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Abstract. In this paper we present and prove some new results concerning
the rate of approximation of 7" means of functions in L?(G) and in lip (o, p),
for 1 < p < oo and a > 0. As a corollary, we obtain some new as well as
known approximation inequalities.

1. Preliminaries and motivations

Let N1 denote the set of positive integers, N := Ny U {0}. Denote by
Zy :={0, 1} the additive group of integers modulo 2.

Define the group G as the complete direct product of the group Z; with
the product of the discrete topologies of Z5 ’s. The direct product p of the

measures

pr{ih) =1/2 (j € Z2)
is the Haar measure on G with p (G) = 1.
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The elements of G are represented by the sequences
x::(waxlv"')mkh---) (-’I»‘kEZQ)

Let e, := (20 =0,...,2p,-1 =0,2, = L,z41 =0,2,42 =0,...). It is easy to
give a base for the neighborhood of G, namely

Iy (z) =G, I.(z):={yeqG, yo=20,..,Yn-1=2pn—1} (x € G, n € N).

The intervals I,,(z) (n € N, z € G) are called dyadic intervals.

The norms (or quasi-norms) of the Lebesgue space LP(G) and the weak
Lebesgue space LP** (G), (0 < p < 00) are, respectively, defined by

= 1P d and s, = sup N (> ).
G

It is well-known that every n € N can be uniquely expressed as
oo
n= Znﬂj, where n; € Zy (jeN)
k=0

and only a finite number of n;‘s differ from zero.
Let
|n| := max{j € N, n; # 0}.

Now, we consider the Walsh orthonormal system {wy, k € N} using the
Paley enumeration (see [15]). First define the Rademacher functions as

ri (z) == (=1)"*, (k €N).
Next we define the Walsh system w := (w,, : n € N) on G as

oo

wy, (z) := H et (x)  (neN).

k=0

The Walsh system is orthonormal and complete in L? (G) (see e.g. [20]).

For f € L' (G), we define the Fourier coefficients, partial sums of the Fourier
series and Fejér means with respect to the Walsh system in the following way:

Fky = / fogdp,  (kEN),

Suf = > fk)wr, (neNg, Sof :=0),

i = 38 (el
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Recall that (see e.g. [7] and [21]),

2n it e,
(1.1) Do (2) _{ 0, if z¢l,,
(1.2) Dgn_j = Don — wgn_le, (0 <i< 2n)7
In|
(1.3) n|K,| <3) 2'Ky,
1=0
and
17
(1.4) /Kndu =1, Sup/ | K, |dp = —.
neN 15
G G

If n>t, t,n € N, then (see [7] and [18])

2t71, S It\-[t+1a T — e € In,
(1.5) Kon (z) =4 ZH. e,
0, otherwise.

The n-th Norlund mean ¢, and T mean T,, of the Fourier series of f are
defined by

n n—1
1 1
tnf = o> tnkSuf and Tof i= 53 aSif,
k=1 " k=0

-1
where Q,, := Y"1 _, k-
Here {qx, k > 0} is a sequence of nonnegative numbers, where ¢o > 0 and

(1.6) lim @, = oco.

n—oo

Then, T means generated by {qx, k > 0} is regular if and only if the condition
(1.6) is fulfilled (see [18]).

It is evident that

T,f (x) = / £ Fa (o + 1) du(t),

G
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where .
Fy = Q. ¢ Z%Dk,

which are called the kernels of the T" means.

By applying Abel transformation we get the following two identities:

n—2

(1.7) qu 1= Z (@k — ar1)k + gn-1(n — 1)
k=0

and

n—2
(1.8) Tnf = Qi (Z(Qk — qrr1)korf + gnoa(n — l)an_1f> :

Fejér’s theorem shows that (see e.g. [7] and [9]) if one replaces ordinary
summation by Fejér means o,, then, for any 1 < p < oo, there exists an
absolute constant C,,, depending only on p such that the inequality

lonfll, < Cpllfll,

holds. Moreover, (see [18]) if 1 < p < o0, 2V < n < 2V 5 N € N and
f € L?(G), then we have the following estimate

(1.9) lowf = f||p_3Z2N (1/2°, ).

It follows that if f € lip (a,p), i.e
wy (1/27%, f) =0 (1/2™*), as n — oo,

then
O(I/QN), if a>1,

lowf— fl =0 O(N/2Y). i a=1,
O (1/2N>), if a<l.
Moreover, (see [18]) if 1 < p < oo, f € LP(G) and
|o2n f = fll, =0(1/2"), as n — o0,

then f is a constant function.

Boundedness of maximal operators of Vilenkin-Fejer means and weak-(1, 1)
type inequality

po >N <SIl,  (FeLN@), A>0)
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can be found in Schipp [19] for Walsh series and in P4l and Simon [14] (see
also [3], [12], [17], [18] and [24]) for bounded Vilenkin series.

