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Abstract. The classical diffusive Brusselator model has been extensively
discussed even under the presence of certain types of discrete time-delays.
However, models assuming delayed feedback have only been studied under
certain highly restrictive conditions due to the computational complex-
ity. In this paper, the stability of the unique equilibrium solution of the
model is examined in a more general case, leaving the mentioned conditions
out of consideration. When this type of delay is introduced, the original
system of differential equations (system without delay) also substantially
changes. Therefore, the ordinary system is considered in the absence of
delay, and then it is examined whether the stability of the equilibrium so-
lution changes when delay is assumed. In the investigations the focus is
mainly on the existence of Hopf bifurcation.

1. Introduction

The importance of oscillations in biochemical systems has been emphasized
by a number of authors. One of the best known, the so-called Brusselator
model, is a theoretical model of a kind of autocatalytic reaction, first studied
by Prigogine and Lefever in 1968. The interesting and diverse behaviour of the
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model has led many researchers to investigate it analytically and numerically.
The kinetic system associated with the diffusion Brusselator model consists of
two differential equations

(1.1)
Ẋ = A+X2Y − (B + 1)X,

Ẏ = −X2Y +BX


where X and Y denote the concentrations of the interacting chemical species,
A > 0 and B > 0 indicate two control parameters during the reaction process.

However, there is little research focusing on system (1.1) assuming delayed
feedback control

(1.2)
Ẋ = A+X2Y − (B + 1)X + σ1X(· − τ),

Ẏ = −X2Y +BX + σ2Y (· − τ)


where σ1, σ2 ∈ (0, 1) refer to the delayed feedback parameters, which are the
strength of the feedback control. In the presence of diffusion, in [1] Alfifi studied
the occurrence of Hopf bifurcation in case of σ1 = σ2 numerically, in [5] Zuo
and Wei imposed a local delayed feedback control, in [2] Ji, Shen and Mao
investigated the σ2 = 0 case. So, the bifurcation analysis of the model in (1.2)
in the absence and presense of diffusion is not studied in general.

This paper is devoted to the study of a kinetic system without diffusion and
is organised as follows. Firstly, we consider the τ = 0 case and prove that the
model (1.2) has a unique equilibrium solution with positive coordinates. The
stability of the constant solution and the possibility of a Hopf bifurcation are
investigated. Then we discuss the same topics in the presence of delay, i.e. in
case of system (1.2).

2. Stability analysis and Hopf bifurcation

2.1. The system without delay

The studied model consists the following system of differential equations

(2.1)
Ẋ = A+X2Y − (B + 1− σ1)X,

Ẏ = −X2Y +BX + σ2Y.


Making the right hand sides of (2.1) equal to zero it is easy to see that X∗

is in the intersection of the null-clines

h1(X) :=
(B + 1− σ1)X −A

X2
and h2(X) :=

BX

X2 − σ2
(X > 0).
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If

• B + 1− σ1 ≤ 0, then for positive X we have h1(X) < 0;

• B + 1− σ1 > 0, then for positive X we have

h1(X) > 0 ⇐⇒ X >
A

B + 1− σ1
.

Since the equivalence

h2(X) > 0 ⇐⇒ X >
√
σ2

is valid for positive X, system (2.1) could have an equilibrium point (at least)
with positive coordinates (X∗, Y ∗) only if

X∗ > max

{
A

B + 1− σ1
,
√
σ2

}
.

Adding the right hand sides of (2.1) it is easy to see that

(2.2) Y ∗ =
(1− σ1)X

∗ −A

σ2

must hold. Thus, if σ1 ≥ 1 then system (2.1) has no feasible equilibrium,
because otherwise it would follow from (2.2) that Y ∗ < 0, which is a contradic-
tion. Finally, Y ∗ is positive if and only if X∗ > A/(1−σ1) holds, then, because
B + 1 − σ1 > 1 − σ1, system (2.1) has an equilibrium solution (at least) with
positive coordinates (X∗, Y ∗) if and only if

X∗ > max

{
A

1− σ1
,
√
σ2

}
.

