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Károly Müllner (Budapest, Hungary)

Communicated by Imre Kátai
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Abstract. In the second half of the 1990’s Christian Mauduit and András
Sárközy introduced a new quantitative theory of pseudorandomness of bi-
nary sequences. Since then numerous papers have been written on this
subject and the original theory was generalized in several directions. In
this paper, I summarize some of the most notable results in the field. I
compare four different constructions in the computational point of view.
The first construction is the classic Legendre symbol construction, and the
other three are construction based on digits of famous constants such as
e, π, and

√
2. I used SAGE, PYTHON, and MATLAB as programming

languages. I run multiple tests and calculated the exact values of the pseu-
dorandom measures for each construction in many cases and the runtime
are also presented.

1. Introduction

Among the pseudorandom measures defined by Christian Mauduit and
András Sárközy, the well-distribution and a correlation measures are the most
important. I give the definition of these measures in the second section.

The importance and strength of these measures are well illustrated by the
fact that Rivat and Sárközy used a posteriori testing to study several sequences
in construction based on the Legendre symbol. These were the a posteriori tests
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contained in the ′′1.4-sts. package′′ created by the National Institute of Stan-
dards and Technology in the United States. Moreover, Rivat and Sárközy [13]
proved that if the pseudorandom measures are small, the sequences ”nearly”
satisfy several of the above tests, and in this way some a posteriori testing can
be avoided.

Many different construction with strong pseudorandom properties have
been studied over the last 25 years. One of the strongest and most natural
constructions to date is based on the Legendre symbol given by Hoffstein and
Liemann:

Ep =
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f(1)

p

)
,

(
f(2)

p

)
,
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p

)
, . . .

(
f(p)

p

))
construction, where f(x) ∈ Fp[x], which is not of the form cg(x)2 with c ∈ Fp,
g(x) ∈ Fp[x], but Hoffstein and Lieman have not provided evidence to support
their claim that the above construction has strong pseudorandom properties.
Goubin, Mauduit, and Sárközy proposed some simple conditions for the poly-
nomial f if they were satisfied that the sequence has strong pseudorandom
properties in the sense they defined.

The goal of this paper is to compare the well-distribution measure (W (EN )),
correlation measure (C2(EN )) and the Combined measure (Q(EN )) in the case
of four different constructions.

I have used different SAGE codes for calculating the binary digits of π, e,
√
2,

than I had to convert all 0 digits to −1. This was solved by Python script.
When we have the number of digits in the right format, it could be the inputs
for MatLab source code which calculate the measure until 50000 digits.

2. Definition of the pseudorandom measures

In [14] Mauduit and Sárközy introduced the following pseudorandom mea-
sures in order to study the pseudorandom properties of finite binary sequences:

Definition 2.1. For a binary sequence EN = (e1, e2, . . . , eN ) ∈ {−1, 1}N of
lenght N , write

U(EN , t, a, b) =

t∑
j=0

ea+jb

Then the well-distribution measure of EN is defined as

W (EN ) = max
a,b,t

|U(EN , t, a, b)| = max
a,b,t

∣∣∣∣∣∣
t∑

j=0

ea+jb

∣∣∣∣∣∣
where the maximum is taken over all a, b, t such that a, b, t ∈ N and 1 ≤ a ≤
≤ a+ tb ≤ N .



Test of PR binary sequence 193

The well-distribution measure studies how close are the frequencies of the
+1’s and −1’s in arithmetic progressions (for a binary sequence with strong
pseudorandom properties these two quantities are expected to be very close.)
But often it is also necessary to study the connections between certain elements
of the sequence. For example, if the subsequence (+1,+1) occurs much more
frequently then the subsequence (−1,−1), then it may cause problems in the
applications, and we cannot say that our sequence has strong pseudorandom
properties. In order to study connections of this type Mauduit and Sárközy [7]
introduced the correlation and normality measures:

Definition 2.2. For a binary sequence EN = (e1, e2, . . . , eN ) ∈ {−1, 1}N of
lenghtN , and forD = (d1, . . . , dl) with non-negative integers 0 ≤ d1 ≤ · · · ≤ dl,
write

V (EN ,M,D) =

M∑
n=1

en+d1
· · · en+dl

.

