APPROXIMATION BY T MEANS OF WALSH–FOURIER SERIES IN LEBESGUE SPACES AND LIPSCHITZ CLASSES

Nino Anakidze and Nika Areshidze (Tbilisi, Georgia) Lars-Erik Persson (Narvik, Norway) George Tephnadze (Tbilisi, Georgia)

Communicated by László Szili

(Received April 22, 2024; accepted June 20, 2024)

Abstract. In this paper we present and prove some new results concerning the rate of approximation of T means of functions in $L^p(G)$ and in lip (α, p) , for $1 \leq p < \infty$ and $\alpha > 0$. As a corollary, we obtain some new as well as known approximation inequalities.

1. Preliminaries and motivations

Let \mathbb{N}_+ denote the set of positive integers, $\mathbb{N} := \mathbb{N}_+ \cup \{0\}$. Denote by $\mathbb{Z}_2 := \{0, 1\}$ the additive group of integers modulo 2.

Define the group G as the complete direct product of the group Z_2 with the product of the discrete topologies of Z_2 's. The direct product μ of the measures

 $\mu^*(\{j\}) := 1/2 \ (j \in Z_2)$

is the Haar measure on G with $\mu(G) = 1$.

 $Key\ words\ and\ phrases:$ Walsh group, Walsh system, Fejér means,
 T means, Lipschitz classes, approximation.

²⁰¹⁰ Mathematics Subject Classification: 42C10.

The work of George Tephnadze was supported by Shota Rustaveli National Science Foundation grant no. FR-21-2844.

The elements of G are represented by the sequences

$$x := (x_0, x_1, \dots, x_k, \dots) \qquad (x_k \in Z_2)$$

Let $e_n := (x_0 = 0, \dots, x_{n-1} = 0, x_n = 1, x_{n+1} = 0, x_{n+2} = 0, \dots)$. It is easy to give a base for the neighborhood of G, namely

$$I_0(x) := G, \ I_n(x) := \{ y \in G, \ y_0 = x_0, \dots, y_{n-1} = x_{n-1} \} \ (x \in G, \ n \in \mathbb{N}).$$

The intervals $I_n(x)$ $(n \in \mathbb{N}, x \in G)$ are called dyadic intervals.

The norms (or quasi-norms) of the Lebesgue space $L^{p}(G)$ and the weak Lebesgue space $L^{p,\infty}(G)$, (0 are, respectively, defined by

$$\|f\|_p^p := \int_G |f|^p d\mu$$
 and $\|f\|_{weak-L_p}^p := \sup_{\lambda>0} \lambda^p \mu (f > \lambda).$

It is well-known that every $n \in \mathbb{N}$ can be uniquely expressed as

$$n = \sum_{k=0}^{\infty} n_j 2^j$$
, where $n_j \in Z_2$ $(j \in \mathbb{N})$

and only a finite number of n_i 's differ from zero.

Let

$$|n| := \max\{j \in \mathbb{N}, n_j \neq 0\}.$$

Now, we consider the Walsh orthonormal system $\{w_k, k \in \mathbb{N}\}$ using the Paley enumeration (see [15]). First define the Rademacher functions as

$$r_k(x) := (-1)^{x_k}, \quad (k \in \mathbb{N}).$$

Next we define the Walsh system $w := (w_n : n \in \mathbb{N})$ on G as

$$w_{n}(x) := \prod_{k=0}^{\infty} r_{k}^{n_{k}}(x) \qquad (n \in \mathbb{N}).$$

The Walsh system is orthonormal and complete in $L^{2}(G)$ (see e.g. [20]).

For $f \in L^1(G)$, we define the Fourier coefficients, partial sums of the Fourier series and Fejér means with respect to the Walsh system in the following way:

$$\widehat{f}(k) := \int_{G} f w_{k} d\mu, \qquad (k \in \mathbb{N}),$$

$$S_{n}f := \sum_{k=0}^{n-1} \widehat{f}(k) w_{k}, \qquad (n \in \mathbb{N}_{+}, S_{0}f := 0)$$

$$\sigma_{n}f := \frac{1}{n} \sum_{k=1}^{n} S_{k}f, \qquad (n \in \mathbb{N}_{+}).$$

,

Recall that (see e.g. [7] and [21]),

(1.1)
$$D_{2^{n}}(x) = \begin{cases} 2^{n}, & \text{if } x \in I_{n}, \\ 0, & \text{if } x \notin I_{n}, \end{cases}$$

(1.2)
$$D_{2^n-j} = D_{2^n} - w_{2^n-1}D_j, \quad (0 \le j < 2^n),$$

(1.3)
$$n |K_n| \le 3 \sum_{l=0}^{|n|} 2^l K_{2^l},$$

and

(1.4)
$$\int_{G} K_{n} d\mu = 1, \qquad \sup_{n \in \mathbb{N}} \int_{G} |K_{n}| d\mu = \frac{17}{15}.$$