Because
h1(X

∗) = h2(X
∗) ⇐⇒ p(X∗) = 0,

where

(2.3) p(x) := a3x
3 + a2x

2 + a1x+ a0 (x ∈ R)

with

a3 := 1− σ1, a2 := −A, a1 := −σ2(B + 1− σ1), a0 := Aσ2,

due to the Descartes’s rule of signs (cf. [3]) in case of B + 1− σ1 > 0 and

• σ1 < 1 the cubic polynomial of X∗ has zero or two positive roots;

• σ1 = 1 the quadratic polynomial of X∗ has exactly one positive root.
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Henceforth, it is assumed that

(2.4) σ1 < 1

holds. Due to the positivity of the parameters and the assumption (2.4) we
have

p(0) = Aσ2 > 0, p(
√
σ2) = −Bσ2

√
σ2 < 0, p

(
A

1− σ1

)
= − σ2AB

1− σ1
< 0,

and

(2.5) lim
x→+∞

p(x) = +∞

holds. Therefore, p has exactly two positive roots X1 and X2 such that

X1 ∈
(
0,min

{
√
σ2,

A

1− σ1

})
and X2 ∈

(
max

{
√
σ2,

A

1− σ1

}
,+∞

)
.
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Figure 1. The case of two intersection points with parameter values A = 1.340,
B = 5.180, σ1 = 0.026, σ2 = 0.706.
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Figure 2. The case of one intersection point with parameter values A = 1.340,
B = 5.180, σ1 = 1.000, σ2 = 0.706.
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On the other hand this means that

Y1 :=
(1− σ1)X1 −A

σ2
< 0, resp. Y2 :=

(1− σ1)X2 −A

σ2
> 0,

i.e. the equilibrium (X1, Y1) is not chemically feasible, but (X2, Y2) is feasible
(cf. Fig. 1). In the following the unique equilibrium is denoted by (X∗, Y ∗) :=
:= (X2, Y2) (cf. Fig. 2). This proves the following result.

Proposition 2.1. Assume that A, B, σ1, σ2 > 0. Then, system (2.1) has a
unique positive (chemically feasible) equilibrium (X∗, Y ∗) if and only if σ1 < 1
holds. Furthermore, X∗ is the largest root of the polynomial (2.3) and Y ∗ can
be calculated as (2.2).

Using the idea of the position of the root X∗, we can prove an other lower
bound for X∗ under certain conditions. We shall use this result later.

Lemma 2.1. If

(2.6) B > 1− σ1

holds then the greatest positive zero of the polynomial p can be estimated as
follows

(2.7) X∗ >
2A

B + 1− σ1
.

Proof. Assumption (2.6) implies that

p

(
2A

B + 1− σ1

)
= (1− σ1) ·

(
2A

B + 1− σ1

)3

−A ·
(

2A

B + 1− σ1

)2

−

−σ2(B + 1− σ1) ·
2A

B + 1− σ1
+Aσ2 =

=
8A3(1− σ1)

(B + 1− σ1)3
− 4A3

(B + 1− σ1)2
− 2Aσ2 +Aσ2 =

=
4A3

(B + 1− σ1)2
·
(

2(1− σ1)

B + 1− σ1
− 1

)
−Aσ2 =

=
4A3

(B + 1− σ1)3
· (−B + 1− σ1)−Aσ2 < 0.

Furthermore, since X∗ is the largest positive root of p and due to (2.5) the
estimation in (2.7) is valid. ■
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Linearizing system (2.1) at (X∗, Y ∗) we have

(2.8)

[
u̇
v̇

]
= J(X∗, Y ∗) ·

[
u
v

]
,

where

J(X∗, Y ∗) :=

[
−B − 1 + σ1 + 2X∗Y ∗ (X∗)2

B − 2X∗Y ∗ −(X∗)2 + σ2

]
is the Jacobian of the right hand side of system (2.1) evaluated at the equilib-
rium (X∗, Y ∗). The characteristic function of system (2.8) has the form
(2.9)

∆(2.8)(z) ≡ det

[
−B − 1 + σ1 + 2X∗Y ∗ − z (X∗)2

B − 2X∗Y ∗ −(X∗)2 + σ2 − z

]
≡

≡ z2 + d1z + d0 (z ∈ C),

where
d1 := (X∗)2 − σ2 +B + 1− σ1 − 2X∗Y ∗,

d0 := (X∗)2(1− σ1)− σ2(B + 1− σ1 − 2X∗Y ∗).