Convergence and summability of Norlund means were studied by Blahota
and Nagy [5] (see also [4] and [13]), Fridli, Manchanda and Siddiqi [6], Persson,
Tephnadze and Weisz [18] (see also [16]). Méricz and Siddigi [11] proved that
if f € LP(G), where 1 < p < oo and {qx, k € N} is a sequence of non-negative
numbers, such that

9 1 n—1
(1.10) o quf (1), for some 1< 6 <2
Q=

holds, then for any 2% < n < 2N¥*1, there exists an absolute constant C)p such
that the approximation inequality

C N—-1
[tnf — fllp < = 22 An—2kWp <2k7f> + Cpwp <2N’f)

" k=0
holds when (g, k € N) is non-decreasing, while the approximation inequality

N-1

C, 1 1
thf - f”p S Q7p Z (Qn—2’€+1 - Qn—2k+1+1)wp (2]€7f) + prp (2]\[7f)
holds when {gx, k € N} is non-increasing.

Areshidze and Tephnadze [2] (see also [1]) proved a similar approximation
result for Norlund means with respect to Walsh system generated by a non-
decreasing sequence {qi, k € N} in Lebesgue spaces LP(G) when 1 < p < oo,
without any condition considered in Méricz and Siddigi [11].

Goginava [8] proved that if ¢, are Norlund means generated by non-in-
creasing sequence {qx, k € N} satisfying the condition

QN(I )

(1.11) sup
NeN 2N

ZQP 2i(p=1) 0,

for some p € [1/2,1), then there exists an absolute constant C, such that the
weak—(1,1) type inequality

* C 1
112) w@rEN< S, (TELNE). A>0)

holds.

It was also proved (see [18]) that inequality (1.12) also holds for any Nérlund
mean generated by non-decreasing sequence (qi, k € N).
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It follows from these results that if f € LP(G), where 1 < p < co and either
{qx, k € N} is a sequence of non-negative and non-increasing numbers, such
that condition (1.11) is fulfilled or the sequence {qx, k € N} is non-decreasing,
then

lim ||t,f — fll, =0, as n— oo.
n—oo

Tutberidze [23] (see also [18] and [22]) proved that if T}, are T means gener-
ated by either non-increasing sequence {qx, k € N} or non-decreasing sequence
{qx, k € N} satisfying the condition

9o 1
1.13 —=0|-]), as k— oo,
(113) bo()
then there exists an absolute constant C, such that
(1.14) 1T Fllwear—z, < CUfI, (f € LHG))

holds. It follows from these results that if f € LP(G), where 1 < p < oo and
either the sequence {qi, k € N} is non-increasing, or {qi, k € N} is a sequence
of non-decreasing numbers, such that condition (1.11) is fulfilled, then

lim |Tnf — fll, =0, as n— .
n—oo

In Moricz and Rhoades [10] it was proved that if f € LP(G), where 1 <
< p < oo and T, are regular 7' means generated by a non-increasing sequence
{qx, k € N}, then, for any 2V < n < 2¥*! we have the following estimate

N-1

Q Z 2°qewp (1/2%, f) + Cpuwp (1/2N’ f) .
" s=0

In the case when the sequence {q;, k € N} is non-decreasing and satisfies the
condition

(1.15) ITnf = flip <

k-1 _ 1 .

(1.16) o —O<k>, as k — oo,

then
N-1

(117) ITuf = Fllp < Cp 3 2 Na, (12, £) + Cowy (127, ).
7=0

In this paper we use a new and simpler approach to prove somewhat im-
proved versions of the inequalities in (1.15) and (1.17) for T" means with re-
spect to the Walsh system (see Theorems 2.1 and 2.2). We also prove a new
inequality for the subsequences {T5» } means when the sequence {qi, k € N} is
non-decreasing and where the restrictive (1.16) is omitted (see Theorem 2.3).

The main results and some of their consequences are presented in Section 2
while the proofs are given in Section 3.
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2. The main results

Our first main results are the following improved version of some results in
[10]:

Theorem 2.1. Let f € LP(G), where 1 < p < oo and T), are regular T means
generated by a non-increasing sequence {qr, k € N}. Then, for any n, N € N,
2N < n < 2NF1 we have the following inequality:

21 NTaf = fllp <

Z 2 gty (1/2°, f) + 12w, (1727, f) .
s=0

Qn

Theorem 2.2. Let f € LP(G), where 1 < p < oo and T,, are T means generated
by non-decreasing sequence {qx, k € N}. Then, for any n,N € N, 2V < n <
< 2N we have the following inequality

N-1
18¢y,— - ; 8Gn—
(22)  Tuf = fllo < =5 D 2o, (12, f) + =52V, (1727, 1)
QX Q.
In addition, if the sequence {qx, k € N} satisfies the condition
(2.3) -l _ o 1 as mn — oo.
Qn n)’
then
(2.4) ITnf = fllp < Cyp 22] Ny, (1/27, 1) -
7=0

Finally, we state the third main result for the non-decreasing sequences
again but only for subsequences To» of T" means but without any restrictions.