Then the correlation measure of order to l of EN is defined as

Cl(EN ) = max
M,D

|V (EN ,M,D)| = max
M,D

∣∣∣∣∣
M∑
n=1

en+d1 · · · en+dl

∣∣∣∣∣ ,
where the maximum is taken over all D = (d1, d2, . . . , dl) and M such that
0 ≤ d1 < · · · < dl < M + dl ≤ N .

Definition 2.3. For a binary sequence EN = (e1, e2, . . . , eN ) ∈ {−1, 1}N of
lenght N , and for X = (x1, . . . , xl) ∈ {−1,+1}l write

T (EN ,M,X) = |{n : 0 ≤ n < M, (en+1, en+2, . . . , en+l)}| .

Then the normality measure of order l of EN is defined as

Nl(EN ) = max
M,X

∣∣T (EN ,M,X)−M/2l
∣∣ ,

where the maximum is taken over all X = (x1, . . . , xl) ∈ {−1,+1}l and M such
that 0 < M 	= N − l + 1.

The combined (well-distribution-correlation) pseudorandom measure is a
common generalization of the well-distribution and the correlation measures.
This measure has an important role in the multidimensional extension of the
theory of pseudorandomness.

Definition 2.4. For a binary sequence EN = (e1, e2, . . . , eN ) ∈ {−1, 1}N of
length N , and for D = (d1, . . . , dl) with non-negative integers 0 ≤ d1 < · · · < dl

Z(EN , a, b, t,D) =

t∑
j=0

ea+jb+d1
· · · ea+jb+dl

.
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Then the combined (well-distribution-correlation) measure of order l of EN is
defined as

Ql(EN ) = max
a,b,t,D

|Z(EN , a, b, t,D)| = max
a,b,t,D

∣∣∣∣∣∣
t∑

j=0

ea+jb+d1 · · · ea+jb+dl

∣∣∣∣∣∣ ,
where the maximum is taken over all a, b, t and D = (d1, ..., dl) such that all
the subscripts a+ jb+ di belong to {1, 2, ..., N}.

When introducing their quantitative pseudorandom measures, the starting
point of Mauduit and Sárközy was to balance the requirements possibly opti-
mally. They decided to introduce functions which are real-valued and positive
and the pseudorandom properties of the sequence are characterized by the sizes
of the values of these functions. It was also an important requirement that one
should be able to present constructions for which these measures can be es-
timated well. It turned out that the measures W and C� do not only satisfy
these criteria, but later Rivat and Sárközy [13] showed that if the values of W
and C� are ”small”, then the outcome of many (previously used a posteriori)
statistical tests is guaranteed to be (nearly) positive.

We would like to use for testing ”nice” sequences for pseudorandomness.
This can be shown by an example, and indeed, we will test the Legendre symbol,
which seems to be the the most natural candidate for pseudorandomness. The
following construction and theorem is due to Mauduit and Sárközy [7]:

Construction 2.1. Let p be an odd prime number, N = p− 1 and define the
Legendre-sequence EN = (e1, e2, . . . eN ) ∈ {−1,+1}N by

en =

(
n

p

)
,

where
(

.
p

)
denotes the Legendre symbol.

Theorem 2.1. There is a number p0 such that if p > p0 is a prime number,
k ∈ N, k < p and if we write

Ep−1 =

((
1

p

)
,

(
2

p

)
, . . .

(
p− 1

p

))
then

Qk(Ep−1) ≤ 9kp1/2 log p

so that, writing N = p− 1

Qk(EN ) = max
k≤(logN)/ log 2

Qk(EN ) ≤ 27N1/2(logN)2
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and also

Q∗
k(EN ) =

∞∑
k=1

Qk(EN )/2k ≤ 33N1/2 log n

Then by above Theorem 2.1 for the sequence EN defined in Construction 2.1
we have

W (EN ) � p1/2 log p � N1/2 logN and Cl(EN ) � kp1/2 log p � kN1/2 logN.

Since then numerous binary sequence have been tested for pseudorandomness
but still Construction 2.1 is the best (see also [14] for another construction
which is just slightly worse).

