
Annales Univ. Sci. Budapest., Sect. Comp. 56 (2024) 185–200

REPRESENTATIVE PRODUCT SYSTEMS

György Gát (Debrecen, Hungary)

Rodolfo Toledo (Budapest, Hungary)

Communicated by László Szili
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Abstract. In this paper we summarize the most relevant results with
respect to the convergence of Fourier series based on representative product
systems. We focus on monomial systems defined on the complete product
of quaternion groups. The results clearly indicate that these systems can
be considered as a natural extension of the Vilenkin systems to the non-
abelian harmonic analysis.

1. Introduction

A more general and modern approach to the classical theory of Fourier se-
ries consists in the study of orthonormal systems defined on topological groups.
This provides us with an entity in which the group operation, the topology, the
measure and also some basic properties of the system are appropriately con-
nected. A good example is the representation of the classical trigonometric
system by its complex version on the torus. This theory called abstract har-
monic analysis, was started by the works of A. Haar and A. Weil, and the end
of its development is nowhere in sight. An exhaustive content of this theory can
be found in the fundamental books of E. Hewitt and K.A. Ross (see [9, 10]).
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Another great example is the representation of the Walsh functions on the
dyadic group. In 1923 N.J. Walsh [19] introduced a complete orthonormal sys-
tem on the interval [0, 1) taking only the values 1 and −1, which is identical
to the systems cosnx, sinnx in the number of sign changes. He constructed it
by recursion, but some years later R.E.A.C. Paley [11] recognized that Walsh
functions are the finite product of Rademacher functions, giving a new arrange-
ment to the Walsh functions called the Walsh–Paley system. This fact allowed
N.J. Fine [3] and N. Vilenkin [18] to connect Walsh analysis with abstract
harmonic analysis, representing the Walsh functions by the characters of the
dyadic group. The book of F. Schipp, W.R. Wade and P. Simon (see [13]) is
essential for those who want to immerse themselves in the theory of dyadic
harmonic analysis.

The dyadic group is the topological group formed by the complete product
of cyclic group of order 2 having the discrete topology and assigning each sin-
gleton the measure 1

2 . We have already mentioned that the characters of the
dyadic group correspond to the Walsh functions. This structure was general-
ized by N. Vilenkin [18] considering the complete product of arbitrary cyclic
groups. The characters of this structure ordered in the Paley’s sense are called
a Vilenkin system. These systems have been the subject of studies in several
Hungarian research groups, and also for many researchers abroad. The book
of L.E. Persson, G. Tephnadze and F. Weisz (see [12]) provides a wide and
detailed compilation of the results concerning Vilenkin systems.

Following the logic of the previous constructions, it is quite reasonable to
ask ourselves how different it would be to consider the topological group formed
by the complete product of finite groups that are not necessarily commutative.
F. Schipp proposed the study of product systems defined on these structures.
However, despite the similarity with Vilenkin’s structures, the characters of
a finite non-abelian group are orthonormal, but they do not form a complete
system. This leads us to use representation theory to find the other members
and thus obtain complete systems on finite groups. Product systems based on
them are called representative product systems. We can see several examples
of these systems in the works of G. Gát and R. Toledo.

Right at the beginning we already realize that a representative product
system can differ significantly from Vilenkin systems. Indeed, these systems
can take the value 0 and they are not uniformly bounded in all cases. That is
one of the reasons why we have systems where the Fourier series have a very
different behavior than what we see in case of Vilenkin systems. But there are
also many similarities. For instance, in [5] we proved that Paley’s lemma also
holds for all representative product system, which implies the existence of a
subsequence of the partial sum of Fourier series that converges to the function
in L1-norm and almost everywhere for all integrable functions. In addition,
there are concrete systems in which the convergence theorems are the same as
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those obtained for Vilenkin systems. This is the case for monomial systems
defined on the complete product of quaternion groups.

2. Basic concepts in abstract harmonic analysis

LetG be a set that is a group and also a topological space. G is called a topo-
logical group, if the group operation xy and the inversion x−1 are continuous
mappings. In this case the algebraic properties of the group affect the topolog-
ical properties of the space and vice versa. For instance, an open basis U at the
group identity e gives an open base for G by the family {xU | x ∈ G,U ∈ U}
and also by the family {Ux | x ∈ G,U ∈ U}.

