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Abstract. This paper discusses using a discrete Laguerre filter for some
time series problems in the frequency domain. The Laguerre transforma-
tion of an ARMA time series model is considered. The β−function is
considered and the possible application of FFT for efficient computation is
pointed out.

1. Introduction

The application of orthogonal polynomials in both deterministic and sto-
chastic systems look back over a long time. System identification based on
frequency-domain interpretation of discrete-time signals plays a significant role
in the control theory and design. Estimating the poles associated with input
and output signals as well as the transfer functions is an efficient approach to
identifying the system dynamics; knowing – exactly or approximately — the
location of system poles is sufficient in estimating the whole system dynamics
by applying the principles of representations in orthogonal rational bases, [12],
[4].

Key words and phrases: Time series, spectral analysis, frequency warping, discrete Laguerre
filter.
2010 Mathematics Subject Classification: 37M10, 62M15.
The research was supported by the European Union within the framework of the National
Laboratory for Autonomous Systems (RRF-2.3.1-21-2022-00002),
and was also supported by the project TKP2021-NKTA of the University of Debrecen, Hun-
gary. Project no. TKP2021-NKTA-34 has been implemented with the support provided by
the Ministry of Culture and Innovation of Hungary from the National Research, Development
and Innovation Fund, financed under the TKP2021-NKTA funding scheme.



100 J. Bokor and Gy. Terdik

In the paper, [7] a new method was proposed that efficiently identifies the
poles in a linear system from frequency domain data. The discrete rational
transfer function was represented in rational Laguerre–basis, where powers of
the Blaschke–function can express the basis elements. This function can be
interpreted as a congruence transform on the Poincaré unit disc model of the
hyperbolic geometry, leading to a nice geometric interpretation of the identi-
fication algorithm. The reconstruction of a pole can be obtained as a hyper-
bolic transform of the limit of a sequence formed of quotients of the Laguerre–
Fourier coefficients of the function. Using an efficient FFT-based algorithm, the
Laguerre–Fourier coefficients can be estimated from frequency domain data.

The pole–identification algorithm introduced in [7] uses frequency–domain
data that can be either direct frequency–domain measurements or spectral es-
timations based on discrete time–domain samples, see also [8]. Moreover, the
phase function (β–function) of the Blaschke product was introduced in [7] as
well, and it has turned out very useful in calculating periodograms and other
frequency domain methods connected to Laguerre filters. The proposed pole-
identification method requires non-uniformly spaced frequency sample points
which are determined by this β–function. This allows the standard FFT al-
gorithm to estimate the Laguerre–Fourier coefficients. The poles are identi-
fied from multiple Laguerre–series coefficients corresponding to different La-
guerre parameters, thus multiple measurement sequences are required on non-
uniformly spaced frequency scales. First, we consider an ARMA time series
model with the stochastic spectral representation. The discrete Laguerre is
applied in the frequency domain. The connection between the series in time
and the Laguerre transformed series is given by a linear fractional (bilinear)
transformation which is an all-pass filter. We apply the Laguerre shift for the
construction of the ZAR model. In Section 3 the β−function is considered
using FFT to apply the Laguerre method.

In this paper, we concentrate on the ideas rather than the general treatment
therefore we shall focus on Laguerre polynomials although similar results can
be deduced for Kautz and generalized orthonormal rational basis functions, [6],
[10] as well. Throughout this paper, we shall use notations which are custom
in the system theory instead of traditional time series notations.

Laguerre polynomials are widely known for forming a closed orthogonal sys-
tem over L2 (R+) , [11]. The discrete counterpart is called the discrete Laguerre-
type functions due to Gottlieb, [3]. Its z-transform, the discrete Laguerre filter,
[5], became a basic tool for system theory. This latter is defined as follows. Let
|α| < 1 and define the Blaschke factor with poles that corresponds to α

Bk (z, α) =

(
1− αz

z − α

)k

.
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The Laguerre base functions are defined by

Lk (z, α) = mα (z)Bk (z, α) =

√
1− α2

z − α

(
1− αz

z − α

)k−1

,

for k = 1, 2, . . . n, where

mα (z) =

√
1− |α|2

z − α
.