If $n > t, t, n \in \mathbb{N}$, then (see [7] and [18])

(1.5)
$$K_{2^{n}}(x) = \begin{cases} 2^{t-1}, & x \in I_{t} \setminus I_{t+1}, & x - e_{t} \in I_{n}, \\ \frac{2^{n}+1}{2}, & x \in I_{n}, \\ 0, & \text{otherwise.} \end{cases}$$

The *n*-th Nörlund mean t_n and T mean T_n of the Fourier series of f are defined by

$$t_n f := \frac{1}{Q_n} \sum_{k=1}^n q_{n-k} S_k f$$
 and $T_n f := \frac{1}{Q_n} \sum_{k=0}^{n-1} q_k S_k f$,

where $Q_n := \sum_{k=0}^{n-1} q_k$.

Here $\{q_k, k \ge 0\}$ is a sequence of nonnegative numbers, where $q_0 > 0$ and

(1.6)
$$\lim_{n \to \infty} Q_n = \infty.$$

Then, T means generated by $\{q_k, k \ge 0\}$ is regular if and only if the condition (1.6) is fulfilled (see [18]).

It is evident that

$$T_{n}f(x) = \int_{G} f(t) F_{n}(x+t) d\mu(t),$$

where

$$F_n := \frac{1}{Q_n} \sum_{k=0}^{n-1} q_k D_k$$

which are called the kernels of the T means.

By applying Abel transformation we get the following two identities:

(1.7)
$$Q_n := \sum_{k=0}^{n-1} q_k \cdot 1 = \sum_{k=0}^{n-2} (q_k - q_{k+1})k + q_{n-1}(n-1)$$

and

(1.8)
$$T_n f = \frac{1}{Q_n} \left(\sum_{k=0}^{n-2} (q_k - q_{k+1}) k \sigma_k f + q_{n-1} (n-1) \sigma_{n-1} f \right).$$

Fejér's theorem shows that (see e.g. [7] and [9]) if one replaces ordinary summation by Fejér means σ_n , then, for any $1 \leq p \leq \infty$, there exists an absolute constant C_p , depending only on p such that the inequality

$$\|\sigma_n f\|_p \le C_p \|f\|_p$$

holds. Moreover, (see [18]) if $1 \leq p \leq \infty$, $2^N \leq n < 2^{N+1}$, $n, N \in \mathbb{N}$ and $f \in L^p(G)$, then we have the following estimate

(1.9)
$$\|\sigma_n f - f\|_p \le 3 \sum_{s=0}^N \frac{2^s}{2^N} \omega_p \left(1/2^s, f \right).$$

It follows that if $f \in \text{lip}(\alpha, p)$, i.e.

$$\omega_p\left(1/2^n, f\right) = O\left(1/2^{n\alpha}\right), \text{ as } n \to \infty,$$

then

$$\left\|\sigma_{n}f - f\right\|_{p} = \begin{cases} O\left(1/2^{N}\right), & \text{if } \alpha > 1, \\ O\left(N/2^{N}\right), & \text{if } \alpha = 1, \\ O\left(1/2^{N\alpha}\right), & \text{if } \alpha < 1. \end{cases}$$

Moreover, (see [18]) if $1 \le p < \infty$, $f \in L^p(G)$ and

$$\|\sigma_{2^n} f - f\|_p = o(1/2^n), \text{ as } n \to \infty,$$

then f is a constant function.

Boundedness of maximal operators of Vilenkin-Fejer means and weak-(1,1) type inequality

$$\mu\left(\sigma^{*}f > \lambda\right) \leq \frac{C}{\lambda} \left\|f\right\|_{1}, \qquad \left(f \in L^{1}(G), \ \lambda > 0\right)$$

can be found in Schipp [19] for Walsh series and in Pál and Simon [14] (see also [3], [12], [17], [18] and [24]) for bounded Vilenkin series.

Convergence and summability of Nörlund means were studied by Blahota and Nagy [5] (see also [4] and [13]), Fridli, Manchanda and Siddiqi [6], Persson, Tephnadze and Weisz [18] (see also [16]). Móricz and Siddiqi [11] proved that if $f \in L^p(G)$, where $1 \leq p < \infty$ and $\{q_k, k \in \mathbb{N}\}$ is a sequence of non-negative numbers, such that

(1.10)
$$\frac{n^{\theta-1}}{Q_n^{\theta}} \sum_{k=0}^{n-1} q_k^{\theta} = O(1), \text{ for some } 1 < \theta \le 2$$

holds, then for any $2^N \le n < 2^{N+1}$, there exists an absolute constant C_p such that the approximation inequality

$$||t_n f - f||_p \le \frac{C_p}{Q_n} \sum_{k=0}^{N-1} 2^k q_{n-2^k} \omega_p\left(\frac{1}{2^k}, f\right) + C_p \omega_p\left(\frac{1}{2^N}, f\right)$$

holds when $(q_k, k \in \mathbb{N})$ is non-decreasing, while the approximation inequality

$$\|t_n f - f\|_p \le \frac{C_p}{Q_n} \sum_{k=0}^{N-1} \left(Q_{n-2^k+1} - Q_{n-2^{k+1}+1}\right) \omega_p\left(\frac{1}{2^k}, f\right) + C_p \omega_p\left(\frac{1}{2^N}, f\right)$$

holds when $\{q_k, k \in \mathbb{N}\}$ is non-increasing.