3. Values of pseudorandom measures

Definition 3.1. A finite sequence EN = (e1, e2, . . . , eN ) ∈ {−1, 1}N is said to
be pseudorandom if for all k ∈ N with

(3.1) k ≤ logN

log 2

and for all X ∈ {−1, 1}k we have

(3.2)

∣∣∣∣T (EN , N + 1− k,X)− N + 1− k

2k

∣∣∣∣ ≤ √
N.

In [2] Cassaigne, Ferenczi, Mauduit, Rivat and Sárközy formulated the fol-
lowing principle: ”The sequence EN is considered a ”good” pseudorandom
sequence if these measures W (EN ) and C�(EN ) (at least for ”small” �) are
”small”.” Indeed, the security of many cryptographic schemes is based on
the property that the frequencies of the −1’s and +1’s are about the same
in certain “regular” subsequences of the used pseudorandom binary sequence
EN ∈ {−1,+1}N .

In [3] Cassaigne, Mauduit and Sárközy proved that for the majority of the
sequences EN ∈ {−1,+1}N the measuresW (EN ) and C�(EN ) are around N1/2

(up to some logarithmic factors):

Theorem 3.1. Suppose that we choose each EN ∈ {−1,+1}N with probability
1
2N

. Then for all ε > 0 there are numbers N0 = N0(ε) and δ = δ(ε) such that
for N > N0 we have

P
(
W (EN ) > δN1/2

)
> 1− ε and P

(
W (EN ) < 6 (N logN)

1/2
)
< ε.



196 K. Müllner

Theorem 3.2. Suppose that we choose each EN ∈ {−1,+1}N with probability
1
2N

. Then for all l ∈ N, l > 2 and ε > 0 there are numbers N0 = N0(ε, l) and
δ = δ(ε, l) such that for N > N0 we have

P
(
Cl(EN ) > δN1/2

)
> 1− ε and P

(
Cl(EN ) < 5 (lN logN)

1/2
)
< ε.

First Kohayakawa, Mauduit, Moreira and Rödl [6], later Alon, Kohayakawa,
Mauduit, Moreira and Rödl [1] sharpened these results.

In many applications it is enough to guarantiee that W (EN ) and Cl(EN )
are O(N), but for the best constructions EN ∈ {−1,+1}N it is proved that
W (EN ) << N1/2 logN , Cl(EN ) << N1/2(logN)cl .

We next state a result that establishes the typical order of magnitude of
Ck(EN ).

Theorem 3.3. Let 0 < ε0 ≤ 1 be fixed and let ε1 = ε1(N) = (log logN)/ logN .
There is a constant N0 = N0(ε0) such that if N ≥ N0, then, with probability
at least 1− ε0, we have

2

5

√
N log

(
N

k

)
< Ck(EN ) <

√
(2 + ε1)N log

(
N

(
N

k

))
<

<

√
(3 + ε0)N log

(
N

k

)
<

7

4

√
N log

(
N

k

)
for every integer k with 2 ≤ k ≤ N/4.

Theorem 3.4. For any fixed constant ε > 0 and any integer function k = k(N)
with 2 ≤ k ≤ logN − log logN , there is a function Γ(k,N) and a constant N0

for which the following holds. If N ≥ N0, then the probability that

1− ε <
Ck(EN )

Γ(k,N)
< 1 + ε

holds is at least 1− ε0.

Obviously Theorem 3.3 tells us that Γ(k,N) is of order
√

N log
(
N
k

)
. The

proof can be found in [6].

