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Abstract. In this paper, we prove that the Hardy–Littlewood maximal
operator is bounded on the Orlicz–Lorentz–Karamata space LΦ,q,b(Rn).
More precisely, we give a sufficient condition for the boundedness of the
Hardy–Littlewood maximal operator on LΦ,q,b(Rn) when a Young function
Φ ∈ ∇2, 1 ≤ q ≤ ∞ and b is a slowly varying function.

1. Introduction

The aim and the idea of Karamata’s paper [13], which defined and gave the
basic properties of the new classes of functions, called slowly varying function.
Karamata proved some fundamental theorems such as the Representation The-
orem, the Uniform Convergence Theorem and the Characterization Theorem
(see [14]). These results are the basis for the theory and numerous applications.
In 2000, Edmunds et al. [4] introduced a new class of function spaces, that
is, Lorentz–Karamata spaces. we briefly recall the definition of the Lorentz–
Karamata space as follows (see Section 2 for any unexplained terminology): let
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0 < p < ∞, 0 < q ≤ ∞ and b be a slowly varying function. The Lorentz–
Karamata space Lp,q,b(Rn), consists of the set of all measurable functions f on
Rn with ∥f∥p,q,b < ∞, where

∥f∥p,q,b =


( ∞∫

0

(
t
1
p γb(t)f

∗(t)
)q dt

t

)1/q

if 0 < q < ∞,

supt>0 t
1
p γb(t)f

∗(t) if q = ∞.

By taking different p, q and b, these spaces generalize the classical Lebesgue
space, Lorentz spaces, Zygmund spaces, Lorentz–Zygmund spaces and the gen-
eralized Lorentz–Zygmund space. This class not only offers a more general
and unified insight for these families of spaces, but also provides a framework
in which it is easier to appreciate the central issues of different results, see
[3, 5, 6, 7, 11, 12, 15, 17] and the references therein.

As a generalization of the Lorentz–Karamata space, Hao et al. [9] intro-
duced the definition of Orlicz–Lorentz–Karamata spaces LΦ,q,b, where Φ is an
Orlicz function (A function Φ is said to be an Orlicz function, if it is non-
decreasing, Φ(0) = 0, Φ(t) > 0 for all t > 0 and Φ(t) → ∞ when t → ∞),
0 < q ≤ ∞ and b is a slowly varying function. Note that if b ≡ 1, the space
LΦ,q,b gives to the Orlicz–Lorentz space LΦ,q studied in [8]; if q = ∞, the space
LΦ,q,b becomes the weak Orlicz–Karamata space introduced in [19]; if q = ∞
and b ≡ 1, the space LΦ,q,b goes back to the weak Orlicz space showed in [16].
For more values of Φ, q and b, see Section 2.

The Orlicz–Lorentz–Karamata space is much more wider than the above
spaces. The development of different space theory enriches the theory of har-
monic analysis and the Hardy–Littlewood maximal operator has obtained a
mount of investigation. For example, Liu and Wang [16] studied the bounded-
ness of the Hardy–Littlewood maximal operator and other operators on weak
Orlicz spaces. Very recently, Hatano et al. [10] investigated the boundedness
of the Hardy–Littlewood maximal operator on Orlicz–Lorentz spaces, which
extended the result of [16]. As we all known, the Hardy–Littlewood maximal
operator has many elegant properties [2] and often plays a key role in many
quantitative estimations. It can control various operators appeared in harmonic
analysis, and therefore, its boundedness is of great importance. Motivated by
this, we study the Hardy–Littlewood maximal operator on Orlicz–Lorentz–
Karamata spaces in this article. More precisely, this paper is to show that
the Hardy–Littlewood maximal operator is bounded on the Orlicz–Lorentz–
Karamata space LΦ,q,b(Rn) for a Young function Φ ∈ ∇2, 1 ≤ q ≤ ∞ and b
is a slowly varying function. It is worthwhile to mention that our result im-
proves the boundedness of the Hardy–Littlewood maximal operator from Liu
and Wang [16] when b ≡ 1 and q = ∞ and Hatano et al. [10] when b ≡ 1,
respectively.
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At the end of this section, we make some conventions. Throughout this
paper, the symbol f ≲ g means that there exists a positive constant C such
that f ≤ Cg. If f ≲ g ≲ f , then we write f ≈ g and say that f is equivalent
to g. The constant Cp depends only on p and may be different from line to
line.