Areshidze and Tephnadze [2] (see also [1]) proved a similar approximation result for Nörlund means with respect to Walsh system generated by a nondecreasing sequence $\{q_k, k \in \mathbb{N}\}$ in Lebesgue spaces $L^p(G)$ when $1 \leq p < \infty$, without any condition considered in Móricz and Siddiqi [11].

Goginava [8] proved that if t_n are Nörlund means generated by non-increasing sequence $\{q_k, k \in \mathbb{N}\}$ satisfying the condition

(1.11)
$$\sup_{N \in \mathbb{N}} \frac{2^{N(1-p)}}{Q_{2^N}^p} \sum_{j=1}^N Q_{2^j}^p 2^{j(p-1)} < \infty,$$

for some $p \in [1/2, 1)$, then there exists an absolute constant C, such that the weak-(1, 1) type inequality

(1.12)
$$\mu\left(t^*f > \lambda\right) \le \frac{C}{\lambda} \left\|f\right\|_1, \qquad \left(f \in L^1(G), \ \lambda > 0\right)$$

holds.

It was also proved (see [18]) that inequality (1.12) also holds for any Nörlund mean generated by non-decreasing sequence $(q_k, k \in \mathbb{N})$.

It follows from these results that if $f \in L^p(G)$, where $1 \leq p < \infty$ and either $\{q_k, k \in \mathbb{N}\}$ is a sequence of non-negative and non-increasing numbers, such that condition (1.11) is fulfilled or the sequence $\{q_k, k \in \mathbb{N}\}$ is non-decreasing, then

$$\lim_{n \to \infty} ||t_n f - f||_p \to 0, \quad \text{as} \quad n \to \infty.$$

Tutberidze [23] (see also [18] and [22]) proved that if T_n are T means generated by either non-increasing sequence $\{q_k, k \in \mathbb{N}\}$ or non-decreasing sequence $\{q_k, k \in \mathbb{N}\}$ satisfying the condition

(1.13)
$$\frac{q_0}{Q_k} = O\left(\frac{1}{k}\right), \quad \text{as} \quad k \to \infty,$$

then there exists an absolute constant C, such that

(1.14)
$$||T^*f||_{weak-L_1} \le C ||f||_1, \quad (f \in L^1(G))$$

holds. It follows from these results that if $f \in L^p(G)$, where $1 \leq p < \infty$ and either the sequence $\{q_k, k \in \mathbb{N}\}$ is non-increasing, or $\{q_k, k \in \mathbb{N}\}$ is a sequence of non-decreasing numbers, such that condition (1.11) is fulfilled, then

$$\lim_{n \to \infty} ||T_n f - f||_p \to 0, \quad \text{as} \quad n \to \infty.$$

In Móricz and Rhoades [10] it was proved that if $f \in L^p(G)$, where $1 \leq p < \infty$ and T_n are regular T means generated by a non-increasing sequence $\{q_k, k \in \mathbb{N}\}$, then, for any $2^N \leq n < 2^{N+1}$ we have the following estimate

(1.15)
$$||T_n f - f||_p \le \frac{C_p}{Q_n} \sum_{s=0}^{N-1} 2^s q_{2^s} \omega_p \left(1/2^s, f\right) + C_p \omega_p \left(1/2^N, f\right).$$

In the case when the sequence $\{q_k, k \in \mathbb{N}\}$ is non-decreasing and satisfies the condition

(1.16)
$$\frac{q_{k-1}}{Q_k} = O\left(\frac{1}{k}\right), \quad \text{as} \quad k \to \infty$$

then

(1.17)
$$||T_n f - f||_p \le C_p \sum_{j=0}^{N-1} 2^{j-N} \omega_p \left(1/2^j, f\right) + C_p \omega_p \left(1/2^N, f\right).$$

In this paper we use a new and simpler approach to prove somewhat improved versions of the inequalities in (1.15) and (1.17) for T means with respect to the Walsh system (see Theorems 2.1 and 2.2). We also prove a new inequality for the subsequences $\{T_{2^n}\}$ means when the sequence $\{q_k, k \in \mathbb{N}\}$ is non-decreasing and where the restrictive (1.16) is omitted (see Theorem 2.3).

The main results and some of their consequences are presented in Section 2 while the proofs are given in Section 3.

