)
https://developer.lightbend.com/guides/akka-quickstart-java/

[17] Lightbend Inc., Fault tolerance (2018)
https://doc.akka.io/docs/akka/2.5.3/java/fault-tolerance.html

[18] Meagher, D., Geometric modeling using octree encoding, Computer
graphics and image processing (1982)

[19] Medjahed, B., M. Ouzzani and A. Elmagarmid, Generalization of
ACID properties, Purdue e-Pubs (2009)

[20] Mendonça, N.C., P. Jamshidi, D. Garlan and C. Pahl, Develop-
ing self-adaptive microservice systems: Challenges and directions, IEEE
Software (2019)

[21] Muccini, H., R. Spalazzese, M.T. Moghaddam and M. Sharaf,
Self-adaptive iot architectures: an emergency handling case study, ECSA
’18: Proceedings of the 12th European Conference on Software Architec-
ture: Companion Proceedings (2018)

[22] Pacifici, G., B. Urgaonka, P. Shenoy, M. Spreitzer and A. Tan-
tawi, An analytical model for multi-tier internet services and its applica-
tions, SIGMETRICS (2005)
http://lass.cs.umass.edu/papers/pdf/SIGMETRICS05.pdf

[23] Pekkala, A.,Migrating a web application to serverless architecture (2019)

[24] Rátai, D.B., Z. Horváth, Z. Porkoláb and M. Tóth, Traquest model
- a novel model for ACID concurrent computations, The 12th Conference
of PhD Students in Computer Science - Proceedings (2020)

[25] Rátai, D.B., Z. Horváth, Z. Porkoláb and M. Tóth, Traquest
Model, Acta Cybernetica, 25(2) (2021), 435–468.
https://doi.org/10.14232/actacyb.288765

[26] Ravichandran, A., K. Taylor and P. Waterhouse, DevOps for Dig-
ital Leaders, Springer Science+Business Media LLC (2016)

[27] Redis Labs Ltd., Redis documentation - Using pipelining to speedup
Redis queries (2020)
https://redis.io/topics/pipelining

[28] Vuckovic, J., What’s wrong with the actor model (2015)
https://jaksa.wordpress.com/2015/10/13/whats-wrong-with-the-
actor-model/

[29] Yovel, Y., Complexity is the real vulnerability (2015)
https://www.informationsecuritybuzz.com/articles/complexity-
is-the-real-vulnerability/

https://developer.lightbend.com/guides/akka-quickstart-java/
https://doc.akka.io/docs/akka/2.5.3/java/fault-tolerance.html
http://lass.cs.umass.edu/papers/pdf/SIGMETRICS05.pdf
https://doi.org/10.14232/actacyb.288765
https://redis.io/topics/pipelining
https://jaksa.wordpress.com/2015/10/13/whats-wrong-with-the-actor-model/
https://jaksa.wordpress.com/2015/10/13/whats-wrong-with-the-actor-model/
https://www.informationsecuritybuzz.com/articles/complexity-is-the-real-vulnerability/
https://www.informationsecuritybuzz.com/articles/complexity-is-the-real-vulnerability/


Cell-oriented programming 247

Z. Horváth, Z. Porkoláb, D.B. Rátai and M. Tóth
Eötvös Loránd University
Faculty of Informatics
Budapest
Hungary
hz@inf.elte.hu

gsd@inf.elte.hu

danielratai@inf.elte.hu

toth m@inf.elte.hu




	Introduction
	The COP approach
	Nucleus & CellMemory
	Bubbles
	CellContainer
	COP structure
	Encapsulation of the process

	Coding in COP
	Encapsulation and data hiding
	Proposed UML extension for COP

	Comparison with existing technologies
	Further related work
	Conclusion