The (unique) chemically feasible equilibrium (X∗, Y ∗) is clearly asymptotically
stable if and only if d1 > 0 and d0 > 0. Denoting the bifurcation parameter by
µ, Hopf bifurcation occur at a certain value µ0 ∈ R if and only if d1(µ0) = 0,
d′1(µ0) ̸= 0 and d0(µ0) > 0 hold (cf. [4]). Applying this result we prove the
following

Theorem 2.2. Assume that conditions (2.4) and (2.6), furthermore

(2.10) 2σ1 + 3σ2 ̸= 2

hold. Then, for all values of the parameters (satisfying the assumption (2.10)),
a Poincaré–Andronov–Hopf bifurcation occurs at A = A∗

+, where

(2.11) A∗
+ := −

σ2(1 +B − (σ1 + σ2)) +
[
X∗

+

]2
(−2 + 2σ1 + σ2)

2X∗
+

with

(2.12) X∗
+ :=

√
−1 +B + σ1 + 2σ2 +

√
(−1 +B + σ1)2 + 8σ2B

2
,

If, in addition σ1 + σ2 > 1 + B also holds, then there is another critical value
of A defined as

(2.13) A∗
− := −

σ2(1 +B − (σ1 + σ2)) +
[
X∗

−
]2

(−2 + 2σ1 + σ2)

2X∗
−



Stability of a delayed Brusselator model 207

with

(2.14) X∗
− :=

√
−1 +B + σ1 + 2σ2 −

√
(−1 +B + σ1)2 + 8σ2B

2

such that the unique positive equilibrium undergoes a Poincaré–Andronov–Hopf
bifurcation when A varies and passes through A∗ ∈ {A∗

−, A
∗
+}.

Proof. Emphasising the dependence of the coordinates X∗, Y ∗ and the
coefficients d0 and d1 on the bifurcation parameter A we introduce the notations

X∗ = X∗(A), Y ∗ = Y ∗(A), d0 = d0(A), d1 = d1(A).

As a first step, the existence of a critical value A∗ is shown, such that

(2.15) d1(A
∗) = [X∗(A∗)]2 − σ2 +B + 1− σ1 − 2X∗(A∗)Y ∗(A∗) = 0

holds. Based on the equations

X = f1(X,Y ) := A+X2Y − (B + 1− σ1)X,

Y = f2(X,Y ) := −X2Y +BX + σ2Y


the identities

Y ∗ =
(1− σ1)X

∗ −A

σ2
and Y ∗ =

BX∗

[X∗]2 − σ2

hold at the same time. Substituting Y ∗ = BX∗/([X∗]2−σ2) into the equation
(2.15), we have that d1(A

∗) = 0 holds if and only if x = X∗(A∗) is the root of
the fourth order polynomial

g(x) := x4 + x2(1−B − σ1 − 2σ2) + σ2(σ1 + σ2 − 1−B) (x ∈ R).

Introducing z := x2 it is obvious that the equation g(x) = 0 has a positive
solution if and only if the second order polynomial

q(z) := z2 + q1z + q0 (z ∈ R)

has a positive root, where

q1 := 1−B − σ1 − 2σ2 and q0 := σ2(σ1 + σ2 − 1−B).

The discriminant of q is positive due to the positivity of B and σ2, because

q21 − 4 · q0 = (−1 +B + σ1)
2 + 8σ2B,

consequently q has two real roots. Studying the sign of the coefficients q1 and
q0 it can be observed that
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• q(z) ̸≡ z2 under assumption (2.10);

• in case of q0 = 0, the equality B = 1 − σ1 − σ2, and consequently the
inequality 1 − σ1 < σ2 holds, hence q1 = 2 − 2σ1 − 3σ2 < −σ2 < 0, and
thus the polynomial q(z) = z2+q1z has exactly one positive root, namely
−q1;

• similarly, if q1 = 0 holds, then B = 1 − σ1 − 2σ2 > 0 implies that
q0 < −σ2 < 0, hence the polynomial q(z) = z2 + q0 has one positive root√
−q0;

• q0 and q1 cannot be positive simultaneously, since the inequalities

1−B − σ1 − 2σ2 > 0 and σ2(−1−B + σ1 + σ2) > 0

would make −2B − σ2 > 0, which contradicts to the positivity of B and
σ2;

• in case of q0 < 0, the polynomial has exactly one positive root due to the
Descartes rule of signs;

• in case of q0 > 0 and q1 < 0, q has two positive roots due to the quadratic
formula.