2. The main results

Our first main results are the following improved version of some results in [10]:

Theorem 2.1. Let $f \in L^p(G)$, where $1 \leq p < \infty$ and T_n are regular T means generated by a non-increasing sequence $\{q_k, k \in \mathbb{N}\}$. Then, for any $n, N \in \mathbb{N}$, $2^N < n \leq 2^{N+1}$ we have the following inequality:

(2.1)
$$||T_n f - f||_p \le \frac{12}{Q_n} \sum_{s=0}^{N-1} 2^s q_{2^s} \omega_p \left(1/2^s, f\right) + 12 \omega_p \left(1/2^N, f\right).$$

Theorem 2.2. Let $f \in L^p(G)$, where $1 \leq p < \infty$ and T_n are T means generated by non-decreasing sequence $\{q_k, k \in \mathbb{N}\}$. Then, for any $n, N \in \mathbb{N}, 2^N < n \leq 2^{N+1}$ we have the following inequality

(2.2)
$$||T_n f - f||_p \le \frac{18q_{n-1}}{Q_n} \sum_{j=0}^{N-1} 2^j \omega_p \left(1/2^j, f\right) + \frac{8q_{n-1}}{Q_n} 2^N \omega_p \left(1/2^N, f\right).$$

In addition, if the sequence $\{q_k, k \in \mathbb{N}\}$ satisfies the condition

(2.3)
$$\frac{q_{n-1}}{Q_n} = O\left(\frac{1}{n}\right), \quad as \quad n \to \infty.$$

then

(2.4)
$$||T_n f - f||_p \le C_p \sum_{j=0}^N 2^{j-N} \omega_p \left(1/2^j, f \right).$$

Finally, we state the third main result for the non-decreasing sequences again but only for subsequences T_{2^n} of T means but without any restrictions.

Theorem 2.3. Let $f \in L^p(G)$, where $1 \le p < \infty$ and T_k are T means generated by a non-decreasing sequence $\{q_k, k \in \mathbb{N}\}$. Then, for any $n \in \mathbb{N}$, the following inequality holds:

$$(2.5) ||T_{2^n}f - f||_p \le \le \sum_{s=0}^{n-1} \frac{2^s}{2^n} \omega_p \left(1/2^s, f\right) + \frac{3}{q_0} \sum_{s=0}^{n-1} \frac{(n-s)q_{2^n-2^s}}{2^{n-s}} \omega_p \left(1/2^s, f\right) + 2\omega_p \left(1/2^n, f\right).$$

As a consequence we obtain the following similar result proved in Móricz and Rhoades [10]:

Corollary 2.1. Let $\{q_k, k \ge 0\}$ be a sequence of non-negative and nonincreasing numbers, while in case when the sequence is non-decreasing it is assumed that also the condition (2.3) is satisfied. If $f \in \text{lip}(\alpha, p)$ for some $\alpha > 0$ and $1 \le p < \infty$, then

(2.6)
$$\|T_n f - f\|_p = \begin{cases} O(n^{-\alpha}), & \text{if } 0 < \alpha < 1, \\ O(n^{-1}\log n), & \text{if } \alpha = 1, \\ O(n^{-1}), & \text{if } \alpha > 1, \end{cases}$$

We also obtain the following results proved in the same paper:

Corollary 2.2. Let $\{q_k, k \ge 0\}$ be a sequence of non-negative and non-increasing numbers such that

$$q_k \asymp k^{-\beta}$$
 for some $0 < \beta \le 1$

is satisfied. If $f \in \text{lip}(\alpha, p)$ for some $\alpha > 0$ and $1 \leq p < \infty$, then

$$\|T_n f - f\|_p = \begin{cases} O(n^{-\alpha}), & \text{if} & \alpha + \beta < 1, \\ O(n^{-(1-\beta)}\log n + n^{-\alpha}), & \text{if} & \alpha + \beta = 1, \\ O(n^{-(1-\beta)}), & \text{if} & \alpha + \beta > 1, \ \beta > 1, \\ O((\log n)^{-1}), & \text{if} & \beta = 1. \end{cases}$$

Corollary 2.3. Let $\{q_k, k \geq 0\}$ be a sequence of non-negative and non-increasing numbers such that

$$q_k \asymp (\log k)^{-\beta}$$
 for some $\beta > 0$

is satisfied. If $f \in lip(\alpha, p)$ for some $\alpha > 0$ and $1 \le p < \infty$, then

$$(2.7) \quad \|T_n f - f\|_p = \begin{cases} O(n^{-\alpha}), & \text{if} & 0 < \alpha < 1, \ \beta > 0, \\ O(n^{-1}\log n), & \text{if} & \alpha = 1, \ 0 < \beta < 1, \\ O(n^{-1}\log n\log\log n), & \text{if} & \alpha = \beta = 1, \\ O(n^{-1}(\log n)^{\beta}), & \text{if} & \alpha > 1, \ \beta > 0. \end{cases}$$

We also obtain the following convergence result:

Corollary 2.4. Let $f \in L^p(G)$, where $1 \leq p < \infty$ and $\{q_k, k \geq 0\}$ is a sequence of non-negative and non-increasing numbers, while in the case where the sequence is non-decreasing, it is also assumed that the condition (2.3) is satisfied. Then,

$$\lim_{n \to \infty} \|T_n f - f\|_p \to 0, \quad as \quad n \to \infty.$$

3. Proofs

Proof of Theorem 2.1. Let $2^N < n \le 2^{N+1}$ and $\{q_k, k \in \mathbb{N}\}$ is a sequence of non-increasing numbers. By combining identities (1.7) and (1.8) we find that

$$(3.1) ||T_n f - f||_p \le \le \frac{1}{Q_n} \left(\sum_{j=0}^{n-2} (q_j - q_{j+1}) j ||\sigma_j f - f||_p + q_{n-1} (n-1) ||\sigma_{n-1} f - f||_p \right) := := I_1 + I_2.$$

By using the inequality (1.9) for I_1 we can conclude that

$$(3.2) I_{1} \leq \frac{1}{Q_{n}} \sum_{j=0}^{2^{N+1}-1} (q_{j} - q_{j+1}) j \|\sigma_{j}f - f\|_{p} \leq \leq \frac{3}{Q_{n}} \sum_{k=0}^{N} \sum_{j=2^{k}}^{2^{k+1}-1} (q_{j} - q_{j+1}) j \sum_{s=0}^{k} \frac{2^{s}}{2^{k}} \omega_{p} (1/2^{s}, f) \leq \leq \frac{3}{Q_{n}} \sum_{k=0}^{N} 2^{k+1} \sum_{j=2^{k}}^{2^{k+1}-1} (q_{j} - q_{j+1}) \sum_{s=0}^{k} \frac{2^{s}}{2^{k}} \omega_{p} (1/2^{s}, f) \leq \leq \frac{6}{Q_{n}} \sum_{k=0}^{N} (q_{2^{k}} - q_{2^{k+1}}) \sum_{s=0}^{k} 2^{s} \omega_{p} (1/2^{s}, f) \leq \leq \frac{6}{Q_{n}} \sum_{s=0}^{N} 2^{s} \omega_{p} (1/2^{s}, f) \sum_{k=s}^{N} (q_{2^{k}} - q_{2^{k+1}}) \leq \leq \frac{6}{Q_{n}} \sum_{s=0}^{N} 2^{s} q_{2^{s}} \omega_{p} (1/2^{s}, f) \leq \leq \frac{6}{Q_{n}} \sum_{s=0}^{N-1} 2^{s} q_{2^{s}} \omega_{p} (1/2^{s}, f) + 6\omega_{p} (1/2^{N}, f) .$$

For I_2 we have that

(3.3)
$$I_{2} \leq \frac{3q_{n-1}2^{N+1}}{Q_{n}} \sum_{s=0}^{N} \frac{2^{s}}{2^{N}} \omega_{p} (1/2^{s}, f) \leq \frac{6}{Q_{n}} \sum_{s=0}^{N-1} 2^{s} q_{2^{s}} \omega_{p} (1/2^{s}, f) + 6\omega_{p} (1/2^{N}, f).$$

By combining (3.1), (3.2) and (3.3) we obtain that (2.1) holds so the proof is complete.

Proof of Theorem 2.2. Let $2^N < n \le 2^{N+1}$. Since $\{q_k, k \in \mathbb{N}\}$ is a sequence of non-decreasing numbers, by combining (1.7) and (1.8) we find that

$$(3.4) ||T_n f - f||_p \le \le \frac{1}{Q_n} \left(\sum_{k=0}^{n-2} (q_{k+1} - q_k) k ||\sigma_k f - f||_p + q_{n-1} (n-1) ||\sigma_{n-1} f - f||_p \right) := := II_1 + II_2.$$

For II_1 we have that

(3.5)
$$II_{1} = \frac{1}{Q_{n}} \sum_{j=0}^{2^{N}-1} (q_{j+1} - q_{j}) j \|\sigma_{j}f - f\|_{p} + \frac{1}{Q_{n}} \sum_{j=2^{N}}^{n-2} (q_{j+1} - q_{j}) j \|\sigma_{j}f - f\|_{p} := II_{1}^{1} + II_{1}^{2}$$

Analogously to (3.2) we get that

$$(3.6) II_{1}^{1} \leq \frac{6}{Q_{n}} \sum_{k=0}^{N-1} (q_{2^{k+1}} - q_{2^{k}}) \sum_{s=0}^{k} 2^{s} \omega_{p} (1/2^{s}, f) \leq \\ \leq \frac{6}{Q_{n}} \sum_{s=0}^{N-1} 2^{s} \omega_{p} (1/2^{s}, f) \sum_{k=s}^{N-1} (q_{2^{k+1}} - q_{2^{k}}) = \\ = \frac{6}{Q_{n}} \sum_{s=0}^{N-1} 2^{s} \omega_{p} (1/2^{s}, f) (q_{2^{N}} - q_{2^{s}}) \leq \\ \leq \frac{6q_{2^{N}}}{Q_{n}} \sum_{s=0}^{N-1} 2^{s} \omega_{p} (1/2^{s}, f) \leq \\ \leq \frac{6q_{n-1}}{Q_{n}} \sum_{s=0}^{N-1} 2^{s} \omega_{p} (1/2^{s}, f) .$$