4. Results of tests and runtime analysis

Following that, I will discuss my own results. Taking the first N binary
digits of well-known constants (in our case, π, e, and

√
2) are some of the most
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basic pseudorandom constructions. This results in N -long binary sequence
in each cases. In this section, I compare the pseudorandom measures of the
three constructions created this manner and the Legendre symbol-based one
for different N ’s. Our constructions are the following:

Construction 4.1. Let c ∈ {e, π,
√
2}, the binary digits expansion of c is

c = c1c2c3 . . . . Define EN (c) = {e1, e2, . . . eN} by

ei =

{
1 if ci = 1
−1 if ci = 0

The last construction is the Legendre symbol construction(see Construc-
tion 2.1)

4.1. Results for π

In the table below, we have summarized the running results for different
digits lengths. We can see the running times in seconds and hours, as well
as the different measures for each digit. Furthermore, in the last column of
the table, we also calculated the upper limit as a function of N , which we
learned in Theorem 3.3. The obtained data were represented in a common
figure, where two types of upper limits were presented. One is the mentioned

Theorem 3.3 (upper bound 1) that is 7
4

√
N · log

(
N
k

)
, the other limit (upper

bound 2) elliminates the factor 7
4 , that is

√
N · log

(
N
k

)
digits(N) runtime(s) runtime(h) W (EN ) C2(EN ) 7

4 ·
√
N · log

(
N
2

)
200 0.7078 0 43 35 77.875
1000 28.61 0.008 59 100 200.375
2000 98 0.027 68 153 298.095
5000 902.5 0.25 116 253 500.220
7500 1095 0.30 129 309 627.660
10000 2296.8 0.638 142 399 736.820
12500 2655 0.73 142 455 834.100
15000 3763 1.04 142 474 922.820
17500 4952 1.37 142 523 1005.020
20000 11884 3.3 142 559 1081.990

We conjecture that W (E) is monotonic because the obtained measures in-
crease with the length of the digits. As the table shows, repeated values are
possible. For example, from 10000 to 20000, we got 142, but after running addi-
tional tests (e.g. for 30000 digits), we get 205. As a result, the well-distribution
measure is monotonic but not strictly monotonic.
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Figure 1. Well-distribution measures and upper bounds for π
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4.2. Results for e

digits(N) runtime(s) runtime(h) W (EN ) C2(EN ) 7
4 ·
√
N · log

(
N
k

)
200 1.7 0.0005 13 41 77.87
1000 61.306 0.017 66 99 200.37
2000 269.75 0.075 105 162 298.09
5000 1232.11 0.3422 180 251 500.22
7500 988 0.27 180 314 627.66
10000 4445.13 1.234 180 399 736.82
12500 5247 1.45 180 445 834.10
15000 5481 1.52 180 452 922.82
17500 5760 1.6 180 534 1005.02
20000 19091 5.3 180 568 1081.99

We frequently get the same measure for digits of different lengths. In case of
e we got the same value (180) from 5000 up to 30000. But it does not stay
that way forever, because it eventually changes, e.g. we get W (E) = 213 at
N = 40000 digits. These repetitions can be seen only in the well-distribution
measure but the correlation measures give a different value for each length.
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Figure 3. Well-distribution measures and upper bounds for e
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Figure 4. Correlation measures and upper bounds for e

4.3. Results for
√
2

In the case of
√
2, we found a case where the upper bound 2 was below the

calculated correlation measure(C2(E2000) = 173) for N = 2000 digits. Upper

bound 1 is 7
4

√
N log

(
N
k

)
and upper bound 2 is

√
N log

(
N
k

)
.

digits(N) runtime(s) runtime(h) W (EN ) C2(EN ) upper b 2 upper b 1
200 1.31 0.0004 23 38 44.50 77.87

1000 46.9 0.013 50 89 114.50 200.37
2000 200 0.06 82 173 170.34 298.09
5000 1627 0.45 112 247 285.84 500.22
7500 892 0.25 112 329 358.66 627.66

10000 2240 0.62 148 359 421.04 736.82
12500 2655 0.73 148 481 476.62 834.08
15000 3763 1.04 148 492 527.32 922.82
17500 4952 1.37 197 513 574.28 1005.02
20000 9468 2.63 197 547 618.28 1081.99
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It is clearly visible in the figure that the upper bound 2 is also above the
obtained measures in all other cases.
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4.4. Results for Legendre symbol