In summary, q has one or two positive real root(s) having the form

z± :=
−q1 ±

√
q21 − 4q0
2

=
−1 +B + σ1 + 2σ2 ±

√
(−1 +B + σ1)2 + 8σ2B

2
,

and z− < 0 < z+ and z+ > z− > 0 provided q0 ≤ 0 and q0 > 0, respectively.
This leads to the fact that the fourth order polynomial g has one or two positive
roots, more precisely in case of

� σ1 + σ2 ≤ 1 + B, the polynomial g has exactly one positive root, which
is X∗

+ defined in (2.12);

� σ1+σ2 > 1+B, g has two positive roots: X∗
+, resp. X

∗
− defined in (2.12),

resp. (2.14).

Henceforth, let X∗ ∈ {X∗
+, X

∗
−}.

On the other hand, substituting Y ∗ = ((1−σ1)X
∗−A∗)/σ2 into the equation

d1 = 0, we obtain that for the critical value A∗ the equality

2A∗ ·X∗ + σ2(1 +B − (σ1 + σ2)) + [X∗]2(−2 + 2σ1 + σ2) = 0

must hold, i.e. d1(A) can be zero only if A = A∗ with

A∗ = −σ2(1 +B − (σ1 + σ2)) + [X∗]2(−2 + 2σ1 + σ2)

2X∗ .

Therefore, using the formulas X∗
+ and X∗

− we conclude that in case of
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� σ1 + σ2 ≤ 1 +B, there is exactly one solution of the equation d1(A) = 0
at A = A∗

+, where A∗
+ is defined in (2.11);

� σ1 + σ2 > 1 + B, there exist two solutions of d1(A) = 0: A∗
+, resp., A

∗
−

defined in (2.11), resp. (2.13).

Straightforward calculation shows that d1(A) = 0 implies d0(A) > 0, thus
it is enough to study the derivative of d1(A) at A = A∗ with A∗ ∈ {A∗

+, A
∗
−}.

The quantity d′1(A
∗) is calculated using the implicit function theorem. We show

that X∗ is a continuously differentiable function of A on the interval (0,+∞).
For this purpose, we denote the polynomial p in (2.3) by

P (x,A) := (1− σ1)x
3 −Ax2 − σ2(1 +B − σ1)x+Aσ2,

(x ∈ (
√
σ2,+∞), A ∈ (0,+∞))

thereby emphasising its dependence on x and A. Obviously, P ∈ C1(R2),
and X∗ is a real-valued function of A following from the uniqueness of the
equilibrium point, furthermore for all A ∈ (0,+∞) the (clearly determined)
point (X∗(A), A) is on the zero level curve of P , i.e. P (X∗(A), A) = 0 holds
for all A ∈ (0,+∞). This also means that the graph of the function X∗ lies on
the level curve P (x,A) = 0.

The derivative of P w.r.t. the first variable has the form

(2.16) ∂xP (x,A) = 3x2(1− σ1)− 2Ax− σ2(1 +B − σ1).

Following from the fact that P (X∗, A) = p(X∗) = 0, i.e.

