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Abstract. This paper discusses spectral synthesis for those modulation
spaces Mp,q

s (Rn) which form Banach algebras under pointwise multiplica-
tion. An important argument will be the “ideal theory for Segal algebras”
by H. Reiter [15]. This paper is a continuation of our paper [5] where the
case q = 1 is treated. As a by-product we obtain a variant of Wiener–Lévy
theorem for Mp,q

s (Rn) and Fourier–Wermer algebras FLq
s(R

n).

1. Introduction

Spectral synthesis is one of the important topics in classical harmonic anal-
ysis. It is concerned with the question whether spectral synthesis holds for
a given subset E of Rn and for a given Banach space (B, ∥ · ∥B). More pre-
cisely, we assume that B be a Banach space of continuous, complex-valued
functions, i.e. B ⊂ Cb(R

n), with C∞
c (Rn) dense in B, and convergence in

B implying pointwise convergence. For every closed subset E of Rn, we set
I(E) = {f ∈ B | f |E = 0} and define J(E) as the closure in B of the set

{f ∈ C∞
c (Rn) | f = 0 in a neighborhoof of E},
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where f |E = 0 means that f(x) = 0 for all x ∈ E. If I(E) = J(E), then E is
called a set of spectral synthesis for B. There are many papers devoted to study
the spectral synthesis (e.g., [2], [10], [15], [16], [17]). Let A(Rn) be the Fourier
algebra of all functions on Rn which are the Fourier transforms of functions in
L1(Rn), also denoted by FL1(Rn) elsewhere. A famous and pioneering result
by Schwartz [18] shows that the unit sphere Sn−1 = {x ∈ Rn | |x| = 1} is not
a set of spectral synthesis for A(Rn), if n ≥ 3. Surprisingly, Herz [8] showed
that the unit circle S1 is a set of spectral synthesis for A(R2). Motivated by
these results, Reiter [15] showed similar result in the Fourier–Beurling algebras
FL1

s(R
n): If n ≥ 3, then Sn−1 is not a set of spectral synthesis for FL1

s(R
n),

and S1 is a set of spectral synthesis for FL1
s(R

2) if 0 ≤ s < 1/2, but not if
s ≥ 1/2. Moreover, Kobayashi–Sato [11] considered the spectral synthesis of
Sn−1 for the Fourier–Wermer algebra FLqs(Rn): Let q′ denote the conjugate
exponents of q. If 1 < q < ∞ and s > n/q′, then Sn−1 (n ≥ 3) is not a
set of spectral synthesis for FLqs(Rn), and S1 is a set of spectral synthesis for
FLqs(R2) if 1 < q < 2 and 2/q′ < s < 2/q′ + 1/2, but not if 1 < q < ∞ and
s > 2/q′ + 1/2.

The modulation spacesMp,q
s (Rn) are one of the function spaces introduced

by Feichtinger [3]. The definition ofMp,q
s (Rn) will be given in Section 2.2. The

main idea for these spaces is to consider the space and the frequency variable
simultaneously. In some sense, they behave like the Besov spaces Bp,qs (Rn).
But they appear to be better suited for the description of problems in the area
of time-frequency analysis and are often a good substitute for the usual spaces
Lp(Rn) or Bp,qs (Rn) (see [4], [6]).

The aim of this paper is to understand certain sets of spectral synthesis for
Mp,q
s (Rn). Our first result is:

Theorem 1.1. Let 1 ≤ p ≤ 2. Suppose that q = 1 and s ≥ 0, or 1 < q ≤ p′ and
s > n/q′. Then for any compact subset K of Rn, K is a set of spectral synthesis
for Mp,q

s (Rn) if and only if K is a set of spectral synthesis for FLqs(Rn).

Remark 1.1. The case q = 1 and s ≥ 0 is given in [5].

Theorem 1.1 allows to give some concrete examples of sets of spectral syn-
thesis for Mp,q

s (Rn) (cf. [11] or Proposition 3.1 below).

Example 1.2. (i) Let 1 ≤ p ≤ 2, 1 < q ≤ 2 and n/q′ < s < n/q′ + 1. Then
single points of Rn are sets of spectral synthesis for Mp,q

s (Rn).

(ii) Let 1 ≤ p ≤ 2, 1 < q < ∞ and s > n/q′ + 1. Then single points of Rn

are not sets of spectral synthesis for Mp,q
s (Rn).

Example 1.3. (i) Let 1 ≤ p ≤ 2, 1 < q ≤ p′ and 2/q′ < s < 2/q′ + 1/2. Then
S1 is a set of spectral synthesis for Mp,q

s (R2).
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(ii) But for 1 ≤ p ≤ 2, 1 < q < 2 and s > 2/q′ + 1/2 S1 is not a set of
spectral synthesis for Mp,q

s (R2).

(iii) Let 1 ≤ p ≤ 2, 1 < q ≤ p′ and s > n/q′. Then Sn−1 (n ≥ 3) is not a
set of spectral synthesis for Mp,q

s (Rn).

As a by-product of Theorem 1.1 we obtain a variant of Wiener–Lévy theo-
rem for FLqs(Rn) and Mp,q

s (Rn).

Theorem 1.4. Given 1 < q < ∞, s > n/q′ and a real-valued function
f ∈ FLqs(Rn). Suppose that F is an analytic function on a neighborhood
of f(Rn) ∪ {0} with F (0) = 0. Then there exists g ∈ FLqs(Rn) such that
g(x) = F (f(x)).

Theorem 1.5. Given 1 < p < ∞, 1 < q < ∞, s > n/q′ and a real-valued
function f ∈Mp,q

s (Rn). Suppose that F is an analytic function on a neighbor-
hood of f(Rn)∪ {0} with F (0) = 0. Then there exists g ∈Mp,q

s (Rn) such that
g(x) = F (f(x)).

The organization of this paper is as follows. After a preliminary section
devoted to the definitions of Mp,q

s (Rn) and FLqs(Rn) we prove Theorem 1.1 in
Section 3. Theorems 1.4 and 1.5 are treated in Section 4.