Let A be the smallest σ-algebra of subsets of G which contains all open
subsets of G. The members of A are called the Borel sets of G. A measure µ
defined on G is said to be regular if for every open set U we have

µ(U) = sup{µ(F ) | F is compact and F ⊆ U},

and for all A ∈ A we have

µ(A) = inf{µ(U) | U is open and U ⊇ A}.

If µ(xA) = µ(Ax) = µ(A) for all x ∈ G and A ∈ A, then µ is said to be two-
sided invariant. If G is compact, then there is an unique non-negative regular
measure µ on the Borel sets of G which is two-sided translation invariant and
µ(G) = 1. This measure is called the normalized Haar measure of G.

Measurable functions on G whose p-th power are integrable, play an impor-
tant role in approximation. For 1 < p < ∞ let Lp(G) represent the set of this
functions which is a Banach space with norm

∥f∥p :=

∫
G

|f |p dµ

 1
p

<∞.

Since the measure µ is finite the relation

Lq(G) ⊂ Lp(G) ⊂ L1(G) (1 < p < q <∞)

holds. For this reason the most extensive set of functions on G we consider is
just L1(G). Similarly L∞(G) represent the set of all measurable functions f
such that

∥f∥∞ := inf{y ∈ R | |f(x)| ≤ y for a.e. x ∈ G} < +∞.
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A representation U of the group G is a homomorphism of G into the semi-
group of all operators defined in some linear space E over an arbitrary field F .
That is, U is a mapping x→ Ux such that Ux : E → E is a linear transforma-
tion for all x ∈ G, and

Uxy = UxUy (x, y ∈ G).

The linear space E is called the representation space of U , and let the dimension
of a representation be the dimension of its own representation space. We can
assume that Ue is the identity operator on E.

Throughout this work suppose that the representation space of all represen-
tations is a reflexive complex Banach space which is a topological linear space
under the metric and norm induced by the inner product ⟨., .⟩. The represen-
tation U is called unitary if all of operators Ux are unitary, i.e. Ux is a linear
isometry of E onto E. An unitary representation with dimension 1 is called a
character, i.e. a character is a continuous complex-valued mapping χ : G→ C
such that

χ(xy) = χ(x)χ(y) (x, y ∈ G), |χ(x)| = 1 (x ∈ G).

All group have a trivial character, namely the one which is identically equal
to 1.

A representation U with representation space E is called irreducible if only
the spaces {0} and E are invariant under all operators Ux (x ∈ G). We can
define an equivalence relation in the set of all continuous irreducible unitary
representations of the group G as follows: Two representations U and U ′ with
representation spaces E and E′ respectively are equivalent if there is a bounded
linear isometry T : E → E′ such that

U ′
xT = TUx (x ∈ G).

Denote by Σ the set of all equivalence classes induced by the above relation.
Σ is called the dual object of the group G. The common dimension of all
representations in the class σ ∈ Σ is denoted by dσ.

Let G be a finite group of order m and let |Σ| denote the cardinal number
of Σ. Then

a) |Σ| is equal to the number of conjugacy class in G. (The system of the
conjugacy classes is a partition of G induced by the equivalence relation:
a ∼ b if and only if ∃x ∈ G : a = xbx−1).

b) if Σ = {σ1, σ1 . . . σ|Σ|}, then d2σ1
+ d2σ2

+ · · ·+ d2σ|Σ|
= m.

c) dσi is a divisor of m for all 1 ≤ i ≤ |Σ|.
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d) if the group G is abelian, then |Σ| = m and all representations of G are
characters.

e) if the group G is not abelian, then there is a representation with dimension
greater than 1.

The above properties of finite groups suggests to us the construction of d2σ
numbers of functions for every σ ∈ Σ, which we will do as follows. Let U (σ) be
a continuous irreducible representation in the class σ of the dual object of G.
Functions

u
(σ)
i,j (x) := ⟨U (σ)

x ξi, ξj⟩, i, j ∈ {1, . . . , dσ}

are called coordinate functions for U (σ), where ξ1, . . . , ξdσ is a fixed orthonormal
basis in the representation space of U (σ). If we do that with all the elements
of Σ we obtain a total of m functions.