2. Preliminaries

In this section, we introduce some notations and lemmas that will be used
in next section.

2.1. The Hardy–Littlewood maximal operator

The Hardy–Littlewood maximal operator M is defined by setting, for every
f ∈ L1

loc(Rn) and every x ∈ Rn,

Mf(x) = sup
Q∋x

1

|Q|

∫
Q

|f(y)|dy,(2.1)

where the supremum is extended over all cubes Q ⊂ Rn, whose edges are
parallel to the coordinate axes of Rn, that contain x.

The well-known theorem of Hardy, Littlewood and Wiener states that if
f ∈ Lp(Rn), then

∥Mf∥p ≤ Cp,n∥f∥p 1 < p ≤ ∞,(2.2)

where the constant Cp,n depends only on p and n, see [18].

2.2. Young functions

For a function Φ : [0,∞] → [0,∞], let

a(Φ) = sup
{
t ≥ 0 : Φ(t) = 0

}
and b(Φ) = inf

{
t ≥ 0 : Φ(t) = ∞

}
.

An increasing function Φ : [0,∞] → [0,∞] is called a Young function, if it
satisfies the following properties:

(i) 0 ≤ a(Φ) < ∞, 0 < b(Φ) ≤ ∞;

(ii) limt→+0 Φ(t) = Φ(0) = 0;

(iii) Φ is convex on [0, b(Φ));

(iv) if b(Φ) = ∞, then limt→∞ Φ(t) = Φ(∞) = ∞;

(v) if b(Φ) < ∞, then limt→b(Φ)−0 Φ(t) = Φ(b(Φ)).
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A Young function Φ : [0,∞] → [0,∞] is said to satisfy the ∆2-condition or
the doubling condition, denoted by Φ ∈ ∆2, if there exists a constant α ≥ 1
such that

Φ(2r) ≤ αΦ(r), ∀ r > 0.

A Young function Φ : [0,∞] → [0,∞] is said to satisfy the ∇2-condition,
denoted by Φ ∈ ∇2, if there exists a constant α > 1, called the ∇2-constant,
such that

Φ(r) ≤ 1

2α
Φ(αr), ∀ r > 0.

Obviously, if Φ ∈ ∇2, then there exists a constant p ∈ (1,∞) such that the
function t → t−1/pΦ−1(t) is equivalent to a non-increasing function.

Lemma 2.1. ([10]) Let Φ be a Young function. Φ ∈ ∇2 if and only if there
exists a constant α > 1 such that

Φ−1(2αu) ≤ αΦ−1(u), ∀ u ≥ 0.

In this case, α can be taken as the ∇2-constant of Φ.

2.3. Slowly varying functions

A Lebesgue measurable function b : [1,∞) → (0,∞) is said to be a slowly
varying function, if for any given ϵ > 0, the function tϵb(t) is equivalent to a non-
decreasing function and the function t−ϵb(t) is equivalent to a non-increasing
function on [1,∞).

Let b be a slowly varying function on [1,∞). For convenience, we define

γb(t) = b(max {t, 1/t}), t ∈ (0,∞).

The useful properties on slowly varying function are given below.

Lemma 2.2. ([3]) Let b be a slowly varying function. Then the following
conclusions hold:

(i) For any given ϵ > 0, the function tϵγb(t) is equivalent to a non-decreasing
function and the function t−ϵγb(t) is equivalent to a non-increasing function on
(0,∞).

(ii) For any r > 0,
γb(rt) ≈ γb(t), t > 0.

2.4. Orlicz–Lorentz–Karamata spaces

Now we present the definition of Orlicz–Lorentz–Karamata spaces. Denote
by L0(Rn) the space of all measurable functions.
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Definition 2.1. Let Φ be an Orlicz function, b be a slowly varying function
and 0 < q ≤ ∞. The Orlicz–Lorentz–Karamata space LΦ,q,b(Rn), consists of
the set of all functions f ∈ L0(Rn) with ∥f∥Φ,q,b < ∞, where

∥f∥Φ,q,b =


( ∞∫

0

(
1

Φ−1(1/t)γb(t)f
∗(t)

)q dt
t

)1/q

if 0 < q < ∞,

supt>0
1

Φ−1(1/t)γb(t)f
∗(t) if q = ∞.