2. Preliminaries

The following notation will be used throughout this article. We use C to
denote various positive constants which may change from line to line. We use
the notation I ≲ J if I is bounded by a constant times J and we denote I ≈ J
if I ≲ J and J ≲ I. The closed ball with center x0 ∈ Rn and radius r > 0
is defined by Br(x0) := {x ∈ Rn | |x − x0| ≤ r}. Let ⟨x⟩ := (1 + |x|2) 1

2 for
x ∈ Rn. We define for 1 ≤ p <∞ and s ∈ R

∥f∥Lp
s
:=

( ∫
Rn

(
⟨x⟩s|f(x)|

)p
dx

) 1
p

,

and ∥f∥L∞
s

:= ess.supx∈Rn⟨x⟩s|f(x)|. We simply write Lp(Rn) instead of
Lp0(R

n). For 1 ≤ p < ∞, p′ denotes the conjugate exponent of p, i.e.,
1/p+1/p′ = 1. We write C∞

c (Rn) for the space of complex-valued infinitely dif-
ferentiable functions onRn with compact support. S(Rn) denotes the Schwartz
space of complex-valued rapidly decreasing infinitely differentiable functions on
Rn and S ′(Rn) denotes the space of tempered distributions. The Fourier trans-

form of f ∈ L1(Rn) is Ff(ξ) = f̂(ξ) :=
∫
Rn f(x)e

−ixξdx. Similarly, the inverse

Fourier transform of h ∈ L1(Rn) is F−1h(x) := (2π)−nĥ(−x). Recall that
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(f ∗g)∧ = f̂ ĝ and (fg)∧ = (2π)−n(f̂ ∗ ĝ), where (f ∗g)(x) =
∫
Rn f(x−y)g(y)dy.

For two Banach spaces B1 and B2, B1 ↪→ B2 means that B1 is continuously
embedded into B2.

2.1. Fourier–Wermer algebra

For 1 ≤ q < ∞ and s ∈ R write FLqs(Rn) = FLqs for the space of all
tempered distributions with the following norm is finite:

∥f∥FLq
s
:=

( ∫
Rn

(
⟨ξ⟩s|f̂(ξ)|

)q
dξ

) 1
q

.

It is well known that (FLqs(Rn), ∥·∥FLq
s
) is a Banach space and S(Rn) is dense

in FLqs(Rn). If q = 1 and s ≥ 0, or 1 < q < ∞ and s > n/q′, then FLqs(Rn)
is a multiplication algebra, i.e.,

∥fg∥FLq
s
≤ c∥f∥FLq

s
∥g∥FLq

s
, f, g ∈ FLqs(Rn)(2.1)

for some c ≥ 1. We call it the Fourier–Wermer algebra owing to the fact that
it is the Fourier image of the convolution algebra Lqs(R

n) that was studied in
the early paper of Wermer [19]. Moreover, if q = 1 and s ≥ 0, or 1 < q < ∞
and s > n/q′, then f ∈ FLqs(Rn) implies f̂ ∈ L1(Rn) by the Hölder inequality.
Thus the Riemann–Lebesgue lemma shows f ∈ C(Rn) and vanishes at infinity,

and the inversion formula applies, giving f(x) = F−1(f̂)(x) for all x ∈ Rn.

One can prove that FLqs(Rn) possess approximate units.

Lemma 2.1. Given 1 < q < ∞ and s > n
q′ , or q = 1 and s ≥ 0. Then for

f ∈ FLqs(Rn) and ε > 0 there exists ϕ ∈ C∞
c (Rn) such that ∥ϕf − f∥FLq

s
< ε.

Remark 2.1. The case q = 1 and s ≥ 0 is given in [16, Proposition 1.6.14].

Proof. Let ψ ∈ C∞
c (Rn) be such that ψ(0) = 1. For 0 < λ < 1 we set

ψλ(x) = ψ(λx). Since (ψ̂λ ∗ f̂)(ξ) =
∫
Rn ψ̂(η)f̂(ξ − λη)dη and 1 = ψ(0) =

= (2π)−n
∫
Rn ψ̂(η)dη, we have

(ψλf − f)∧(ξ) = (2π)−n
∫
Rn

ψ̂(η)
(
f̂(ξ − λη)− f̂(ξ)

)
dη.

Applying the Minkowski inequality for integrals we obtain that

∥ψλf − f∥FLq
s
≲

∫
Rn

|ψ̂(η)|
∥∥∥⟨·⟩s|f̂(· − λη)− f̂(·)|

∥∥∥
Lq
dη.
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We note 0 < λ < 1. By the submultiplicity of ⟨·⟩s for s ≥ 0 one has∥∥∥⟨·⟩s∣∣f̂(· − λη)− f̂(·)
∣∣∥∥∥
Lq

≲ ⟨λη⟩s∥⟨· − λη⟩s|f̂(· − λη)|∥Lq + ∥⟨·⟩s|f̂(·)|∥Lq ≲

≲ ⟨η⟩s∥f∥FLq
s
.

Thus we can easily see limλ→0 ∥ψλf − f∥FLq
s
= 0. Hence, for any ε > 0 there

exists ϕ := ψλ0 for some 0 < λ0 < 1 such that ∥ϕf − f∥FLq
s
< ε. ■

Furthermore, we have the following result.

Lemma 2.2. Given 1 < q < ∞ and s > n/q′, or q = 1 and s ≥ 0. Suppose
that f ∈ FLqs(Rn) and f(x0) = 0 for some x0 ∈ Rn. Then for ε > 0 there
exists g ∈ C∞

c (Rn) such that ∥f − g∥FLq
s
< ε and g(x0) = 0.