Theorem 2.3. Let f € LP(G), where 1 < p < 0o and T}, are T means generated
by a non-decreasing sequence {qx, k € N}. Then, for any n € N, the following
inequality holds:

(25)  |Tenf = flp <
n—1 44

nfl
2 s (J2n 28 s n
< D w2 )+~ Z ey (1/2°, f) + 2w, (1/27, ).
0 0s=0

s=

As a consequence we obtain the following similar result proved in Méricz
and Rhoades [10]:
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Corollary 2.1. Let {qx, k > 0} be a sequence of non-negative and non-
increasing numbers, while in case when the sequence is non-decreasing it is
assumed that also the condition (2.3) is satisfied. If f € lip («,p) for some
a>0and 1 <p<oo, then

O(n™?), if 0<a<l,
(2.6) ITnf — fllp = O(n=tlogn), if a=1,
O(n~1), if a>1,

We also obtain the following results proved in the same paper:

Corollary 2.2. Let {qx, k > 0} be a sequence of non-negative and non-
increasing numbers such that

=k forsome 0<pB<1

is satisfied. If f € lip (o, p) for some a > 0 and 1 < p < oo, then

O(n~ ) if a+p8<1,
B B O(n~=Plogn4+n=2), if a+p=1,
1Tnf = fllp = (n (- ﬁ)) if  a+p8>1, >1,

Corollary 2.3. Let {qi, k > 0} be a sequence of non-negative and non-
increasing numbers such that

= (logk)™®  for some B >0

is satisfied. If f € lip (o, p) for some a >0 and 1 < p < oo, then

O(n™9), if 0<a<l, >0,
_ O(n~tlogn), if a=1, 0<p<1,
@7) NTnf = fllp = O(n~! lognloglogn) if a=p=1,
O(n~(logn)?), if a>1, 8>0.

We also obtain the following convergence result:

Corollary 2.4. Let f € LP(G), where 1 < p < oo and {qz, k > 0} is a
sequence of non-negative and non-increasing numbers, while in the case where
the sequence is non-decreasing, it is also assumed that the condition (2.3) is
satisfied. Then,

lim | T f — fllp =0, as n— oo.
n— oo
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3. Proofs

Proof of Theorem 2.1. Let 2V < n < 2V*! and {q, k € N} is a sequence of
non-increasing numbers. By combining identities (1.7) and (1.8) we find that

B NTaf = Flpy <

n—2

1 .
< o Z(Qj = qj+1)illoif = fllp + an-1(n = Dllon—rf = fllp | =
= Il +Ig

By using the inequality (1.9) for I; we can conclude that

1 2N+t
(32) L= & > (@i —aie)illosf = flp <
3 N 2k+1_1 kg
< sz Z (qj (Ij+1)322 wp (1/2°, f) <
nk:—O j_2k s=0
3 N 2k kg
< 0 ZQkH Z (QJ—(];+1)22*%(1/257J”)<
" k=0 j=2* 5=0
6 k
< 0 Z(QQk —QQHl)ZQSWp (1/2°,f) <
" k=0 s=0
6 N N
< aZstp (1/2°, )Y (gor — gaver) <
" s=0 k=s
6 N
< ) Pgew, (1/2°,f) <
Qn s=0
6 Vo1
< o > 2% qeewy (1/2°, ) + 6wy, (1/2V, f) .
™ s=0

For I we have that

N

3Qn— 2N+1 928 .
(8:3) I = e (1/2°.) <
Q 2
n s=0
N-1

Qi D 2°qaew, (1/2°, f) + 6wy (1727, f) .
n s=0

IN
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By combining (3.1), (3.2) and (3.3) we obtain that (2.1) holds so the proof is
complete. ]

Proof of Theorem 2.2. Let 2V < n < 2¥*+L Since {qx, k € N} is a sequence
of non-decreasing numbers, by combining (1.7) and (1.8) we find that

(34) TS = fllp <
n—2
S (Z(w — qe)klowf — fllp + Guos(n — Donrf - fllp) =

IN

Qn k=0
= I[l +IIQ

For I1; we have that

2N 1
1 .
33)  Iho= =3 (= alillof =l
nj:0
1 n—2
tgm 2 @ = a)illof — Sl = 11+ 11
nj:2N