2. Discrete Laguerre filtered time series

We shall consider a stationary time series

(2.1) Xt =

π∫
−π

eiωtGX

(
eiω

)
W (dω) ,

with transfer function GX (z) and stochastic spectral measure W (dω) such

that EW (dω) = 0 and E |W (dω)|2 = σ2dω/2π. Assume that the transfer
function GX is rational, i.e. GX (z) = B (z) /A (z) where the polynomials
are written in the following form B (z) = zna−1 + b1z

na−2 + · · · + bnb
zna−nb ,

na−nb ≥ 0, bnb
̸= 0, and A (z) = zna+a1z

na−1+· · ·+ana
, ana

̸= 0. In this case
Xt is also called ARMA(na,nb) model. The necessary and sufficient conditions
of stationarity of Xt is that A (z) has no roots on unite circle. Moreover if all
the roots of A (z) are inside of the unite circle then Xt is causal

Xt =

∞∑
k=1

gkWt−k = GX (q)Wt,

where

Wt =

π∫
−π

eiωtW (dω) ,

is a white noise series, q−kWt = Wt−k. The spectral density of Xt is ΦX (ω) =

= σ2
∣∣GX

(
eiω

)∣∣2, and the covariance function of Xt is

CX (τ) = Cov (Xt+τ , Xt) =

π∫
−π

eiωτ
∣∣G (

eiω
)∣∣2 σ2dω

2π
.

Note here that in time series analysis polynomials A (z) and B (z) tradi-
tionally have different forms, for instance, the denominator writes as
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1+ a1z+ · · ·+ ana
zna , with the straightforward consequence that the assump-

tion of causality of Xt is that all the roots of A (z) be outside of the unite
circle.

Let us apply the Laguerre filter Lk on Xt and get

(2.2) X̃k (t, α) =

π∫
−π

eiωtLk

(
eiω, α

)
GX

(
eiω

)
W (dω) , k = 0, 1 . . . .

We call attention to the notation here and from now on the subscript k of series
X̃ denotes the order of Laguerre shift but time.

The covariance

Cov
(
X̃k (t, α) , X̃k+m (t, α)

)
=(2.3)

=

π∫
−π

Lk

(
eiω, α

)
Lk+m

(
e−iω, α

) ∣∣GX

(
eiω

)∣∣2 σ2dω

2π
=

=
(
1− α2

) σ2

2πi

∮
1

(z − α) (1− αz)

(
1− αz

z − α

)m

|GX (z)|2 dz

shows that for any fixed t = t0, say, X̃k (t0, α) is stationary. Let us put t0 = 0

and denote X̃k (0, α) = X̃k (α). The spectral representation of the X̃k (α)
follows from (2.2) as follows. Let us introduce the change of variables

(2.4) eiϖ =
eiω − α

1− αeiω
,

with the Jacobian

(2.5) dω =
1− α2

|eiϖ − α|2
dϖ =

∣∣mα

(
eiϖ

)∣∣2 dϖ,

see [4, p. 77]. Hence the stochastic spectral measure transforms to

(2.6) W (dω) =

√
1− α2

eiϖ − α
W (dϖ) ,
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and E |W (dϖ)|2 = σ2dϖ/2π. Therefore we have

X̃k (α) =

π∫
−π

√
1− α2

eiϖ + α

1− α2
eiϖkGX

(
eiϖ + α

1 + αeiϖ

) √
1− α2

eiϖ + α
W (dϖ) =

=

π∫
−π

eiϖkGX

(
eiϖ + α

1 + αeiϖ

)
W (dϖ) =

=

π∫
−π

eiϖkGX̃

(
eiϖ

)
W (dϖ) .(2.7)