Proof. Let ε > 0. By Lemma 2.1 there exists ϕ ∈ C∞
c (Rn) such that

∥ϕf − f∥FLq
s
< ε and (ϕf)(x0) = ϕ(x0)f(x0) = 0. Take ψ ∈ C∞

c (Rn) with
ψ(x) = 1 on supp ϕ. Since ϕf ∈ FLqs(Rn) and S(Rn) is dense in FLqs(Rn),
there exists g0 ∈ S(Rn) such that ∥ϕf − g0∥FLq

s
< ε/3(∥ψ∥FLq

s
+ 1). Define

g(x) := (g0(x)− g0(x0))ψ(x) ∈ C∞
c (Rn). Then

∥ϕf − g0∥L∞ ≲ ∥(ϕf − g0)
∧∥L1 ≲ ∥ϕf − g0∥FLq

s
,

and g(x0) = 0. By ϕ = ϕψ, (ϕf)(x0) = 0 and (2.1) one has

∥f − g∥FLq
s
= ∥f − ϕf + ϕfψ − (ϕf)(x0)ψ − (g0 − g0(x0))ψ∥FLq

s
≲

≲ ∥f − ϕf∥FLq
s
+ ∥ϕf − g0∥FLq

s
∥ψ∥FLq

s
+ |g0(x0)− (ϕf)(x0)|∥ψ∥FLq

s
≲

≲ ∥f − ϕf∥FLq
s
+ 2∥ϕf − g0∥FLq

s
∥ψ∥FLq

s
< ε. ■

Corollary 2.1. Given 1 < q < ∞ and s > n/q′, or q = 1 and s ≥ 0,
f ∈ FLqs(Rn) and x0 ∈ Rn. Then for ε > 0 there exists g ∈ C∞

c (Rn) such
that g(x0) = f(x0) and ∥f − g∥FLq

s
< ε.

Proof. It suffices to prove the case x0 = 0; the other case is easy to see by
considering F (x) := f(x+x0) instead. Let ε > 0. Then the proof of Lemma 2.1
implies that there exists ϕ ∈ C∞

c (Rn) with ϕ(0) = 1 and ∥ϕf − f∥FLq
s
< ε/2.

Set f0(x) := (f(x) − f(0))ϕ(x) ∈ FLqs(Rn). Then f0(0) = 0. By Lemma 2.2
there exists g0 ∈ C∞

c (Rn) such that g0(0) = 0 and ∥f0 − g0∥FLq
s
< ε/2. Now

set g(x) := g0(x) + f(0)ϕ(x). Then g(0) = f(0) and ∥f − g∥FLq
s
< ε. ■

2.2. Modulation spaces

Let 1 ≤ p, q ≤ ∞, s ∈ R and φ ∈ S(Rn) be such that

supp φ ⊂ [−1, 1]n and
∑
k∈Zn

φ(ξ − k) = 1 (ξ ∈ Rn).(2.2)
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Then Mp,q
s (Rn) =Mp,q

s consists of all f ∈ S ′(Rn) such that the norm

∥f∥Mp,q
s

=
( ∑
k∈Zn

⟨k⟩sq
( ∫
Rn

|φ(D − k)f(x)|pdx
) q

p
) 1

q

is finite, with obvious modifications if p or q = ∞. Here φ(D − k)f(x) =

= F−1(φ(· − k)f̂(·))(x). It is well known that Mp,q
s (Rn) is a multiplication

algebra if s > n/q′, or q = 1 and s ≥ 0. We also recall a few basic properties
of the function in Mp,q

s (Rn). Next we state some auxiliary lemmata.

Lemma 2.3 ([5], [7]). Given 1 ≤ p <∞, q = 1 and s ≥ 0, or 1 < q <∞ and
s > n/q′. Then ∥fg∥Mp,q

s
≲ ∥f∥M∞,q

s
∥g∥Mp,q

s
for f, g ∈ S(Rn).

Lemma 2.4. Let 1 ≤ p < ∞. Suppose that q = 1 and s ≥ 0, or 1 < q < ∞
and s > n/q′. If f ∈ Mp,q

s (Rn), then for any ε > 0 there exists ϕ ∈ C∞
c (Rn)

such that ∥ϕf − f∥Mp,q
s

< ε.

Proof. The case p = q = 1 and s = 0 was considered in Bhimani–Ratnakumar
[1, Proposition 3.14] and their method still applies for the remaining cases, with
only trifling changes (see [5] for more details). ■

A useful inclusion relation (cf. [12], [13]) is stated next.

Lemma 2.5. Let 1 ≤ p ≤ 2. Suppose that q = 1 and s ≥ 0, or 1 < q ≤ p′ and
s > n/q′. Then we have Mp,q

s (Rn) ↪→ FLqs(Rn).

Proof. We give the proof only for 1 < p ≤ 2; the case p = 1 is similar. Given
f ∈Mp,q

s (Rn) and φ ∈ C∞
c (Rn) as in (2.2) there exists N ∈ N with

χk+[−1,1]n(ξ) =
∑
|ℓ|≤N

φ(ξ − (k + ℓ))χk+[−1,1]n(ξ) (ξ ∈ Rn)

for all k ∈ Zn. By the Hölder inequality with 1/(p′/q) + 1/(p′/(p′ − q)) = 1
and the Hausdorff–Young inequality we see

∥f∥qFLq
s
≤

∑
k∈Zn

∫
k+[−1,1]n

⟨ξ⟩sq|f̂(ξ)|qdξ ≲

≲
∑
k∈Zn

⟨k⟩sq
∫

k+[−1,1]n

∣∣∣ ∑
|ℓ|≤N

φ(ξ − (k + ℓ))f̂(ξ)
∣∣∣qdξ ≲

≲
∑
|ℓ|≤N

∑
k∈Zn

⟨k⟩sq
∫

k+[−1,1]n

|φ(ξ − (k + ℓ))f̂(ξ)|qdξ ≲

≲
∑
|ℓ|≤N

∑
k∈Zn

⟨k⟩sq∥φ(· − (k + ℓ))f̂(·)∥q
Lp′ ≲

≲
∑
|ℓ|≤N

∑
k∈Zn

⟨k⟩sq∥φ(D − (k + ℓ))f∥qLp ≲ ∥f∥q
Mp,q

s
. ■



Modulation spaces as Banach algebras 157

Lemma 2.6. Let 1 ≤ p < ∞. Suppose that q = 1 and s ≥ 0, or 1 < q < ∞
and s > n/q′. Set (FLqs)c := {f ∈ FLqs(Rn) | supp f is compact}. Then we
have (FLqs)c ↪→Mp,q

s (Rn).

Proof. Let f ∈ (FLqs)c and ϕ ∈ S(Rn) be such that ϕ(x) = 1 on supp f . By
Lemma 2.3 we have

∥f∥Mp,q
s

= ∥fϕ∥Mp,q
s

≲ ∥f∥M∞,q
s

∥ϕ∥Mp,q
s
.