It is clear that a finite group G of orderm endorsed by the discrete topology
is a compact topological group. In this case the normalized Haar measure is
the one that assigns 1

m to any singleton. The Weyl–Peter theorem (see [10]
p. 24) ensures that the set of all coordinate functions is an orthogonal basis for
L2(G), but it is not orthonormal if G is not abelian. We normalize a coordinate
function by multiplying it by the square root of its dimension. We arrange all
normalized coordinate functions in a system denoted by {φs | 0 ≤ s < m}
assuming only that φ0 ≡ 1 is the trivial character. For instance, consider
G = S3 the symmetric group on 3 elements. This group has two characters
and one representation of dimension 2. The following table contains a possible
arrangement of normalized coordinate functions.

e (12) (13) (23) (123) (132)

φ0 1 1 1 1 1 1

φ1 1 −1 −1 −1 1 1

φ2
√
2 −

√
2

√
2
2

√
2
2 −

√
2
2 −

√
2
2

φ3
√
2

√
2 −

√
2
2 −

√
2
2 −

√
2
2 −

√
2
2

φ4 0 0 −
√
6
2

√
6
2

√
6
2 −

√
6
2

φ5 0 0 −
√
6
2

√
6
2 −

√
6
2

√
6
2

We take now a sequence of finite groups Gk of order mk (k ∈ N), and sup-
pose that each group has discrete topology and normalized Haar measure µk.
Let {φs

k | 0 ≤ s < mk} be a system of all normalized coordinate functions of
Gk. Let G be the compact group formed by the complete direct product of
Gk with the product of the topologies, operations and measures (µ). Since G
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is compact, the dual object of G is countable and the dimensions of all rep-
resentations of G are finite. On the other hand, all of continuous irreducible
representations of G are the tensor product of finite many continuous irre-
ducible representations of different groups Gk. Therefore, the finite product
of φs

k with different values of k provide us with an orthonormal system on G
which is complete in L2(G).

3. Representative product systems

Let m := (mk, k ∈ N) be a sequence of positive integers such that mk ≥ 2.
According to the previous section, let’s suppose that we have a finite group
Gk for all k ∈ N having discrete topology, normalized Haar measure µk and a
system {φs

k | 0 ≤ s < mk} which contains all normalized coordinate functions
(φ0 ≡ 1). Let G be the group formed by the complete direct product of Gk

with the product of the topologies, operations and measures (µ). Thus G is
a compact totally disconnected group having the normalized Haar measure µ
and each x ∈ G consist of sequences x := (x0, x1, ...), where xk ∈ Gk, (k ∈ N).
We call this sequence the expansion of x. In order to simplify the notations
we use the multiplication to denote the group operation and the symbol e to
denote the identity of the groups.

G is called a bounded group if the sequence m = (mk, k ∈ N) is bounded.
On the other hand, with the sequence m = (mk, k ∈ N) we introduce the
following notation:

M0 := 1, and Mk+1 := mkMk (k ∈ N).

It is easy to see that every n ∈ N can be uniquely expressed as

n =

∞∑
k=0

nkMk, (0 ≤ nk < mk, nk ∈ N).

This allows us to say that the sequence (n0, n1, . . . ) is the expansion of n with
respect to the sequence m. We construct an orthonormal system on G as follows.
Let ψ be the product system of φs

k, namely

(3.1) ψn(x) :=

∞∏
k=0

φnk

k (xk) (x ∈ G),

where n is of the form n =
∑∞

k=0 nkMk and x = (x0, x1, ...). Thus, we say that
ψ is the representative product system of φ. The system ψ is orthonormal and
complete in L2(G).
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A representative product system can be represented on the interval [0, 1)
taking into account the connection between the Haar integration on the com-
plete direct product of finite groups and the Lebesgue integration on the interval
[0, 1) (see [15]).

3.1. Monomial systems

Let G be a finite group of order m and {φs | 0 ≤ s < m} be a system with
all normalized coordinate functions on G. Denote ds by the dimension of the
representation that corresponds to φs. Since all representations are unitary,
we have |φs(x)| ≤

√
ds for all s = 0, 1, . . . ,m− 1 and x ∈ G. We say that the

system {φs | 0 ≤ s < m} is monomial if φs(x) = 0 or |φs(x)| =
√
ds for all

s = 0, 1, . . . ,m− 1 and x ∈ G.