The transformation 2.4 corresponds to the first-order all-pass shift operator
B1 (z, α). Now we consider the inverse transformation

B1 (z, α) =
z + α

1 + αz
=

1 + αz−1

z−1 + α

of B1 (z, α) and define the corresponding base function by

Lt (z, α) =

√
1− α2

1 + αz

(
z + α

1 + αz

)t−1

= Mα (z)Bt−1 (z, α) ,

where

Mα (z) =

√
1− α2

z + α

is the normalizing term. If we are given the series X̃k (α) by (2.7) then put
k = 0 and apply the transformation Lt

Yt (α) =

π∫
−π

Lt (z, α)GX̃

(
eiϖ

)
W (dϖ) .

The transformation

eiω =
eiϖ + α

1 + αeiϖ
,

with Jacobians

dϖ =
α2 − 1

|1 + αeiω|2
dω, and

W (dϖ) =

√
1− α2

eiϖ + α
W (dω) ,
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provides the time series

Yt (α) =

π∫
−π

GX̃

(
eiϖ

)
Lt

(
eiϖ

)
W (dϖ) =

=

π∫
−π

eiωtGX̃

(
eiω − α

1− αeiω

)
W (dω) =

=

π∫
−π

eiωtGX

(
eiω

)
W (dω) = Xt.

The result is the following

Lemma 2.1. Assume the transfer function GX (z) = B (z) /A (z) of the series
Xt, defined by (2.1), to be analytic in |z| > 1, continuous in |z| ≤ 1 and let

X̃k (α) be the discrete Laguerre filtered series (2.2) of X0. Then X̃k (α) is
stationary with spectral representation

X̃k (α) =

π∫
−π

eiϖkGX

(
eiϖ + α

1 + αeiϖ

)
W (dϖ) ,

covariance function (2.3) and spectrum

ΦX̃ (ϖ) = σ2

∣∣∣∣GX

(
eiϖ + α

1 + αeiϖ

)∣∣∣∣2 .
Moreover the spectrum of Xt is given in terms of the transfer function of X̃k (α)
by

ΦX (ω) = σ2

∣∣∣∣GX̃

(
eiω − α

1− αeiω

)∣∣∣∣2 .
It is worth mentioning a model called ZAR ([14]) which generalizes the

autoregressive structure for the Laguerre filtered series X̃k (t, α). Actually con-

sider the linear prediction of Xt in terms of X̃k (t, α), t = 1, 2, . . . n, then we
arrive the equation

(2.8) Xt + γ1X̃1 (t, α) + γ2X̃2 (t, α) + · · ·+ γnX̃n (t, α) = et.

If we notice that

Lk (z, α) = Lk−1 (z, α)
1− αz

z − α
, k = 2, . . .
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we can define the Laguerre shift X̃k of Xt by X̃k (t, α) = ZαX̃k−1 (t, α), such

that we apply the filter (1− αz) / (z − α) on X̃k−1. The equation (2.8) is
written as

Xt +
(
γ1Zα + γ2Z

2
α + · · ·+ γnZ

n
α

)
Xt = et.

This problem leads to linear regression where the matrix is calculated from the
covariances of X̃k, see also [13] and [9]. Some statistical problems investigated
by [13] would follow now from the Lemma 2.1. Observe the difference between
an ordinary AR time series and a ZAR one where both the coefficients γk and
the error term et depend not only on the order but from both α and n as well.

3. β–function

The computation of the spectrum for the series X̃k is not so direct as for
a series Xt that depends on time, [2], [1]. The idea uses transformations of
the previous section in a particular way. We introduce the phase function of a
single term B1 (z, α) which corresponds to the transformation (2.4)

B1 (z, α) =
1− αz

z − α
= eiβα(ω).

Then the inverse transformation of the generalized shift operator Zα is given
by

B1 (z, α) =
z + α

1 + αz
.