Moreover, if we apply (1.7) we find that

(3.7)
$$II_{1}^{2} \leq \frac{3}{Q_{n}} \sum_{j=2^{N}}^{n-2} (q_{j+1} - q_{j}) j \sum_{s=0}^{N} \frac{2^{s}}{2^{N}} \omega_{p} (1/2^{s}, f) \leq \frac{3}{Q_{n}} \sum_{j=0}^{n-2} (q_{j+1} - q_{j}) j \sum_{s=0}^{N} \frac{2^{s}}{2^{N}} \omega_{p} (1/2^{s}, f) =$$

$$= \frac{3}{Q_n} \left((n-1)q_{n-1} - Q_n \right) \sum_{s=0}^N \frac{2^s}{2^N} \omega_p \left(1/2^s, f \right) \le$$

$$\le \frac{3(n-1)q_{n-1}}{Q_n 2^N} \sum_{s=0}^N 2^s \omega_p \left(1/2^s, f \right) \le$$

$$\le \frac{6q_{n-1}}{Q_n} \sum_{s=0}^N 2^s \omega_p \left(1/2^s, f \right) \le$$

$$\le \frac{6q_{n-1}}{Q_n} \sum_{s=0}^{N-1} 2^s \omega_p \left(1/2^s, f \right) +$$

$$+ \frac{6q_{n-1}}{Q_n} 2^N \omega_p \left(1/2^N, f \right).$$

For II_2 we have that

(3.8)
$$II_{2} \leq \frac{3q_{n-1}2^{N+1}}{Q_{n}} \sum_{s=0}^{N} \frac{2^{s}}{2^{N}} \omega_{p} (1/2^{s}, f) \leq \\ \leq \frac{6q_{n-1}}{Q_{n}} \sum_{s=0}^{N} 2^{s} \omega_{p} (1/2^{s}, f) = \\ = \frac{6q_{n-1}}{Q_{n}} \sum_{s=0}^{N-1} 2^{s} \omega_{p} (1/2^{s}, f) + \\ + \frac{6q_{n-1}}{Q_{n}} 2^{N} \omega_{p} (1/2^{N}, f) .$$

By combining (3.4)-(3.8) we obtain the inequality (2.2).

Finally, by using the condition (2.3) we also get the inequality (2.4) so the proof is complete.

Proof of Theorem 2.3. By using (1.2) we find that

(3.9)
$$F_{2^n} = D_{2^n} - \frac{1}{Q_{2^n}} \sum_{k=1}^{2^n} q_{2^n-k} \left(w_{2^n-1} D_k \right)$$

and

(3.10)
$$T_{2^n}f = D_{2^n} * f - \frac{1}{Q_{2^n}} \sum_{k=1}^{2^n} q_{2^n-k} \left(\left(w_{2^n-1}D_k \right) * f \right).$$

By applying Abel transformation we get that

$$(3.11) T_{2^n} f = D_{2^n} * f - - \frac{1}{Q_{2^n}} \sum_{j=1}^{2^n - 1} (q_{2^n - j} - q_{2^n - j - 1}) j((w_{2^n - 1} K_j) * f) - - \frac{1}{Q_{2^n}} q_0 2^n (w_{2^n - 1} K_{2^n} * f)$$

and

$$(3.12) \quad T_{2^{n}}f(x) - f(x) = = \int_{G} (f(x+t) - f(x))F_{2^{n}}(t)dt = = \int_{G} (f(x+t) - f(x))D_{2^{n}}(t)dt - - \frac{1}{Q_{2^{n}}}\sum_{j=1}^{2^{n}-1} (q_{2^{n}-j} - q_{2^{n}-j-1}) j \int_{G} (f(x+t) - f(x)) w_{2^{n}-1}(t)K_{j}(t)dt - - \frac{1}{Q_{2^{n}}}q_{0}2^{n} \int_{G} (f(x+t) - f(x))w_{2^{n}-1}(t)K_{2^{n}}(t)dt := := III_{1} + III_{2} + III_{3}.$$

By combining generalized Minkowski's inequality and equality (1.1), we find that

(3.13)
$$||III_1||_p \leq \int_{I_n} ||f(\cdot+t) - f(\cdot))||_p D_{2^n}(t) dt \leq \omega_p (1/2^n, f).$$