A good example of monomial system is one formed by characters. Thus, G
is abelian, and

√
ds = 1 for all s = 0, 1, . . . ,m− 1. For instance, the characters

of the cyclic group of order 2 form the system

φs(x) = (−1)sx (s ∈ {0, 1}, x ∈ Z2).

In general, the characters of the cyclic group of order m form the system

φs(x) = exp(2πısx/m) (s ∈ {0, . . .m− 1}, x ∈ Zm, ı
2 = −1).

Relevant examples of monomial systems on non-abelian groups can be con-
structed as follows. Let m be an integer such that m > 1. Define by

Qm := {[a, b] : a2m = e, b2 = am, bab−1 = a2m−1}

the generalized quaternion group of order 4m. Qm always has 4 characters and
all of its representations are of dimension 2. If m is even, then the characters
of Qm are φ0 = 1 and

φ1(a
j) = 1, φ1(a

jb) = −1,

φ2(a
j) = (−1)j , φ2(a

jb) = (−1)j ,

φ3(a
j) = (−1)j , φ3(a

jb) = (−1)j+1.

If m is odd, then the characters of Qm are φ0 = 1 and

φ1(a
j) = 1, φ1(a

jb) = −1,

φ2(a
j) = (−1)j , φ2(a

jb) = (−1)jı,

φ3(a
j) = (−1)j , φ3(a

jb) = (−1)j+1ı.

If α = exp(πı/m) the first primitive 2m-th root of unity then the mapping

aj →
(
αj 0
0 α−j

)
ajb→

(
0 αj−m

α−j 0

)
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is an unitary representation. Call this representation Uα. Then the above
characters and

Uα, Uα2 , Uα3 , . . . , Uαm−1

complete the dual object of Qm. Thus, for Q2 we obtain the following values.

e a a2 a3 b ab a2b a3b

φ0 1 1 1 1 1 1 1 1

φ1 1 1 1 1 −1 −1 −1 −1

φ2 1 −1 1 −1 1 −1 1 −1

φ3 1 −1 1 −1 −1 1 −1 1

φ4
√
2

√
2ı −

√
2 −

√
2ı 0 0 0 0

φ5
√
2 −

√
2ı −

√
2

√
2ı 0 0 0 0

φ6 0 0 0 0
√
2 −

√
2ı −

√
2

√
2ı

φ7 0 0 0 0 −
√
2 −

√
2ı

√
2

√
2ı

In [8] we can also see a table with the values of the system related to Q3.

Let us now return to the complete product of finite groups having the struc-
ture described at the beginning of this section. If all the systems corresponding
to the finite groups are monomial, then we say that the representative product
systems defined by (3.1) is monomial. In the commutative case, if all finite
groups are the cyclic group of order 2, then structure above is called the dyadic
group and then the system (3.1) is called the Walsh–Paley system. More gen-
erally, if all finite groups are arbitrary cyclic groups, then structure above is
called a Vilenkin group and then the system (3.1) is called a Vilenkin system.

4. Main results

Hereafter, we will assume that G is the structure of the complete product
of finite groups Gk described at the beginning of this section, and {ψn | n ∈ N}
is the system defined in (3.1).

4.1. Properties of Dirichlet kernels

For an integrable complex function f on G we define the Fourier coefficients
and partial sums by

f̂k :=

∫
Gm

fψk dµ (k ∈ N), Snf :=

n−1∑
k=0

f̂kψk (n ∈ N).
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The Dirichlet kernels are defined as follows:

Dn(x, y) :=

n−1∑
k=0

ψk(x)ψk(y) (n ∈ N).

It is easy to see that

(4.1) Snf(x) =

∫
G

f(y)Dn(x, y)dµ(y),

which shows the importance of the Dirichlet kernels in the study of the con-
vergence of Fourier series.

Define I0(x) := G,

In(x) := {y ∈ G : yk = xk, for 0 ≤ k < n} (x ∈ G,n ∈ N+).

We say that every set In(x) is an interval. The set of intervals In := In(e) is a
countable neighborhood base at the identity e of the product topology on G.
The following lemma is very useful for the study of Dirichlet kernels.