In the case of the Legendre symbol, we obtained the smallest measures for
both well-distribution and correlation measures, in this case the upper bound
2 can be used as an upper limit. Because we intended to test the Legendre
symbol on a similar sample size, we chose a prime greater than the necessary
sample size and applied the N = p− 1 relationship. (see Construction 2.1)

digits(N) runtime(s) runtime(h) W (EN ) C2(EN )
√

N · log
(
N
2

)
210 0.7 0.00 18 29 45.82
1008 19 0.00 36 68 115.07
2002 103 0.03 50 100 170.44
5002 572 0.16 78 159 285.90
7506 1129 0.31 99 211 358.82
10006 2605 0.72 130 227 421.18
12502 8958 2.49 124 260 476.66
15012 12081 3.36 174 315 527.56
17508 16132 4.48 164 320 574.44
20010 8949 2.48 158 337 618.45
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Figure 7. Measures and upper bounds for Legendre symbol
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Figure 8. Correlation measures and limits for Legendre symbol

5. Comparison of the results

In the table below, we have summarized the well-distribution and correla-
tion measures obtained for the digits of various irrational numbers. It is clear,
especially as we increase the digits, that we get the smallest values (measures)
for the Legendre symbol. Indeed based on our tests the Legendre symbol seems
to be the most natural candidate for pseudorandomness.
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5.1. Values of well-distribution measures

Measure Legendre symbol π e
√
2

W (E200) 18 43 13 23
W (E1000) 36 59 66 50
W (E2000) 50 68 105 82
W (E5000) 78 116 180 112
W (E7500) 99 129 180 112
W (E10000) 130 142 180 148
W (E12500) 124 142 180 148
W (E15000) 174 142 180 148
W (E17500) 164 142 180 197
W (E20000) 158 142 180 197
W (E30000) 196 205 180 197
W (E40000) 236 268 213 320

As shown in the table above

1. 2.39 ·WLegendre ≥ Wc for c ∈ {e, π,
√
2} in all cases.

2. 1.65 ·WLegendre ≥ Wc for c ∈ {π,
√
2}, if N ≥ 1000.

In the second case as the sample size increases, the constant multiplier starts
to decrease (but not monotonically).

� E = 1000, const.= 1.65

� E = 2000, const.= 1.64

� E = 5000, const.= 1.49

� E = 7500, const.= 1.31

� E = 10000, const.= 1.14

� E = 12500, const.= 1.2

� E = 15000, const.= 0.85

� E = 17500, const.= 1.21

� E = 20000, const.= 1.25

� E = 30000, const.= 1.05

� E = 40000, const.= 1.36
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5.2. Values of correlation measures

Measure Legendre symbol π e
√
2

C2(E200) 29 35 41 38
C2(E1000) 68 100 99 89
C2(E2000) 100 153 162 173
C2(E5000) 159 253 251 247
C2(E7500) 211 309 314 329
C2(E10000) 227 450 399 359
C2(E12500) 260 455 445 481
C2(E15000) 315 474 452 492
C2(E17500) 320 523 534 513
C2(E20000) 337 559 568 547

As shown in the table above

1. 2 · C2,Legendre ≥ C2,d for d ∈ {e, π,
√
2}, in all cases.

2. 1.76 · C2,Legendre is always greater than the measures of e.

6. SW source codes

6.1. SAGE and CoCalc

For generate thousands of digits of irrational number in base 2 we can use
Sage CoCalc project online page (https://cocalc.com/). The following code
generates 50000 digits of e and convert it to base 2.

R=RealField(50000); R

R(e).str(base=2)

6.2. Python

The outputs of Sage will be the input for Python code what is able to modify
the sequence in order to change all 0 to −1 and insert a comma between each
digits. We need this format due to vector base MatLab source code. For further
references see the [8].

6.3. MatLab code - calculate well-distribution measure

See the MatLab source code in GitHub site which calculates the well-
distribution measure [9]
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6.4. MatLab code - calculate correlation measure

See the MatLab source code in GitHub site which calculates the correlation
measure [10]

6.5. MatLab code - calculate Legendre symbol

See the MatLab source codes in GitHub site which calculate the well-
distribution measure [11] and the correlation measure for Legendre symbol
[12].
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[13] Rivat, J. and A. Sárközy, On pseudorandom sequences and their ap-
plication, Lecture Notes in Comput. Sci. 4123, General theory of infor-
mation transfer and combinatorics, Springer, Berlin / Heidelberg, (2006),
343–361.
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