Moreover, let φ ∈ S(Rn) as in (2.2). Then there exists N ∈ N such that

φ(ξ − k) =
∑
|ℓ|≤N

φ(ξ − k)φ(ξ − (k + ℓ)) (ξ ∈ Rn)

for all k ∈ Zn. Then the Hausdorff–Young and the Hölder inequality show that

∥f∥q
M∞,q

s
≲

∑
k∈Zn

⟨k⟩sq∥φ(· − k)f̂∥qL1 ≤

≤
∑
k∈Zn

⟨k⟩sq
( ∑

|ℓ|≤N

∥φ(· − (k + ℓ))∥Lq′∥φ(· − k)f̂∥Lq

)q
≲

≲
∑
k∈Zn

∫
k+[−1,1]n

⟨ξ⟩sq|φ(ξ − k)f̂(ξ)|qdξ ≲ ∥f∥qFLq
s
,

which implies the desired result.

Remark 2.2. There is another characterization of Mp,q
s using the short-time

Fourier transform, i.e., for ϕ ∈ S(Rn) \ {0}, we set:

Vϕf(x, ξ) := ⟨f(t), ϕ(t− x)eitξ⟩ =
∫
Rn

f(t)ϕ(t− x)e−itξdt,

∥f∥Mp,q
s

≈
( ∫
Rn

⟨ξ⟩sq
( ∫
Rn

|Vϕf(x, ξ)|pdx
) q

p

dξ
) 1

q

,

i.e. this defines an equivalent norm, and in addition

Vϕf(x, ξ) = (2π)−ne−ixξVϕ̂f̂(ξ,−x) = (2π)−ne−ixξ(f ∗Mξϕ
∗)(x),(2.3)

where ϕ∗(x) = ϕ(−x) (see [6, Lemma 3.1.1]).

3. Spectral synthesis

Throughout this section, X stands for Mp,1
s (Rn) (1 ≤ p < ∞, s ≥ 0),

Mp,q
s (Rn) (1 ≤ p ≤ 2, 1 < q < ∞, s > n/q′), FL1

s(R
n) (s ≥ 0) or FLqs(Rn)

(1 < q <∞, s > n/q′). Moreover, the closure of X0 ⊂ X in X will be denoted

by X0
∥·∥X

.
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Definition 3.1. Let I be a linear subspace of X. Then I is called an ideal in
X if fg ∈ I whenever f ∈ X and g ∈ I. Moreover, if an ideal I in X is a closed
subset of X, then I is called a closed ideal in X. For a subset S of X, the set⋂
λ∈Λ Iλ is called the ideal generated by S, where {Iλ}λ∈Λ denoted the set of

all ideals in X containing S.

Definition 3.2. Let I be a closed ideal in X. Then the zero-set of I is defined
by Z(I) :=

⋂
f∈I

f−1({0}) with f−1({0}) := {x ∈ R2 | f(x) = 0}.

We note that Z(I) is a closed subset of X if I is a closed ideal in X. In
fact, if f ∈ X, then f is continuous on Rn and thus f−1({0}) is a closed subset
of Rn. We will write f |E = 0 if f(x) = 0 for all x ∈ E.

Lemma 3.1. Let E be a closed subset of Rn. Then I(E) := {f ∈ X | f |E = 0}
is a closed ideal in X with E = Z(I(E)).

Proof. We give the proof only for the case X =Mp,q
s (Rn); the same applies

to other cases. It is clear that I(E) is an ideal in Mp,q
s (Rn). To see I(E) is

closed, let f ∈ Mp,q
s (Rn), {fn}∞n=1 ⊂ I(E) and ∥fn − f∥Mp,q

s
→ 0 (n → ∞).

Since

∥fn − f∥L∞ ≲ ∥fn − f∥M∞,1 ≲ ∥fn − f∥Mp,1 ≲ ∥fn − f∥Mp,q
s
,

we see that {fn}∞n=1 converges pointwise to f on Rn. Since fn|E = 0, we have
f |E = 0, and thus f ∈ I(E). Hence I(E) is closed. Next we prove E = Z(I(E)).
Since E ⊂ Z(I(E)) is clear, we show Z(I(E)) ⊂ E. Suppose x0 ̸∈ E. Since
E is closed and C∞

c (Rn) ⊂ Mp,1
s (Rn), there exists f ∈ Mp,1

s (Rn) such that
f(x0) = 1 and f |E = 0. Then f ∈ I(E) and f(x0) ̸= 0. Thus x0 ̸∈ Z(I(E)),
which implies the desired result. ■

Definition 3.3. Let E ⊂ Rn be closed and I(E) be the set defined in Lem-
ma 3.1. Define J(E) by the closed ideal in X generated by

J0(E) := {f ∈ X | f(x) = 0 in a neighborhood of E}.

Then E is called a set of spectral synthesis for X if I(E) = J(E).

Remark 3.1. J(E) is the smallest closed ideal I ′ with Z(I ′) = E (cf. [11]).

3.1. Spectral synthesis for FLq
s

Proposition 3.1. (i) Let 1 < q ≤ 2 and n/q′ < s < n/q′ + 1. Then single
points of Rn are sets of spectral synthesis for FLqs(Rn).

(ii) Let 1 < q <∞ and s > n/q′ +1. Then single points of Rn are not sets
of spectral synthesis for FLqs(Rn).
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Remark 3.2. It is well-known that single points of Rn are sets of spectral
synthesis for FL1

s(R
n), if 0 ≤ s < 1 (see [16, Theorem 2.7.9]).

To prove Proposition 3.1, we use a modification of [16, Lemma 6.3.6].

Lemma 3.2. Let 1 < q ≤ 2. Suppose that ψ(1), ψ(2) ∈ C∞
c (Rn) be such that

supp ψ(j) ⊂ B(0, R) for some R > 0 (j = 1, 2). Set ψ := ψ(1) ∗ ψ(2). Then for
n/q′ < s < n/q′ + 1 and ϑ ∈ Rn

∥∥⟨·⟩s(ψ̂(· − ϑ)− ψ̂(·)
)∥∥
Lq ≤ Cψ

(
|ϑ|s−

n
q′ max

|t|≤R
|eiϑt − 1|1−(s− n

q′ ) + |ϑ|s
)
.