Here f∗(t) = inf
{
s > 0 : |{x ∈ Rn : |f(x)| > s}| ≤ t

}
(inf ∅ = ∞) is the non-

incre-asing rearrangement function of f on (0,∞).

Note that if Φ(t) = tp for 0 < p < ∞, the space LΦ,q,b gives to the Lorentz–
Karamata space Lp,q,b; if Φ(t) = tp for 0 < p < ∞ and b ≡ 1, the space LΦ,q,b

is the classical Lorentz space Lp,q. Also, if Φ(t) = tq for 0 < q < ∞ and b ≡ 1,
then the space LΦ,q,b is the usual Lebesgue space Lq.

3. Main results

We shall provide the boundedness of the Hardy–Littlewood maximal oper-
ator on the Orlicz–Lorentz–Karamata space.

Theorem 3.1. Let Φ be a Young function with Φ ∈ ∇2, 1 ≤ q ≤ ∞ and b be
a slowly varying function. If f ∈ LΦ,q,b(Rn), then

∥Mf∥Φ,q,b ≲ ∥f∥Φ,q,b.

Before proving Theorem 3.1, we recall the definition of the generalized
Lorentz space.

Definition 3.1. Let 0 < q ≤ ∞ and ϕ : (0,∞) → (0,∞) be a measurable
function. We define the generalized Lorentz space Λϕ,q(Rn) by the set of all
functions f ∈ L0(Rn) with the finite quasi-norm

∥f∥Λϕ,q
=


( ∞∫

0

(
ϕ(t)f∗(t)

)q dt
t

)1/q

if 0 < q < ∞,

ess sup
t>0

ϕ(t)f ∗(t) if q = ∞.

Remark 3.1. Let 0 < q ≤ ∞. If

ϕ(t) =
1

Φ−1(1/t)
γb(t),(3.1)

then Λϕ,q(Rn) is reduced to the Orlicz–Lorentz–Karamata space LΦ,q,b(Rn).
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Proposition 3.2. ([1, Corollary 1.9]) Let 1 ≤ q < ∞ and ϕ : (0,∞) → (0,∞)
be a measurable function. Then M is bounded on Λϕ,q(Rn) if and only if for
every r > 0,

∞∫
r

(ϕ(t)
t

)q dt

t
≲

1

rq

r∫
0

ϕ(t)q
dt

t
.(3.2)

Now we begin to prove Theorem 3.1.

Proof. Firstly, we prove the case of 1 ≤ q < ∞. It suffices to prove that ϕ,
given by (3.1), satisfies (3.2) of Proposition 3.2. Fix r > 0, we get

∞∫
r

( 1

tΦ−1(1/t)
γb(t)

)q dt

t
=

∞∫
1

( 1

rtΦ−1(1/rt)
γb(rt)

)q dt

t

and
r∫

0

( 1

Φ−1(1/t)
γb(t)

)q dt

t
=

1∫
0

( 1

Φ−1(1/rt)
γb(rt)

)q dt

t

by making change of variables. Let α be the ∇2-constant. By using Lemma 2.1
and Lemma 2.2, we have

∞∫
r

( 1

tΦ−1(1/t)
γb(t)

)q dt

t
≤

≤
∞∑
j=1

(2α)j∫
(2α)j−1

( 1

rtΦ−1(1/r(2α)j)
γb(rt)

)q dt

t
≲

≲
∞∑
j=1

(2α)j∫
(2α)j−1

( 1

r(2α)j−1Φ−1(1/r(2α)j)
γb
(
r(2α)j−1

))q dt

t
≤

≤
∞∑
j=1

( 1

r(2α)j−1Φ−1(1/r)

)q(
log(2α)j − log(2α)j−1

)
αqjγb

(
r(2α)j−1

)q ≈

≈ log(2α)
( 1

rΦ−1(1/r)
γb(r)

)q ∞∑
j=1

1

(2α)q(j−1)
· αqj ≈

≈ 1

rq

( 1

Φ−1(1/r)

)q

γb(r)
q
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and

r∫
0

( 1

Φ−1(1/t)
γb(t)