(1− σ1)[X
∗]3 −A[X∗]2 − σ2(1 +B − σ1)X

∗ = −Aσ2

and
(1− σ1)[X

∗]3 −A[X∗]2 +Aσ2 = σ2(1 +B − σ1)X
∗

hold, the partial derivative ∂xP (x,A) can be simplified after the substitution
x = X∗ as follows

∂xP (X∗, A) = 3[X∗]2(1− σ1)− 2AX∗ − σ2(1 +B − σ1) =

= [X∗]2(1− σ1)−AX∗ − σ2(1 +B − σ1)+

+2(1− σ1)[X
∗]2 −AX∗ =

=
(1− σ1)[X

∗]3 −A[X∗]2 − σ2(1 +B − σ1)X
∗

X∗ +

+2(1− σ1)[X
∗]2 −AX∗ =

=
−Aσ2

X∗ + 2(1− σ1)[X
∗]2 −AX∗ =

=
2(1− σ1)[X

∗]3 −A[X∗]2 −Aσ2

X∗ .
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We are going to show that ∂xP (X∗, A) ̸= 0 holds. Indeed, p(X∗) = 0 and

(2.17) 2(1− σ1)[X
∗]3 −A[X∗]2 −Aσ2 = 0

imply
(1− σ1)[X

∗]3 + σ2(1 +B − σ1)X
∗ − 2Aσ2 = 0.

Using Lemma 2.1 we have

(1− σ1)[X
∗]3 + σ2(1 +B − σ1)X

∗ − 2Aσ2 > (1− σ1)[X
∗]3 > 0

which has the consequence that ∂xP (X∗, A) cannot vanish. Therefore, as a

consequence of the implicit function theorem, for all Ã ∈ (0,+∞) there exists
a neighbourhood KÃ ⊂ (0,+∞) and a continuously differentiable function
φ ∈ C1(KÃ) such that x = φ(A) holds on KÃ. Thanks to the uniqueness of X∗

and the uniqueness of the function φ, φ ≡ X∗ is true on any neighbourhoodKÃ,
hence X∗ ≡ φ on (0,+∞), which has a consequence that X∗ is a continuously
differentiable function of A on the interval (0,+∞). The derivative of X∗(A)
is calculated as

x′(A) = −∂AP (x,A)

∂xP (x,A)
=

x2 − σ2

(1− σ1)x2 + σ2(1 +B − σ1)
,

consequently (X∗)′(A∗) = x′(A∗) > 0.
Using the fact that

Y ∗(A) =
(1− σ1)X

∗(A)−A

σ2
,

d1(A) can be written in the form

d1(A) =
σ2 − 2(1− σ1)

σ2
· [X∗(A)]

2
+

2A

σ2
·X∗(A) + 1 +B − σ1 − σ2,

therefore the derivative of d1 is given as follows

d′1(A
∗) = 2 · σ2 − 2(1− σ1)

σ2
· (X∗(A∗))

′ ·X∗(A∗)+

+
2A∗

σ2
· (X∗(A∗))

′
+

2

σ2
·X∗(A∗) =

=
2

σ2
· −P (X∗(A∗), A∗) + σ2X

∗(A∗)([X∗(A∗)]
2
+ 2− 2σ1 − σ2)

(1− σ1) [X∗(A∗)]
2
+ σ2(1 +B − σ1)

=

= 2X∗(A∗) · [X∗(A∗)]
2 − σ2 + 2(1− σ1)

(1− σ1) [X∗(A∗)]
2
+ σ2(1 +B − σ1)

> 0.

Hence, d′1(A
∗) > 0 for A∗ ∈ {A∗

+, A
∗
−}, which completes the proof. ■
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Example 2.3. Set B = 8.23000, σ1 = 0.22000 and σ2 = 0.06000. Then
σ1 + σ2 ≤ 1 + B, therefore at A∗ = 1.97594 the unique positive equilibrium
undergoes a Poincaré–Andronov–Hopf bifurcation. Fig. 3 shows the solution
of system (2.1) with A = 1.97000 and A = 1.98000 and with initial conditions
X0 = 2.70000, Y0 = 3.00000.
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Figure 3. Solutions of system (2.1) with parameter values B = 8.23, σ1 = 0.22,
σ2 = 0.06 and A = 1.97 (top image) resp. A = 1.98 (bottom image) and initial
conditions X0 = 2.70, Y0 = 3.0.