Proof. We give the proof only for 1 < q < 2: the case q = 2 is similar. We

first note that since ψ̂ = ψ̂(1) · ψ̂(2) we have

ψ̂(ξ − ϑ)− ψ̂(ξ) =

=
(
ψ̂(1)(ξ − ϑ)− ψ̂(1)(ξ)

)
ψ̂(2)(ξ − ϑ) + ψ̂(1)(ξ)

(
ψ̂(2)(ξ − ϑ)− ψ̂(2)(ξ)

)
.

Then the Hölder inequality with 1/(2/q)+1/(2/(2−q)) = 1 and the Plancherel
theorem show that∥∥⟨ξ⟩s(ψ̂(ξ − ϑ)− ψ̂(ξ)

)∥∥
Lq(Rn

ξ )
≲

≲
∥∥ψ̂(1)(ξ − ϑ)− ψ̂(1)(ξ)

∥∥
L2(Rn

ξ )

∥∥⟨ξ⟩sψ̂(2)(ξ − ϑ)
∥∥
L

2q
2−q (Rn

ξ )
+

+
∥∥ψ̂(2)(ξ − ϑ)− ψ̂(2)(ξ)

∥∥
L2(Rn

ξ )

∥∥⟨ξ⟩sψ̂(1)(ξ − ϑ)
∥∥
L

2q
2−q (Rn

ξ )
=

= ∥Fx→ξ[(e
iϑx − 1)ψ(1)(x)](ξ)∥L2(Rn

ξ )
⟨ϑ⟩s

∥∥⟨·⟩sψ̂(2)
∥∥
L

2q
2−q

+

+ ∥Fx→ξ[(e
iϑx − 1)ψ(2)(x)](ξ)∥L2(Rn

ξ )
⟨ϑ⟩s

∥∥⟨·⟩sψ̂(1)
∥∥
L

2q
2−q

.

Note |eiϑx − 1| ≤ min{2, |ϑx|}. The Plancherel theorem shows

∥Fx→ξ[(e
iϑx − 1)ψ(j)(x)](ξ)∥L2(Rn

ξ )
= (2π)

n
2 ∥(eiϑx − 1)ψ(j)(x)∥L2(Rn

x )

for j = 1, 2. Since supp ψ(j) ⊂ BR(0) (j = 1, 2), we obtain

∥Fx→ξ[(e
iϑx − 1)ψ(j)(x)](ξ)∥L2(Rn

ξ )
(1 + |ϑ|s) ≲

≲
(
max
|x|≤R

|eiϑx − 1|
)1−(s− n

q′ )∥∥|eiϑx − 1|s−
n
q′ |ψ(j)(x)|

∥∥
L2(Rn

x )
+ ∥ψ(j)∥L2 |ϑ|s ≲

≲ |ϑ|s−
n
q′
(
max
|x|≤R

|eiϑx − 1|
)1−(s− n

q′ )∥∥|x|s− n
q′ |ψ(j)(x)|

∥∥
L2(R)nx

+ |ϑ|s,

which yields the desired inequality. ■
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Lemma 3.3. Let 1 < q ≤ 2, n/q′ < s < n/q′ +1, f ∈ FL1
s(R

n), x0 ∈ Rn and
ε > 0. Then there exists ϕ ∈ C∞

c (Rn) such that (i) ∥(f − f(x0))ϕ∥M1,q
s

< ε.
(ii) ϕ(x) = 1 in some neighborhood of x0.

Proof. Note that there exist ψ(1), ψ(2) ∈ C∞
c (Rn) such that supp ψ(j) ⊂

⊂ B2(0) (j = 1, 2) and ψ := ψ(1)∗ψ(2) satisfies ψ(x) = 1 on B1(0) and supp ψ ⊂
⊂ B5(0) (see [5]). For λ > 5, we set ψλ(x) := ψ(λx) and hλ(x) := (f(x) −
−f(x0))ψλ(x − x0). If x ∈ supp hλ, then ψ(x − x0) = 1. Thus hλ(x) =
= hλ(x)ψ(x− x0). We consider the case x0 = 0; the other case can be treated

by considering ψ(x− x0) instead of ψ(x). Let g0(t) := e−|t|2/2 (t ∈ Rn). Then
(2.3) shows

∥hλ∥M1,q
s

=
∥∥∥⟨ξ⟩sVg0hλ(x, ξ)∥L1(Rn

x )

∥∥
Lq(Rn

ξ )
≈

≈
∥∥∥∥⟨ξ⟩sVĝ0 ĥλ(ξ,−x)∥L1(Rn

x )

∥∥∥
Lq(Rn

ξ )
.

Since ĝ0 = (2π)
n
2 g0, g

∗
0 = g0 and hλ(x) = hλ(x)ψ(x), we obtain by (2.3)

Vĝ0 ĥ
λ(ξ,−x) = (2π)−

n
2 Vg0(ĥ

λ ∗ ψ̂)(ξ,−x) = (2π)−
n
2 eixξ(ĥλ ∗ ψ̂ ∗M−xg0)(ξ).

The Minkowski inequality for integrals and the Young inequality yield

∥hλ∥M1,q
s

= (2π)−n
∥∥∥∥⟨ξ⟩sVĝ0 ĥλ(ξ,−x)∥L1(Rn

x )

∥∥∥
Lq(Rn

ξ )
≲

≲
∥∥∥∥⟨ξ⟩s(ĥλ ∗ ψ̂ ∗M−xg0)(ξ)∥Lq(Rn

ξ )

∥∥∥
L1(Rn

x )
≤

≤
∥∥∥∥⟨ξ⟩sĥλ(ξ)∥Lq(Rn

ξ )
∥⟨ξ⟩s(ψ̂ ∗M−xg0)(ξ)∥L1(Rn

ξ )

∥∥∥
L1(Rn

x )
=

= ∥⟨·⟩sĥλ∥Lq∥ψ∥M1,1
s
.

Since ĥλ(ξ) = (2π)−n(ψ̂λ ∗ f̂)(ξ)− f(0)ψ̂λ(ξ) and ψ̂λ(ξ) = λ−nψ̂(ξ/λ), we have

ĥλ(ξ) =
1

(2π)n

∫
Rn

f̂(η)ψ̂λ(ξ − η)dη − 1

(2π)n

( ∫
Rn

f̂(η)dη
)
ψ̂λ(ξ) =

=
1

(2πλ)n

∫
Rn

f̂(η)
(
ψ̂
(ξ − η

λ

)
− ψ̂

( ξ
λ

))
dη.

