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Abstract. In this note we construct a data set in the plane with a
1-separable k-clustering for any k ⩾ 2 such that Lloyd’s method doesn’t
terminate with this clustering regardless of the initialization method.

1. Introduction

Clustering is a fundamental tool for data analysis. Its goal is natural: to
identify groups of similar items within data. While the goal of clustering is
simple, formalizing this task is much more challenging. It is well known that
most of the common clustering objectives are NP-hard to optimize. In practice,
however, clustering is being routinely carried out. One approach for providing
theoretical understanding of this seeming discrepancy is to introduce notions
of clusterability that distinguish realistically interesting input data from worst-
case data sets. Here we focus on one such notion.

We consider a space (X, d) where X is a set of data elements and d is a
distance function on X. It is assumed that d is symmetric and non-negative,
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and d(x, x) = 0 for all x ∈ X. For an integer k ⩾ 1, a k-clustering of X is
a partition C = {C1, . . . , Ck} of X into k disjoint non-empty sets. For a k-
clustering C of X and data elements x1, x2 ∈ X, we write x1 ∼C x2 if x1 and
x2 belong to the same cluster in C, and x1 ̸∼C x2 otherwise. A k-clustering C
of X is called 1-separable if for any x1, x2, x3, x4 ∈ X such that x1 ∼C x2 and
x3 ̸∼C x4 the inequality d(x1, x2) < d(x3, x4) holds. Note that the 1-separable
k-clustering of any given data set is unique, if it exists.

One of the most widely used algorithm for clustering is Lloyd’s method [4].
For a given data set X and initial center set S in the n-dimensional Euclidean
space Lloyd’s method performs the following steps until two consecutive iter-
ations return the same clustering: (1) assign each point in X to its closest
element of S producing a clustering of X, (2) replace S with the set of the
centers of gravity of data elements assigned to each cluster.

A common initialization for Lloyd’s method is to select k random centers
from the input data set [2]. Another well-known initialization method is the
so-called furthest-centroid initialization [3]. Using this method, given a set
X, the initial centers c1, c2, . . . , ck in S are chosen as follows: center c1 is an
arbitrary point in X, then, for each i = 2, 3, . . . , k, center ci is set to be the
point in X that maximizes the distance from the set of the other centers that
were already chosen.

Margareta Ackerman, Shai Ben-David, David Loker and Sivan Sabato stat-
ed in [1], as Lemma 6.4, that Lloyd’s clustering method with furthest cen-
troid initialization is 1-separability detecting, i.e., it always terminates with a
1-separable clustering if there is such a clustering of the data set.

In this short note we show that this is not true by constructing a data set
in the plane with a 1-separable k-clustering for any k ⩾ 2 such that Lloyd’s
method doesn’t terminate with this clustering regardless of the initialization
method.

2. The counterexample

Consider first the data set X consisting of the 12 points

xi = (−5 + i, 45) for i = 1, 2, . . . , 9,

x10 = (0, 0), x11 = (−22,−40), x12 = (22,−40)

in the plane (see Figure 1).
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Figure 1

Now

C = {{x1, x2, . . . , x9, x10}, {x11, x12}}

is a 1-separable 2-clustering of X since the within-cluster distances are

d(xi, xj) ⩽ d(x1, x9) = 8

for 1 ⩽ i < j ⩽ 9,

d(xi, x10) ⩽ d(x1, x10) = d(x9, x10) =
√
2041 = 45.17 . . .

for i = 1, 2, . . . , 9, and

d(x11, x12) = 44,

while the between-cluster distances are

d(xi, xk) ⩾ d(x1, x11) = d(x9, x12) =
√
7549 = 86.88 . . .

for i = 1, 2, . . . , 9 and k = 11, 12, and

d(x10, x11) = d(x10, x12) =
√
2084 = 45.65 . . . .

Run Lloyd’s method on X and suppose that it returns C in some iteration.
Now the algorithm calculates the centers of gravity of the clusters which are
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(0, 40.5) and (0,−40) for {x1, x2, . . . , x9, x10} and {x11, x12}, respectively, and
assigns each point inX to its closest center. In this way we obtain the clustering

C′ = {{x1, x2, . . . , x9}, {x10, x11, x12}}

which is different from C. The algorithm calculates again the centers of grav-
ity of the clusters which are (0, 45) and (0,−80/3) for {x1, x2, . . . , x9} and
{x10, x11, x12}, respectively, and assigns each point in X to its closest cen-
ter. Now we obtain the the same clustering C′ as before, thus Lloyd’s method
terminates with C′.

This implies that Lloyd’s method running on X never terminates with C
regardless of the initialization method.

This counterexample can easily be generalized to any k ⩾ 3. By adding the
points

x12+j = (0, 100j) for j = 1, 2, . . . , k − 2

to X we obtain a data set with a 1-separable k-clustering

{{x1, x2, . . . , x9, x10}, {x11, x12}, {x13}, . . . , {x13+k−3}}

such that Lloyd’s method running on this data set never terminates with this
clustering regardless of the initialization method.
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