Analogously to (3.2) we get that

6 N—-1 k
(3.6) 7 < o (qoesr — gor) Y 2%wp (1/2°, f
" k=0 5=0
N-1 N—-1
< D 2w, (1/2°,£) Y (qaess — gov) =
n s=0 k=s
N—-1
= 2%wy, (1/2°, f) (g2v — q2=) <
" s=0
N-—
< Z o (1/25, f

6
< Qn 1 229 1/25
S=

Moreover, if we apply (1.7) we find that

n—2

- N
3 29

(3.7) 17 < Q*E (¢j+1 — 4j) JE 27\[ p (1/2°,f) <
n o oN

n—2 N
3

258 s
@ %-&-1 ] Z 271\’ 1/2 ) =

7=0 s=

IN
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=

3 23 .
:@« Din1 = Qu) Y o (1/2°

s=0

qn 1 s s

< Qn2N § 25w, (1/2°, f
< 6Qn 1 25 s
< § j o (1/25, f
6qn 1 s s
< E 2w, (1/2°, f

+ 62;;1 2pr (1/2V, 1) .

For 11> we have that

3 e 2N+1 28
(3.8) Il qliz wy (1/2°, 1) <

N
Qn =2

Gg 1 ZQS 1/25 _

n

IA

IN

- an ! Zzs (1/2°, f

T 76‘8;12%,) (1/2V, f).

By combining (3.4)-(3.8) we obtain the inequality (2.2).

f<

Finally, by using the condition (2.3) we also get the inequality (2.4) so the

proof is complete.

Proof of Theorem 2.3. By using (1.2) we find that

on

(3.9) Fyn = Don — o qu k (wan_1 Dy,)
and

on
(310) Tgnf D2n * f — 72(]27» k ’Ll)gn 1Dk) f)

@2
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By applying Abel transformation we get that

(3.11)

Tan = D2n * f —
1 2" —1

Qan D> (gan—j = qn—j1) §(wan 1K) % f) —

j=1

402" (wan 1 Kan * f)

1
Qan

Ton f(z) — f(2) =
/ (F(z+ 1) — f(2)) Py (t)dt =

G

/(f(x + 1) — f(z))Dan (t)dt —

G
1 2" —1

0 > (g —qznfjfl)j/(f(fwrt) — f(x)) wan 1 (1) K;(t)dt —
2n j=1 2

Q12 02" /(f(a? +1) = f(@))wzn_1(t) Kon (t)dt :=

1L+ 111, + I115.

By combining generalized Minkowski’s inequality and equality (1.1), we find

that

(3.13)

Since

IIUIalS/Ilf('+t)—f(~))||pD2"(t)dtSwp(l/Q",f)-
Iy

2"qo < Q2 (n €N),

by combining (1.5) and generalized Minkowski’s inequality we obtain that

(3.14)

1L, < /Ilf('+t)*f(')|\pK2n(t)du(t):
G

/ 1F (48— F Ol Kon (8) du(t) +
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IN

/Ilf(-+t)—f(-)||p 2 +

+ Z?S / I G0 7 Ol du(t) <

a2 ) [ aute +

IA

+ 225/ (1/2°, 1) dp(t) <

n — 28 S
< wp (127 )+ Y 5wy, (1/2°, ).
From the estimate (3.14) we can also conclude that
(3.15) / 1 G 8) = £ O Fon (6) du(t) < Zz wp (1/2°, 1)

Let 2F < j < 2F+1 — 1. By combining (1.3) and (3.15) we find that

(3.16) / G0~ FOIE O du)| <
< 322l/||f<~+t> £ Ol o (8) du(t) <
=0 bel
k l
< 3) ) 2w, (1/2°,f)
=0 s=0

According to (1.3) and (3.16) we get that

3.17) L], <
2" —1

< o 2, (s~ oo / 1FC+0) = Ol ()]at <

n—12Ft1_1

9 D DS /nf (V5 (1)t <

k=0 j=2k

IN
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n—12Ft1_1 E 1
S DD DR SIES) 3) S
2" = 0 j=2k 1=0 s=0
3 n—1 k l
S Z (q2‘n,_2k — (§on_gk+1 Z QSwp 1/257 f) S
an =0 s=0
n—1ln—1 1
= Q Z Z Gon 2k — (on _ 2’€+1) ZSW;D (1/257 f) <
2" 120 k=l s=0
3 l 3 n—1 n—1
< —Zqzn_zz Zmp (1/2°,f) < == 2°w, (1/2°, ) Y e <
Qan Qan = —
< 22 wp (1/2%, F) gan_2e(n — 5) <

2n

< SZ e 2y (127, ).

Finally, by combining (3.12), (3.13), (3.14) and (3.17) we can conclude that

(2.5) holds so the proof is complete. |
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