Lemma 4.1 (Gát and Toledo [5]). If n ∈ N+ and x, y ∈ G, then

Dn(x, y) =

|n|∑
k=0

DMk
(x, y)

(
nk−1∑
s=0

φs
k(xk)φ

s
k(yk)

) |n|∏
r=k+1

φnr
r (xr)φ

nr
r (yr),

where (n0, n1, ...) is the expansion of n, |n| := max{k ∈ N : nk ̸= 0}, and
x = (x0, x1, ...), y = (y0, y1, ...).

The following lemma is known as Paley’s lemma for Walsh–Paley and Vilen-
kin systems, and it can be also extended to any representative product system
in general.

Lemma 4.2 (Gát and Toledo [5]). If n ∈ N and x, y ∈ G, then

DMk
(x, y) =

{
Mk, for x ∈ Ik(y),

0, for x ̸∈ Ik(y).

By Paley’s lemma we have that the operator SMn is the conditional ex-
pectation with respect to the σ-algebra generated by the sets In(x), x ∈ G.
Indeed

SMn
f(x) =

∫
G

f(y)DMn
(x, y)dµ(y) =

1

µ(In(x))

∫
In(x)

fdµ.
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Thus, by the martingale convergence theorem we obtain that SMn
f → f in

Lp-norm and also almost everywhere for all f ∈ Lp(G) and 1 ≤ p <∞.

Another consequence of the Paley lemma is that the finite linear combi-
nations of characteristics functions on the intervals In(x) are the finite linear
combinations of the members of the system ψ, and vice versa. These functions
are dense in L1(G), therefore all representative product systems are complete
in L1(G).

Paley’s lemma holds for all representative product systems, but the behav-
ior of Dirichlet kernels in general differs considerably from what we know for
Vilenkin systems. For instance, consider the maximal value of Dirichlet kernels

Dn := sup
x, y∈G

|Dn(x, y)| (n ∈ P).

For Vilenkin systems we have Dn = n for all n ∈ N+, but the general case is
quite different.

Theorem 4.1 (Toledo [17]). If n ∈ P and A := max{k ∈ N : nk ̸= 0}, then

n ≤ Dn ≤MA+1.

In [17] R. Toledo gave necessary and sufficient conditions to obtain the
equality Dn = n for some n ∈ N. In addition, he studied the boundedness of
the sequence Dn

n . We would also like to mention I. Blahota’s work in [2], where
he obtained further significant results related to this sequence.

4.2. Convergence in Lp-norm of Fourier series

A basic problem of Fourier analysis is to obtain the values of p (1 ≤ p <∞)
such that for all function f ∈ Lp(G) the sequence of partial sums Snf of the
Fourier series of f converges to the function f in Lp-norm. Convergence for
p = 2 is obvious since L2(G) is a Hilbert space. For p = 1 the answer is
negative.

Theorem 4.2 (Toledo [14]). For all G groups there exists a function f ∈ L1(G)
such that the sequence of partial sums Snf of the Fourier series of f does not
converge to the function f in L1-norm.

For Vilenkin systems the convergence in norm is true for 1 < p < ∞.
However, this fact does not hols for all representative product system. The
sequence

Ψk := max
n<Mk

∥ψn∥1∥ψn∥∞ (k ∈ N).

plays an important role here.
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Theorem 4.3 (Toledo [16]). Suppose G is the complete product of the same
finite group having the same system φ at all of their occurrences. If the sequence
Ψ is not bounded, then for all number 1 < p ̸= 2 there exists a function f ∈
Lp(G) such that the sequence of partial sums Snf of the Fourier series of f
does not converge to the function f in Lp-norm.

The conditions of the above theorem are satisfied if G is the complete pro-
duct of S3 having the system that already appears in this paper, since in this

cases Ψk =
(
4
3

)k
. In [16] we can look deeper into more negative results.

It is not hard to see that Ψk = 1 for every monomial systems. In [8] the
authors proved with some restrictions the converge in Lp-norm (1 < p < ∞)
for the complete product of generalized quaternion groups. This theorem is the
generalization of the well known one for Vilenkin systems.