Then the Minkowski inequality for integrals and Lemma 3.2 choosing ϑ = η/λ
and R = 4 yield that

∥⟨·⟩sĥλ∥Lq(Rn) ≤ λ−n
∫
Rn

∥∥∥⟨·⟩s(ψ̂( · − η

λ

)
− ψ̂

( ·
λ

))∥∥∥
Lq
|f̂(η)|dη ≲

≲ λ−n+s+
n
q

∫
Rn

∥∥∥⟨·⟩s(ψ̂( · −η
λ

)
− ψ̂(·)

)∥∥∥
Lq
|f̂(η)|dη ≲
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≲ λ
s− n

q′

∫
Rn

(∣∣∣η
λ

∣∣∣s− n
q′
(
max
|t|≤4

|ei
η
λ t − 1|

)1−(s− n
q′ )

+
∣∣∣η
λ

∣∣∣s)|f̂(η)|dη ≲

≲
∫
Rn

((
max
|t|≤4

|ei
η
λ t − 1|

)1−(s− n
q′ )

+ λ
− n

q′
)
⟨η⟩s|f̂(η)|dη.

We observe that
(
max|t|≤4 |ei

η
λ t − 1|

)1−(s− n
q′ ) + λ

− n
q′ ≤ 3 and(

max
|t|≤4

|ei
η
λ t − 1|

)1−(s− n
q′ )

+ λ
− n

q′ → 0 (λ→ ∞).

Since f ∈ FL1
s(R

n), we see that ∥⟨·⟩sĥλ∥Lq → 0 (λ → ∞). Therefore, for
any ε > 0, there exists λ0 > 0 such that ∥hλ0∥M1,q

s
< ε. Hence, by putting

ϕ(x) = ψλ0
(x), we have the desired result. ■

Remark 3.3. Let 1 < q ≤ 2, n/q′ < s < n/q′+1, f ∈ FL1
s(R

n) and x0 ∈ Rn.
Since M1,q

s (Rn) ↪→ FLqs(Rn), Lemma 3.3 implies that for any ε > 0, there
exists ϕ ∈ C∞

c (Rn) such that (i) ∥(f −f(x0))ϕ∥FLq
s
< ε. (ii) ϕ(x) = 1 in some

neighborhood of x0.

3.1.1. The proof of Proposition 3.1

(i) It suffices to show I({x0}) ⊂ J0({x0})
∥·∥FL

q
s = J({x0}). Let f ∈ I({x0})

and ε > 0. By Lemma 2.2 there exists g ∈ C∞
c (Rn) such that g(x0) = 0 and

∥f − g∥FLq
s
< ε/2. Moreover, by Remark 3.3 there exists ϕ ∈ C∞

c (Rn) such
that ∥(g − g(x0))ϕ∥FLq

s
= ∥gϕ∥FLq

s
< ε/2 and ϕ(x) = 1 on a neighborhood of

x0. Let τ = (1 − ϕ)g. Then τ ∈ FLqs(Rn) and τ(x) = 0 on a neighborhood
of x0. Therefore τ ∈ J0({x0}) and ∥f − τ∥FLq

s
≤ ∥f − g∥FLq

s
+ ∥ϕg∥FLq

s
< ε,

which implies f ∈ J0({x0})
∥·∥FL

q
s .

(ii) Let x0 = (x
(0)
1 , · · · , x(0)n ) ∈ Rn. Contrary to our claim, suppose that {x0}

is a set of spectral synthesis for FLqs(Rn). Let ϕ ∈ C∞
c (Rn) be such that

supp ϕ ⊂ B1(x0) and ϕ(x) = 1 on B1/2(x0), and define

f(x) =
(
(x1 − x

(0)
1 ) + · · ·+ (xn − x(0)n )

)
g(x), x = (x1, · · · , xn) ∈ Rn.

Then f ∈ I({x0}). Since I({x0}) = J({x0}), we see that for any ε > 0,
there exists fε ∈ FLqs(Rn) such that fε(x) = 0 in a neighborhood of x0 and
∥f − fε∥FLq

s
< ε. On the other hand, f, fε ∈ L1(Rn) ∩ FL1(Rn). Applying

the Fourier inversion formula and the Hölder inequality one has∣∣∣ ∂f
∂x1

(x0)−
∂fε
∂x1

(x0)
∣∣∣ = (2π)−n

∣∣∣ ∫
Rn

iξ1(f̂(ξ)− f̂ε(ξ))e
ixξdξ

∣∣∣ ≤
≤ (2π)−n

∫
Rn

⟨ξ⟩1−s⟨ξ⟩s|f̂(ξ)− f̂ε(ξ)|dξ ≤ (2π)−nε∥⟨·⟩1−s∥Lq′ .
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Since ∂f
∂x1

(x0) = 1, ∂fε
∂x1

(x0) = 0 and ε > 0 is arbitrary, this gives a contradic-
tion. Hence, {x0} is not a set of spectral synthesis for FLqs(Rn).

To prove Theorem 1.1, we prepare several lemmas. In the following, (FLqs)c
denotes the space defined in Lemma 2.6.

Lemma 3.4. Let q = 1 and s ≥ 0, or 1 < q < ∞ and s > n/q′. Suppose that

I is a closed ideal in FLqs(Rn). Then I = I ∩ (FLqs)c
∥·∥FL

q
s .

Proof. We need only consider I ⊂ I ∩ (FLqs)c
∥·∥FL

q
s . Let f ∈ I and ε > 0.

By Lemma 2.1 there exists ϕ ∈ C∞
c (Rn) satisfying ∥ϕf − f∥FLq

s
< ε. Since

C∞
c (Rn) ⊂ FLqs(Rn) and I is an ideal in FLqs(Rn), we get ϕf ∈ I ∩ (FLqs)c,

and thus I ⊂ I ∩ (FLqs)c
∥·∥FL

q
s . ■

Lemma 3.5. Let 1 ≤ p ≤ 2. Suppose that q = 1 and s ≥ 0, or 1 < q ≤ p′ and
s > n/q′. For closed ideals I and I ′ in FLqs(Rn),

(i) I ∩Mp,q
s (Rn) is a closed ideal in Mp,q

s (Rn).

(ii) If I ∩Mp,q
s (Rn) = I ′ ∩Mp,q

s (Rn), then we have I = I ′.