2.2. The system with positive delay

In this section the stability of the equilibrium of the Brusselator model
with delayed feedback control, i.e. system (1.2) is studied. We assume positive
initial conditions

Φ = (Φ1,Φ2) = {Φ ∈ C([−τ, 0],R2
+) : Φ1(θ) = X(θ),Φ2(θ) = Y (θ)},

where Φi(θ) > 0, (θ ∈ [−τ, 0], i ∈ {1, 2}).
The linearized system (1.2) at the equilibrium (X∗, Y ∗) has the form[

u̇
v̇

]
= A

[
u
v

]
+B

[
u(· − τ)
v(· − τ)

]
,
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where

A :=

[
−B − 1 + 2X∗Y ∗ (X∗)2

B − 2X∗Y ∗ −(X∗)2

]
and B :=

[
σ1 0

0 σ2

]
,

and then the characteristic function is

(2.18) ∆(z; τ) := z2+a1z+a0+e−zτ ·(b1z+b0)+c ·e−2zτ (z ∈ C, τ ≥ 0),

with

a1 = (X∗)2 − 2X∗Y ∗ +B + 1, a0 = (X∗)2,

b1 = −(σ1 + σ2), b0 = −σ1(X
∗)2 + σ2(2X

∗Y ∗ −B − 1), c = σ1σ2.

Here we assume that

∆(z; 0) = z2 + (a1 + b1)z + a0 + b0 + c (z ∈ C)

is Hurwitz-stable, i.e. all its roots have negative real part. Following from the
Routh-Hurwitz stability criterion this is true if and only if the coefficients of
the above polynomial are positive, i.e.

(2.19) (X∗)2 − σ2 +B + 1− σ1 − 2X∗Y ∗ > 0,

and

(2.20) (1− σ1)(X
∗)2 + σ2(−B − 1 + σ1 + 2X∗Y ∗) > 0

hold. In the following theorem, we give a necessary and sufficient condition for
the change in stability due to the delay.

Theorem 2.4. Assume that (2.19) and (2.20) hold., i.e. the polynomial
∆(z; 0) is Hurwitz stable. Then, the stability of ∆(z; τ) changes if and only
if the polynomial

R(ω) := R0 +R2ω
2 +R4ω

4 +R6ω
6 + ω8 (ω ∈ R)

with coefficients

R0 := ([X∗]
4 − σ2

1σ
2
2)

2 −A2
σ1, σ2

([X∗]
2 − σ1σ2)

2,

R2 := −2Aσ2, σ1
·Aσ1, σ2

([X∗]
2 − σ1σ2)+

+2(A2
1, 1 − 2 [X∗]

2
)([X∗]

4 − σ2
1σ

2
2)−

−(A1, 1 ·Aσ1, σ2
− (σ1 + σ2)([X

∗]
2
+ σ1σ2))

2,

R4 := 2([X∗]
4 − σ2

1σ
2
2) + (A2

1, 1 − 2 [X∗]
2
)2 −A2

σ2, σ1
+

+2(σ1 + σ2)((σ1 + σ2)([X
∗]

2
+ σ1σ2)−A1, 1 ·Aσ1, σ2

),

R6 := −4 [X∗]
2
+ 2A2

1, 1 − (σ1 + σ2)
2
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has a nonzero real root, where

Ak,l := k · [X∗]2 + l · (1 +B − 2X∗Y ∗).

Proof. Based on our previous work (cf. [4]) the stability of the quasi-
polynomial changes if and only if the polynomial

R(ω) = (a0 − c)2(a0 − b0 + c)(a0 + b0 + c)+

+
[
2b0(b0 − a1b1)(a0 − c) + 2(−2a0 + a21)(a0 − c)(a0 + c)−

− (a1b0 − b1(a0 + c))2
]
ω2+

+
[
6a20 + a41 − b20 − a21b

2
1 + 2a0(−2a21 + b21) + 2(b21 − c)c

]
ω4+

+
[
−4a0 + 2a21 − b21

]
ω6 + ω8 =

= R0 +R2ω
2 +R4ω

4 +R6ω
6 + ω8 (ω ∈ R)

has a nonzero real root ω∗, such that F (ω∗) < 0 and G(ω∗) < 0 hold, where

F (ω) = (−b20 + (a0 + c)2) + (a21 − 2(a0 + c))ω2 + ω4,

G(ω) = (a0 − c)2 + (a21 − b21 − 2(a0 − c))ω2 + ω4.