Theorem 4.4 (Gát and Toledo [8]). Let G be the complete product of general-
ized quaternion groups with representative monomial systems ordered such that
the first four functions in the systems are the characters. If G is a bounded
group, then Snf → f in Lp-norm for all f ∈ Lp(G) and 1 < p <∞.

The method used to prove the above theorem is based on proving that Snf
is of weak type (1, 1).

4.3. Fejér means and Cesàro means of order α

The Cesàro numbers of order α are given by the formula

Aα
n =

(α+ 1)(α+ 2) . . . (α+ n)

n!
(n ∈ N)

where α ∈ R \ {−1,−2, . . . }. Then, we denote the Cesàro means of order α of
Fourier series or simply (C,α) means by

(4.2) σα
nf :=

1

Aα
n

n∑
k=0

Aα−1
n−kSkf (n ∈ N+).

In addition, σn := σ1
n are also called the Fejér means of Fourier series.

Earlier in [5], the authors had already obtained the following result.

Theorem 4.5 (Gát and Toledo [5]). For all G bounded groups σnf → f in
Lp-norm for all f ∈ Lp(G) and 1 ≤ p <∞.

This result is more interesting if we focus on the fact that there are repre-
sentative product systems where Snf does not converge to f in Lp-norm for
p ̸= 2. On the other hand, G. Gát proved the almost everywhere convergence
of Fejér means.
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Theorem 4.6 (Gát [4]). For all G bounded groups σnf → f almost everywhere
for all f ∈ L1(G).

For Cesàro means of order α we obtain the following results.

Theorem 4.7 (Gát and Toledo [7]). Let G be a bounded group, and denote

α0 := lim sup
k→∞

logmk

(
max

0≤s<mk

∥φs
k∥1∥φs

k∥∞
)
.

If α0 < α < 1, then σα
nf → f in Lp-norm for all f ∈ Lp(G) and 1 ≤ p <∞.

Note that α0 ≤ 1
2 is always true, and α0 = log6

4
3 for the complete product

of S3 having the system that already appears in this paper. In addition α0 = 0
for all monomial systems. Hence, we obtain immediately the next corollary as
the generalization of a well known statement for Vilenkin systems.

Corollary 4.1. If G is a bounded group with a monomial representative product
systems, then σα

nf → f in Lp-norm for all 0 < α < 1, f ∈ Lp(G) and 1 ≤ p <
<∞.

On the other hand, suppose we have a bounded group G with α0 > 0. Thus,
we can obtain divergence for certain values of α.

Theorem 4.8 (Gát and Toledo [7]). Let G be a bounded group, and denote

α1 := lim inf
k→∞

logmk

(
max

0≤s<mk

∥φs
k∥1∥φs

k∥∞
)
.

If 0 < α < α1, then there exists an f ∈ L1(G) such that σα
nf does not converge

to the function f in L1-norm.

4.4. Estimation of Fourier coefficients

First of all it is necessary to emphasize that there are representative product
systems ψ which are not uniformly bounded, or in other words, the sequence
∥ψn∥∞ can be unbounded. Obviously this can only happen for non-abelian
groups. This fact is important because the norm of the operators

Tn : L1(G) → C, Tnf :=

∫
G

fψn dµ

is ∥ψn∥∞. Therefore if this sequence is not bounded, then there is a f ∈ L1(G)

such that f̂(n) ↛ 0, so the well known Riemann–Lebesgue lemma does not
hold. To estimate them we introduce the concept of modulus of continuity.
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Let f ∈ Lp(G) (1 ≤ p < ∞), n ∈ N and I = In(x) an interval. Recall that
In := In(e). We define the local modulus of continuity of f on I by

ω(p)(f, I) := sup
h∈In

 1

µ(I)

∫
I

|τhf − f |p dµ

 1
p

, ω(f, I) := ω(1)(f, I),

and the n-th modulus of continuity of f on Lp by

ω(p)
n (f) := sup

h∈In

∥τhf − f∥p, (n ∈ N), ωn(f) := ω(1)
n (f),

where τhf(x) := f(x+ h) is the right translation operator. We remark that if
we use the left translation operator, we obtain identical value for the modulus
of continuity, because the measure is both left and right translation invariant

and In is a normal subgroup of G. Notice that ω
(p)
n (f) ↘ 0, n → ∞ and the

ω
(p)
n (f) value increases when the value of p is also increases.