Proof. (i) Recall that Mp,q
s (Rn) is a multiplication algebra. Moreover

Mp,q
s (Rn) ↪→ FLqs(Rn) (see Lemma 2.5) and I is a ideal in FLqs(Rn). Thus

I ·Mp,q
s ⊂ FLqs · I ⊂ I. Hence I ∩Mp,q

s is an ideal in Mp,q
s (Rn). To see that

I ∩ Mp,q
s (Rn) is closed, let f ∈ I ∩Mp,q

s (Rn)
∥·∥M

p,q
s . Then there exists

{fn}∞n=1 ⊂ I ∩ Mp,q
s (Rn) such that ∥fn − f∥Mp,q

s
→ 0 (n → ∞). Thus

Lemma 2.5 gives ∥fn − f∥FLq
s
→ 0 (n → ∞). Moreover, since Mp,q

s (Rn)
is complete and I is closed in FLqs(Rn), we have f ∈ I ∩Mp,q

s (Rn), which
shows I ∩Mp,q

s (Rn) is closed.

(ii) Since I ∩Mp,q
s ∩ (FLqs)c = I ′∩Mp,q

s ∩ (FLqs)c and (FLqs)c ↪→Mp,q
s (Rn)

(see Lemma 2.6), one has I ∩ (FLqs)c = I ′ ∩ (FLqs)c. Thus Lemma 3.4 yields
I = I ′. ■

Proposition 3.2. Let 1 ≤ p ≤ 2. Suppose that q = 1 and s ≥ 0, or 1 < q ≤ p′

and s > n/q′. For any closed ideal IM in Mp,q
s (Rn), the ideal IF := IM

∥·∥FL
q
s

in FLqs(Rn) satisfies IM = IF ∩Mp,q
s (Rn).

Proof. We start by observing that I ′F := IM ∩ (FLqs)c
∥·∥FL

q
s is a closed ideal

in FLqs(Rn). In fact, for f ∈ I ′F and g ∈ FLqs(Rn) there exists {fn}∞n=1 in
IM ∩ (FLqs)c such that ∥f − fn∥FLq

s
→ 0 (n → ∞). Since fn ∈ (FLqs)c, there

exists ψn ∈ C∞
c (Rn) such that ψn(x) = 1 on supp fn. Then we have ψng ∈

∈ (FLqs)c ↪→ Mp,q
s (Rn). Therefore, ψng · fn ∈ IM , and thus fng = fn · ψng ∈

∈ IM ∩ (FLqs)c. Furthermore, since ∥fg − fng∥FLq
s
≲ ∥f − fn∥FLq

s
∥g∥FLq

s
→

→ 0 (n → ∞), and thus fg ∈ I ′F . Hence, I ′F is an ideal in FLqs(Rn). We
next prove IF = I ′F . It suffices to prove IF ⊂ I ′F . Given f ∈ IF and ε > 0
there exists g ∈ IM such that ∥f − g∥FLq

s
< ε. By Lemma 2.4 there exists
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ϕ ∈ C∞
c (Rn) such that ∥g − ϕg∥Mp,q

s
< ε. We note that ϕg ∈ IM ∩ (FLqs)c

by ϕg ∈ IM ⊂ Mp,q
s (Rn) ↪→ FLqs(Rn). Since ∥f − ϕg∥FLq

s
≲ ∥f − g∥FLq

s
+

+∥ϕg−g∥Mp,q
s

≲ ε, we obtain IF ⊂ I ′F . Finally, we prove IM = IF ∩Mp,q
s (Rn).

It suffices to show IF ∩Mp,q
s (Rn) ⊂ IM . Let f ∈ IF ∩Mp,q

s (Rn) and ε > 0. By
Lemma 2.4 there exists ϕ ∈ C∞

c (Rn) such that ∥f − ϕf∥Mp,q
s

< ε. Take φ ∈
∈ C∞

c (Rn) with φ(x) = 1 on supp ϕ. Since f ∈ IF there exists h ∈ IM∩(FLqs)c
such that ∥f − h∥FLq

s
< ε/(∥φ∥Mp,q

s
∥ϕ∥FLq

s
). Then ϕh ∈ IM . Note that the

proof of Lemma 2.6 implies FLqs(Rn) ↪→M∞,q
s (Rn). Thus

∥f − ϕh∥Mp,q
s

≤ ∥f − ϕf∥Mp,q
s

+ ∥φϕ(f − h)∥Mp,q
s

≲

≲ ∥f − ϕf∥Mp,q
s

+ ∥φ∥Mp,q
s

∥ϕ(f − h)∥M∞,q
s

≲

≲ ∥f − ϕf∥Mp,q
s

+ ∥φ∥Mp,q
s

∥ϕ(f − h)∥FLq
s
≲

≲ ∥f − ϕf∥Mp,q
s

+ ∥φ∥Mp,q
s

∥ϕ∥FLq
s
∥f − h∥FLq

s
.

Therefore f ∈ IM
∥·∥M

p,q
s = IM . Hence IF ∩Mp,q

s (Rn) ⊂ IM . ■

Remark 3.4. Let IM and I ′M be closed ideals in Mp,q
s (Rn), and IF be the

closure of IM in FLqs(Rn). If the closure of I ′M in FLqs(Rn) is equal to IF ,
then Proposition 3.2 implies that IM = I ′M .

Combining these results, we obtain the “ideal theory for Segal algebras”.

Theorem 3.3. Let 1 ≤ p ≤ 2. Suppose that q = 1 and s ≥ 0, or 1 < q ≤ p′

and s > n/q′. Let IF be the set of all closed ideals in FLqs(Rn), and IM be
the set of all closed ideals in Mp,q

s (Rn). Then the map ι : IF → IM , ι(IF ) =
= IF ∩Mp,q

s (Rn) (IF ∈ IF ) is bijective. More precisely, we have ι−1(IM ) =

= IM
∥·∥FL

q
s and ι(IM

∥·∥FL
q
s ) = IM

∥·∥FL
q
s ∩Mp,q

s (Rn) for IM ∈ IM .