Since

$$2^n q_0 \le Q_{2^n} \ (n \in \mathbb{N}),$$

by combining (1.5) and generalized Minkowski's inequality we obtain that

$$(3.14) \|III_3\|_p \leq \int_G \|f(\cdot+t) - f(\cdot)\|_p K_{2^n}(t) d\mu(t) = = \int_{I_n} \|f(\cdot+t) - f(\cdot)\|_p K_{2^n}(t) d\mu(t) + + \sum_{s=0}^{n-1} \int_{I_n(e_s)} \|f(\cdot+t) - f(\cdot)\|_p K_{2^n}(t) d\mu(t) \leq$$

$$\leq \int_{I_n} \|f(\cdot+t) - f(\cdot)\|_p \frac{2^n + 1}{2} d\mu(t) + \\ + \sum_{s=0}^{n-1} 2^s \int_{I_n(e_s)} \|f(\cdot+t) - f(\cdot)\|_p d\mu(t) \leq \\ \leq \omega_p (1/2^n, f) \int_{I_n} \frac{2^n + 1}{2} d\mu(t) + \\ + \sum_{s=0}^{n-1} 2^s \int_{I_n(e_s)} \omega_p (1/2^s, f) d\mu(t) \leq \\ \leq \omega_p (1/2^n, f) + \sum_{s=0}^{n-1} \frac{2^s}{2^n} \omega_p (1/2^s, f) .$$

From the estimate (3.14) we can also conclude that

(3.15)
$$2^{n} \int_{G} \|f(\cdot+t) - f(\cdot)\|_{p} K_{2^{n}}(t) d\mu(t) \leq \sum_{s=0}^{n} 2^{s} \omega_{p}(1/2^{s}, f).$$

Let $2^k \leq j \leq 2^{k+1} - 1$. By combining (1.3) and (3.15) we find that

(3.16)
$$\left\| j \int_{G} |f(\cdot+t) - f(\cdot)| K_{j}(t) d\mu(t) \right\|_{p} \leq \\ \leq 3 \sum_{l=0}^{k} 2^{l} \int_{G} ||f(\cdot+t) - f(\cdot)||_{p} K_{2^{l}}(t) d\mu(t) \leq \\ \leq 3 \sum_{l=0}^{k} \sum_{s=0}^{l} 2^{s} \omega_{p} (1/2^{s}, f).$$

According to (1.3) and (3.16) we get that

$$(3.17) \quad \|III_2\|_p \leq \\ \leq \quad \frac{1}{Q_{2^n}} \sum_{j=0}^{2^n-1} \left(q_{2^n-j} - q_{2^n-j-1}\right) j \int_G \|f(\cdot+t) - f(\cdot)\|_p |K_j(t)| dt \leq \\ \leq \quad \frac{1}{Q_{2^n}} \sum_{k=0}^{n-12^{k+1}-1} \left(q_{2^n-j} - q_{2^n-j-1}\right) j \int_G \|f(\cdot+t) - f(\cdot)\|_p |K_j(t)| dt \leq$$

$$\leq \frac{3}{Q_{2^n}} \sum_{k=0}^{n-1} \sum_{j=2^k}^{2^{k+1}-1} (q_{2^n-j} - q_{2^n-j-1}) \sum_{l=0}^k \sum_{s=0}^l 2^s \omega_p (1/2^s, f) \leq \\ \leq \frac{3}{Q_{2^n}} \sum_{k=0}^{n-1} (q_{2^n-2^k} - q_{2^n-2^{k+1}}) \sum_{l=0}^k \sum_{s=0}^l 2^s \omega_p (1/2^s, f) \leq \\ \leq \frac{3}{Q_{2^n}} \sum_{l=0}^{n-1} \sum_{k=l}^{n-1} (q_{2^n-2^k} - q_{2^n-2^{k+1}}) \sum_{s=0}^l 2^s \omega_p (1/2^s, f) \leq \\ \leq \frac{3}{Q_{2^n}} \sum_{l=0}^{n-1} q_{2^n-2^l} \sum_{s=0}^l 2^s \omega_p (1/2^s, f) \leq \frac{3}{Q_{2^n}} \sum_{s=0}^{n-1} 2^s \omega_p (1/2^s, f) \sum_{l=s}^{n-1} q_{2^n-2^l} \leq \\ \leq \frac{3}{Q_{2^n}} \sum_{s=0}^{n-1} 2^s \omega_p (1/2^s, f) q_{2^n-2^s} (n-s) \leq \\ \leq 3 \sum_{s=0}^{n-1} \frac{n-s}{2^{n-s}} \frac{q_{2^n-2^s}}{q_0} \omega_p (1/2^s, f) .$$

Finally, by combining (3.12), (3.13), (3.14) and (3.17) we can conclude that (2.5) holds so the proof is complete.