Theorem 4.9 (Gát and Toledo [6]). Let f ∈ L1(G), n, k ∈ N. If n > Mk

then
|f̂(n)| < ωk(f)∥ψn∥∞.

A function is said to be of bounded fluctuation if

Fℓ(f) := sup
n∈N

(
Mn−1∑
k=0

|ω(f, In(k∗))|

)
<∞,

where k∗ denotes the elem of G with the same expansion as k ∈ N, so k∗ =
= (k0, k1, . . . ) ∈ G if the expansion of k is (k0, k1, . . . ).

Theorem 4.10 (Gát and Toledo [6]). Denote by n ∈ N and s = max{j ∈ N :
: nj ̸= 0}. If f is of bounded fluctuation, then

|f̂(n)| ≤ Fℓ(f)
Ms

∥ψn∥∞.

4.5. Absolute convergence of Fourier series based on characters

In [1] G. Benke proved that the Lipschitz class to which a function belongs
can be identified by the best approximation characteristics of the function by
trigonometric polynomials, and that functions which are easily approximated
by trigonometric polynomials have absolutely convergent Fourier series. Ac-
cording to the above work we have some conditions for which a function has
absolutely convergent Fourier series based in the system of characters of G in
case that the function is constant on the conjugacy classes of G.
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Here we have an important clarification to make. Until now, we have called
characters the representations with dimension 1. The concept of character
may be generalized to refer to the trace of an arbitrary representation (see [10]
p. 13). A construction similar to the representative product systems can be
made using only the characters of the finite groups Gk (see [6]). These new
systems are orthogonal, but not complete. However, they are complete if we
consider only functions which are constant on the conjugacy classes. Denote
by Lp(G) the restriction of the space Lp(G) for the above functions.

Denote by A the set of functions which have absolutely convergent Fourier
series based in the system of characters of G. The Lipschitz class of order α will
be denoted by Lip(α), and it is a closed subspace of the continuous functions
endowed with the norm

∥f∥Lip(α) := sup
k

[
sup
x∈Ik

∥f(x·)− f(·)∥∞Mα
k

]
+ ∥f∥∞ <∞.

Theorem 4.11 (Gát and Toledo [6]). Let G be a bounded group and f ∈ L2(G).
If

∞∑
n=0

(
Mn−1∑
k=0

|ω(2)(f, In(k
∗))|2

) 1
2

<∞ then f ∈ A

(the notation k∗ has already appeared in the concept of functions of bounded
fluctuation).

Theorem 4.12 (Gát and Toledo [6]). Let f : G→ C a continuous function that
is constant in the conjugacy classes of G and suppose that exists a 1 ≤ p ≤ 2
such that

∞∑
n=0

∑
ti∈Gi

i<n

|ω(f, In(t))|p


1
p

<∞. Then f ∈ A.

Corollary 4.2. Let f : G → C a continuous function that is constant in the
conjugacy classes of the bounded group G, and suppose that

∑∞
n=0

√
Mnωn(f) <

<∞. Then f ∈ A.

Corollary 4.3. Let G be a bounded group and f ∈ Lip(α) for some α > 1
2 .

Then f ∈ A.

5. Conclusion

The theory of abstract harmonic analysis gives us the possibility to obtain
a wide variety of systems that are constant on intervals. The study of them
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is based on the results obtained for Vilenkin systems. However, many well-
known results are not easily transferable to the non-abelian cases, or simply
they are not true in general. Despite that, we can notice a great similarity with
the results for monomial systems. This leads us to the conclusion that these
systems are a natural extension of the Vilenkin systems, in particular, when
we consider the complete product of quaternion groups.

As we can see through the results of this paper, up to now the research
related to representative product systems has been focused on the study of the
convergence in Lp-norm of the most relevant operators for bounded groups.
This means that there is still a considerable amount of work to be done here.
For example, it would be interesting to study the almost everywhere conver-
gence of Fourier series. We are also faced up to the difficulties of non-bounded
groups, as we are already know for Vilenkin systems. We hope this article will
be of great utility for those who want to start with the study of series based
on representative product systems.
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