3.1.2. The proof of Theorem 1.1

For a closed subset K of Rn, we set IF (K) := {f ∈ FLqs(Rn) | f |K = 0}
and IM (K) := {f ∈ Mp,q

s (Rn) | f |K = 0}. Moreover, we define JF (K) by the
closure of {f ∈ FLqs(Rn) | f(x) = 0 in a neighborhood of K} in FLqs(Rn), and
JM (K) by the closure of {f ∈ Mp,q

s (Rn) | f(x) = 0 in a neighborhood of K}
inMp,q

s (Rn). Then Theorem 3.3 shows IF (K) = JM (K) if and only if IF (K) =
= JF (K). Hence, K is a set of spectral synthesis for Mp,q

s (Rn) if and only if
K is a set of spectral synthesis for FLqs(Rn).

4. Wiener–Lévy theorem

We only prove Theorem 1.4 because a slight change in the proof of The-
orem 1.4 shows Theorem 1.5 (cf. Remark 4.1). We first recall the following
lemma and prepare a local version of Theorem 1.4.
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Lemma 4.1 ([14, Theorem 4.13]). Let 1 < p < ∞, 1 ≤ q ≤ ∞ and s > n/q′.
Let µ be a complex measure on R such that∫

R

(1 + |ξ|)1+(s+n/q)(1+ 1
s−n/q′ )d|µ|(ξ) <∞

and such that µ(R) = 0. Let F be the inverse Fourier transform of µ. Then
F (f) ∈Mp,q

s (Rn) holds for all real-valued f ∈Mp,q
s (Rn).

Lemma 4.2. Given 1 < q <∞, s > n/q′, a real-valued function f ∈ FLqs(Rn)
and a compact subset K ⊂ Rn. Suppose that F ∈ S(R) and F (0) = 0. Then
there exists g ∈ FLqs(Rn) such that g(x) = F (f(x)) for all x ∈ K.

Proof. Take a real-valued function τ ∈ C∞
c (Rn) with τ(x) = 1 on K. Then

τf ∈ FLqs(Rn). Since

(4.1) (FLqs)c = {f ∈Mp,q
s (Rn) | supp f is compact}

(cf. [9, Lemma A.1], [13, Lemma 1]), we have τf ∈Mp,q
s (Rn) and thus F (τf) ∈

∈ Mp,q
s (Rn) by Lemma 4.1. Note that F ∈ S(R) and supp(τf) is compact.

Thus supp(F (τf)) is compact. By (4.1) we have F (τf) ∈ FLqs(Rn). Now
set g = F (τf). Then g ∈ FLqs(Rn) and g(x) = F (τ(x)f(x)) = F (f(x))
(x ∈ K). ■

4.1. The proof of Theorem 1.4

Since F is analytic on a neighborhood of 0 with F (0) = 0, there exists
ε0 > 0 such that F (z) has the power series representation F (z) =

∑∞
j=1 cjz

j

(|z| < ε0). Take ϕ ∈ C∞
c (Rn) such that ∥f − ϕf∥FLq

s
< ε/c for any ε with

0 < ε < ε0 (see Lemma 2.1), where c is the constant as in (2.1). Now we

set g0(x) :=
∑∞
j=1 cj

(
f(x) − ϕ(x)f(x)

)j
. Then g0 ∈ FLqs(Rn) and g0(x) =

= F (f(x)−ϕ(x)f(x)) = F (f(x)) (x ̸∈ supp ϕ). On the other hand, let τ0, τ1 ∈
∈ C∞

c (Rn) be such that τ0(x) = 1 on supp ϕ and τ1(x) = 1 on supp τ0. Take
ψ ∈ C∞

c (Rn) with ψ(y) = 1 for all y ∈ {τ1(x)f(x) | x ∈ supp τ1}. We note
f ∈ L∞(Rn). Moreover one has G := ψF ∈ C∞

c (R), G(0) = 0 and

F (f(x)) = ψ(τ1(x)f(x))F (τ1(x)f(x)) = G(τ1(x)f(x)) (x ∈ supp τ0).

By Lemma 4.2 with K = supp τ0 and τ1f ∈ FLqs(Rn), there exists exists
g1 ∈ FLqs(Rn) such that g1(x) = F (f(x)) on supp τ0. Set g(x) := (1 −
−τ0(x))g0(x) + τ0(x)g1(x). Then g ∈ FLqs(Rn). If x ∈ supp ϕ, then τ0(x) = 1
and g1(x) = F (f(x)). Thus g(x) = F (f(x)). Moreover, if x ∈ supp τ0 \supp ϕ,
then g0(x) = F (f(x)−ϕ(x)f(x)) = F (f(x)) and g1(x) = F (f(x)). Thus g(x) =
= F (f(x)). If x ̸∈ supp τ0, then τ0(x) = 0, g0(x) = F (f(x)) and g(x) =
= F (f(x)).

Remark 4.1. Applying Lemma 2.4 and Lemma 4.1 to τ1f for a real-valued
function f ∈Mp,q

s (Rn), we can prove Theorem 1.5 similarly.
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1998.

[5] Feichtinger, H.G., M. Kobayashi and E. Sato, On some properties
of modulation spaces as Banach algebras, to appear in Studia Math.
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[18] Schwartz, L., Sur une propriété de synthese spectrale dans les groupes
non compacts, C. R. Acad. Sci., Paris, 227 (1948), 424–426.

[19] Wermer, J., On a class of normed rings, Ark. Mat., 2 (1954), 537–551.

H.G. Feichtinger
Faculty of Mathematics
University of Vienna
Oskar-Morgenstern-Platz 1, A-1090 Wien
Austria
and
Acoustic Research Institute
OEAW, Vienna
Austria
hans.feichtinger@univie.ac.at

M. Kobayashi
Department of Mathematics
Hokkaido University
Kita 10, Nishi 8, Kita-Ku, Sapporo
Hokkaido, 060-0810
Japan
m-kobayashi@math.sci.hokudai.ac.jp

E. Sato
Faculty of Science
Yamagata University
Kojirakawa 1-4-12, Yamagata-City
Yamagata 990-8560
Japan
esato@sci.kj.yamagata-u.ac.jp


	Introduction
	Preliminaries
	Fourier–Wermer algebra
	Modulation spaces

	Spectral synthesis
	Spectral synthesis for FLqs
	The proof of Proposition 3.1
	The proof of Theorem 1.1


	Wiener–Lévy theorem
	The proof of Theorem 1.4