Straightforward calculation shows that

R(ω) + F (ω) ·G(ω) = (b0b1 − 2a1c)
2ω2 (ω ∈ R),

is true. Hence, if R(ω) = 0, then F (ω) ·G(ω) = (b0b1−2a1c)
2ω2 > 0 for ω ̸= 0,

i.e. sgn(F (ω)) = sgn(G(ω)) holds. Using the coefficients of the characteristic
function in (2.18) we are going to show that G(ω) > 0 for all ω ∈ R. Because

G(ω) = ω2(a21 − b21) + (ω2 − (a0 − c))2 (ω ∈ R),

fulfils, it is enough to see that a21 − b21 > 0. For this purpose, we use the
transformation

a21 − b21 = (a1 + b1)(a1 − b1) =

= ([X∗]2 − 2X∗Y ∗ +B + 1− σ1 − σ2)·

·([X∗]2 − 2X∗Y ∗ +B + 1 + σ1 + σ2).

Here a1 − b1 ≥ a1 + b1 holds following from the negativity of b1 = −(σ1 + σ2),
and following from (2.19) a1 + b1 > 0, which completes the proof. ■
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If ω∗ > 0 is a solution of R(ω) = 0, then the possible critical values of the
delay must be the solution of one of the above equations:

(2.21)

cos(ω∗τ) =
−a0b0 + b0c+ (b0 − a1b1)(ω

∗)2

a20 − c2 + (a21 − 2a0)(ω∗)2 + (ω∗)4
=

=
Aσ1, σ2

([X∗]
2 − σ1σ2) +Aσ2, σ1

[ω∗]2

[X∗]
4 − σ2

1σ
2
2 + (A2

1, 1 − 2 [X∗]
2
)[ω∗]2 + [ω∗]4

,

sin(ω∗τ) = −ω∗ · a1b0 − b1a0 − b1c+ b1(ω
∗)2

a20 − c2 + (a21 − 2a0)(ω∗)2 + (ω∗)4
=

= ω∗ · (A1, 1Aσ1, σ2
− (σ1 + σ2)([X

∗]
2
+ σ1σ2) + (σ1 + σ2)[ω

∗]2

[X∗]
4 − σ2

1σ
2
2 + (A2

1, 1 − 2 [X∗]
2
)[ω∗]2 + [ω∗]4

.

Example 2.5. Set A = 1.4000, B = 7.5000, σ1 = 0.4000, σ2 = 0.0800.
The equilibrium has the coordinates (X∗, Y ∗) ≈ (2.7000, 2.8000), and the
polynomial R has the form

R(ω) = 2576.0700− 1457.4300ω2 + 307.0200ω4 − 28.6635ω6 + ω8 (ω ∈ R),

which has a positive real root denoted by ω∗ with approximated value ω∗ ≈
≈ 3.0400, furthermore with τ∗ ≈ 1.4700 the equation (2.21) holds, cf. Fig. 4.

2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4

0.0

0.5

1.0

1.5

2.0

ω

τ

Figure 4. Level curves of ℜ(∆(ıω; τ)) = 0 (blue line) and ℑ(∆(ω; τ)) = 0 (red
line) on the domain (ω, τ) ∈ (2.0, 3.5) × (0.0, 2.0). The purple point at the
intersection of the lines shows the solution (ω∗, τ∗) ≈ (3.14, 1.47).
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The solutions of the system (1.2) is shown in Fig. 5 with initial conditions
X0 = 2.50 and Y0 = 2.80 and with delay parameters τ = 0.00, τ = 1.46 and
τ = 1.48, respectively.
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Figure 5. Solutions of system (1.2) with parameter values A = 1.40, B = 7.50,
σ1 = 0.4, σ2 = 0.08 and initial values X0 = 2.50, Y0 = 2.80 with delay τ = 0.0,
τ = 1.46 and τ = 1.48, respectively.

To summarize, we have given a sufficient condition for the stability change
of the equilibrium (X∗, Y ∗), whereby the existence of nonzero real roots of
an eighth degree polynomial (reducible to a quadratic polynomial) must be
proved. The fulfilment of this condition, and thus the existence of a stability
change, can be investigated even when the model parameters are not or only
partially specified. Finally, a formula is given for the values of the delay at
which stability change occurs.
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