)q dt

t
≥

≥
∞∑
j=1

1

(2α)j−1∫
1

(2α)j

( 1

Φ−1((2α)j/r)
γb(rt)

)q dt

t
≥

≥
∞∑
j=1

1

αqj

( 1

Φ−1(1/r)

)q

· r

1

(2α)j−1∫
1

(2α)j

(
(rt)−

1
q γb(rt)

)q

dt ≳

≳
( 1

Φ−1(1/r)

)q

·
∞∑
j=1

( 1

(2α)j−1
− 1

(2α)j

)
· (2α)j−1 · 1

αqj
· γb

( r

(2α)j−1

)q

≈

≈
( 1

Φ−1(1/r)

)q

γb(r)
q

∞∑
j=1

1

αqj
≈

≈
( 1

Φ−1(1/r)

)q

γb(r)
q.

It follows from the above inequalities that ϕ satisfies (3.2).

Secondly, we prove the case of q = ∞. According to Theorem 3.4 in [10],
we know that if the inequality

ess sup
t>0

ϕ(t)

t

t∫
0

ds

ess sup
0<τ<s

ϕ(τ)
< ∞(3.3)

holds, then one can see that M is bounded on Λϕ,∞(Rn). Let ϕ be as in (3.1).
Now we verify that ϕ satisfies (3.3). Fix t > 0. Since Φ ∈ ∇2, then there exists
a constant p ∈ (1,∞) such that t−1/pΦ−1(t) is equivalent to a non-increasing

function on (0,∞). Hence, Φ−1(1/t)
(1/t)1/p

is equivalent to a non-decreasing function

on (0,∞). We estimate

γb(t)

tΦ−1(1/t)

t∫
0

1

sup0<τ<s
1

Φ−1(1/τ)γb(τ)
ds =

=
γb(t)

tΦ−1(1/t)

t∫
0

1

sup0<τ<s
1

Φ−1(1/τ) ·
1
τ · τγb(τ)

ds ≤
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≤ γb(t)

tΦ−1(1/t)

t∫
0

Φ−1(1/s) · s
s · γb(s)

ds =

=
γb(t)

tΦ−1(1/t)

t∫
0

Φ−1(1/s)

(1/s)1/p
1

s−
p−1
2p γb(s)

s−
p+1
2p ds ≲

≲
γb(t)

tΦ−1(1/t)

Φ−1(1/t)

(1/t)1/p
1

t−
p−1
2p γb(t)

t∫
0

s−
p+1
2p ds =

=
γb(t)

tΦ−1(1/t)

2p

p− 1

Φ−1(1/t)

γb(t)
t =

2p

p− 1
,

which proves (3.3). The proof is complete. ■

Especially for Φ(t) = tp (1 < p < ∞) in Theorem 3.1, we obtain the
following result.

Corollary 3.1. Let 1 < p < ∞, 1 ≤ q ≤ ∞ and b be a slowly varying function.
If f ∈ Lp,q,b(Rn), then

∥Mf∥p,q,b ≲ ∥f∥p,q,b.

If we take b ≡ 1 in Theorem 3.1, then the following results hold:

Corollary 3.2. ([10]) Let Φ be a Young function with Φ ∈ ∇2 and 1 ≤ q ≤ ∞.
If f ∈ LΦ,q(Rn), then

∥Mf∥Φ,q ≲ ∥f∥Φ,q.

Remark 3.2. We refer the reader to [16] for the boundedness of the Hardy–
Littlewood maximal operator on LΦ,∞(Rn) in the case of Φ ∈ ∆2 ∩ ∇2. It
is noteworthy that Φ does not need to satisfy Φ ∈ ∆2 in Corollary 3.2 when
q = ∞. Hence, our results improve the boundedness of the Hardy–Littlewood
maximal operator in [16].

When Φ(t) = tp (1 < p < ∞) in Corollary 3.2, we get the next conclusion.

Corollary 3.3. Let 1 < p < ∞ and 1 ≤ q ≤ ∞. If f ∈ Lp,q(Rn), then

∥Mf∥p,q ≲ ∥f∥p,q.

In particular, if we consider the case Φ(t) = tp and 1 < p = q ≤ ∞, we have
the boundedness of the Hardy–Littlewood maximal operator on the Lebesgue
space Lp(Rn), see (2.2).
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