References

- Anakidze, N., N. Areshidze and L. Baramidze, Approximation by Nörlund means with respect to Vilenkin system in Lebesgue spaces, *Acta Math. Hungar.*, **172(2)** (2024), 529–542.
- [2] Areshidze, N. and G. Tephnadze, Approximation by Nörlund means with respect to Walsh system in Lebesgue spaces, *Math. Inequal. Appl.*, 27(1) (2024), 137–147.
- [3] Baramidze, D., N. Nadirashvili, L.-E. Persson and G. Tephnadze, Some weak-type inequalities and almost everywhere convergence of Vilenkin–Nörlund means, J. Inequal. Appl., paper no. 66, (2023), 17 pp.
- [4] Blahota, I., K. Nagy and G. Tephnadze, Approximation by Marcinkiewicz Θ-means of double Walsh–Fourier series, *Math. Inequal. Appl.*, 22(3) (2019), 837–853.
- [5] Blahota, I. and K. Nagy, Approximation by Θ-means of Walsh–Fourier series, Anal. Math., 44(1) (2018), 57–71.
- [6] Fridli, S., P. Manchanda and A. Siddiqi, Approximation by Walsh-Nörlund means, Acta Sci. Math., 74(3-4) (2008), 593–608.

- [7] Gát, G., Cesàro means of integrable functions with respect to unbounded Vilenkin systems, J. Approx. Theory, 124(1) (2003), 25–43.
- [8] Goginava, U., Maximal operators of Walsh–Nörlund means on the dyadic Hardy spaces, Acta Math. Hungar., 169(1) (2023), 171–190.
- [9] Golubov, B.I., A.V. Efimov and V.A. Skvortsov, Walsh Series and Transforms, Kluwer Academic Publishers Group, Dordrecht, 1991.
- [10] Móricz, F. and B.E. Rhoades, Approximation by weighted means of Walsh-Fourier series, Internat. J. Math. & Math. Sci., 19(1) (1996), 1–8.
- [11] Móricz, F. and A. Siddiqi, Approximation by Nörlund means of Walsh– Fourier series, J. Approx. Theory, 70(3) (1992), 375–389.
- [12] Nadirashvili, N., L.-E. Persson, G. Tephnadze and F. Weisz, Vilenkin–Lebesgue points and almost everywhere convergence of Vilenkin– Fejér means and applications, *Mediterr. J. Math.*, no. 5, paper no. 239, (2022), 16 pp.
- [13] Nagy, K., Approximation by Nörlund means of double Walsh–Fourier series for Lipschitz functions, *Math. Inequal. Appl.*, 15(2) (2012), 301–322.
- [14] Pál, J. and P. Simon, On a generalization of the concept of derivative, Acta Math. Hung., 29, (1977), 155–164.
- [15] Paley, R.E.A.C., A remarkable system of orthogonal functions, Proc. London, Math. Soc., 34 (1932), 241–279.
- [16] Persson, L.-E., F. Schipp, G. Tephnadze and F. Weisz, An analogy of the Carleson–Hunt theorem with respect to Vilenkin systems, *J. Fourier Anal. Appl.*, 28(48) (2022), 1–29.
- [17] Persson, L.-E., G. Tephnadze and P. Wall, On the maximal operators of Vilenkin–Nörlund means, J. Fourier Anal. Appl., 21(1) (2015), 76–94.
- [18] Persson, L.-E., G. Tephnadze and F. Weisz, Martingale Hardy Spaces and Summability of Vilenkin–Fourier Series, Birkhäuser/Springer, 2022.
- [19] Schipp, F., Certain rearrangements of series in the Walsh series (in Russian), Mat. Zametki, 18, (1975), 193–201.
- [20] Schipp, F., W.R. Wade and P. Simon, Walsh series. An Introduction to Dyadic Harmonic Analysis, Adam Hilger, ltd., Bristol, 1990.
- [21] Toledo, R., On the boundedness of the L_1 -norm of Walsh–Fejér kernels, J. Math. Anal. Appl., 457(1) (2018), 153–178.
- [22] **Tutberidze, G.,** Sharp (H_p, L_p) type inequalities of maximal operators of T means with respect to Vilenkin systems with monotone coefficients, *Mediterr. J. Math.*, **19(2)** (2022), paper no. 81, 23 pp.
- [23] **Tutberidze, G.,** Maximal operators of means with respect to the Vilenkin system, *Nonlinear Stud.*, **27(4)** (2020), 1–11.

[24] Weisz, F., Martingale Hardy Spaces and their Applications in Fourier Analysis, Springer, Berlin-Heideiberg-New York, 1994.

N. Anakidze

The University of Georgia School of science and technology. Tbilisi Georgia nino.anakidze@ug.edu.ge

N. Areshidze

Tbilisi State University Faculty of Exact and Natural Sciences Department of Mathematics Tbilisi Georgia nika.areshidze150gmail.com

L.-E. Persson

UiT The Arctic University of Norway Narvik Norway larserik6pers@gmail.com

G. Tephnadze

The University of Georgia School of science and technology Tbilisi Georgia g.tephnadze@ug.edu.ge