Now define the β−function and its inverse by the equations

eiϖ =
eiω − α

1− αeiω
= eiβα(ω), and eiω =

eiϖ + α

1 + αeiϖ
= eiβ

−1
α (ϖ).

We find that the frequency warp maps show up ϖ = βα (ω) and ω = β−1
α (ϖ)

respectively. The β−function can also be clearly expressed by the formulae

β (ω) = 2 arctan (µ tan (ω/2)) , and

β−1
α (ϖ) = 2 arctan (µ̃ tan (ϖ/2)) ,

where

µ =
1 + α

1− α
, and µ̃ =

1− α

1 + α
,

respectively. The transfer functions ΦX and ΦX̃ are given in terms of β−func-
tions as

ΦX (ω) = ΦX̃ (βα (ω)) , and(3.1)

ΦX̃ (ϖ) = ΦX

(
β−1
α (ϖ)

)
.(3.2)
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Now we have

Cov
(
X̃k (α) , X̃k+m (α)

)
=

σ2

2π

π∫
−π

eimω
∣∣∣GX

(
eiβ

−1
α (ω)

)∣∣∣2 dω,
i.e. the spectrum of X̃k (α) is σ

2
∣∣∣GX

(
eiβ

−1
α (ω)

)∣∣∣2. The model parameters can

be computed from a DFT of appropriately warped frequency response data.
spectrum of Xt

CX (τ) = Cov (Xt+τ , Xt) =

π∫
−π

eiωτ
∣∣GX

(
eiω

)∣∣2 σ2dω

2π

=

π∫
−π

eiωτ
∣∣∣GX̃

(
eiβα(ω)

)∣∣∣2 σ2dω

2π
.

The β−transformations (3.1) and (3.2) makes possible the use of the com-
putationally very efficient FFT for getting the Laguerre transfer function and
as a consequence the Laguerre spectrum. The Fourier transform of the data
provides the estimate of the spectrum at frequency β−1

α (2πj/N), see Com-
putational algorithms, [1], [8]. During these transformations one has to pay
attention to the effect of the non-uniformly spaced frequency scale produced
by the inverse argument-transform β−1

α , see Figures 1 and 2.

These plots concern two basic issues of time series analysis, namely the
assumption of stationarity and long-range dependence. The basic assumption
of stationarity is that there should be no pole of the transfer function on the
unit circle. Figure 1 shows that the β−transformation can conclude stationarity
even if a pole is close to the unit circle.

Let us recall the notion of long-range dependence. The ARMA(na,nb) time
series Xt is long-range dependent (with long memory) if its transfer function
is given by

GX (z) =
B (z)

(1− z)
d
A (z)

,

where d ∈ (0, 1/2) and the polynomials are given in Section 1. In this case Xt

is also called FARIMA(na,d,nb) model. The spectrum of Xt now is

ΦX

(
eiω

)
= σ2

∣∣1− eiω
∣∣−2d

∣∣∣∣∣B
(
eiω

)
A (eiω)

∣∣∣∣∣
2

.
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Figure 1. The approximation of the pole (ω = 0.99) by FFT (blue circles)
with linear frequency spacing and by using β−1

α (ω). While the FFT has no
information between frequencies rad 0 and 0.2 the β−1

α (ω) provides a clear
limit when getting closer to the pole.

It follows that the second order moments of Xt are finite and ΦX

(
eiω

)
∼ |ω|−2d

around zero. Note that in general a stationary time series Xt is long-range
dependent iff there exists a real number d ∈ (0, 1/2) and a constant cΦ > 0
such that

lim
ω→0

ΦX (ω)

cΦ |ω|2d
= 1.

Figure 2 points to the linearity of the transformation β−1
α around zero hence

there is no extra information about long-range dependence contained in the
Laguerre spectrum.



108 J. Bokor and Gy. Terdik

Figure 2. There is no significant difference between linear spacing and spacing
by β−1

α (ω) when the frequency is close to zero, actually ω = 0.01.
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