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Abstract. Various industries maintain a large number of machines to run
their production lines and services. These types of systems process and
produce massive amounts of data to provide high quality and availability
for their customer services. Therefore, these systems should constantly be
inspected, to not only provide continuously the standard levels achieved but
also be upgraded to keep up with the market competition. Our aim is to
examine Apache Spark and to find one of the most suitable configurations
that perform best on our challenges and can be further applied in real,
live scenarios. In addition, despite that several studies in this field were
already done, none of them considers the security factor of Spark during
computation when predicting run time.
The presented work entails testing Apache Spark for log processing in stan-
dalone cluster setups with a varying number of workers on different sub-
mitted tasks. We also examine the performance impact of enabling authen-
tication in the network communication between cluster nodes with these
setups. Our results show that increasing the number of executor nodes
and simplifying the underlying algorithm does not always influence perfor-
mance in a positive manner as expected. Furthermore, securing network
communication between Spark processes increases the overall execution
time of submitted jobs noticeably.
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1. Introduction

As part of a wider project on analyzing log files generated by telecommuni-
cation systems, we investigate examining the performance impact of securing
network communication between cluster nodes.

Distributed computation for analyzing data is applied increasingly by com-
panies in various industries to extract information from large amounts of gener-
ated log files. For this reason, to monitor, analyze and detect anomalies inward
states and a large amount of generated logging information about the behav-
ior of these systems, there was introduced the difficulty of processing massive
amounts of collected input data. Hence a large variety of tools were recently de-
veloped to provide high-performing solutions to such problems. Together with
the increasing demands on completion time, several privacy concerns are in-
volved when dealing with sensitive data, therefore the proposed solutions have
to be not only efficient but also secure, according to the recently introduced
privacy regulations.

Our aim in this work is to examine Apache Spark, one of the most prominent
frameworks for our purposes. During the examination, we are going to focus
on finding an optimal cluster configuration to run our tasks and elaborate on
how different parameters affect the overall performance.

Similar studies and investigations in this field were already made by in-
troducing high-level system enhancements for achieving better performance or
proposing theoretically well-founded frameworks and statistically proved for-
mulas [3, 6, 9]. These works not only estimate the time to run such com-
putations but suggest a best-performing configuration with given allocatable
resources and a deadline for the computation to complete. In addition, sev-
eral works propose new frameworks aimed at securing such systems [2, 4, 10].
Unfortunately, none of them considers these features combined, such as es-
timating optimal cluster composition before a deadline, taking into account
securing network communication between Spark compute nodes and execution
processes. More generalized we have not yet found a such formula that takes
into consideration communication overhead when estimating the run time of a
job completed within a predetermined time limit.

Given the high number of processes and the complexity involved in the com-
munication between nodes, this impact is a non-trivially determined parameter
when considering execution time in calculation. Therefore, we experimented
on various scenarios with a variable number of cluster nodes by examining the
impact measure of increasing the amount of compute nodes on execution time
and taking into consideration securing network communication during Spark
job run time. In the long run, these experiments will serve as a first step in
determining a formula for computation performance alongside a fixed cluster
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configuration, where additional overhead on network communication is taken
into account.

Our work is structured as follows. In the next section, we review related
works by summarizing the main ideas and newly introduced concepts in this
field. After that, we present the framework of Apache Spark, the system config-
uration used for evaluations, and then give a short presentation about the test
cases. Consequently, we show our experimental results and give a conclusion
on evaluation outcomes. Finally, we shortly discuss the planned future works.

2. Related works

In this section, we look through similar works on estimating the processing
time of Apache Spark jobs and on considering the effect of security features by
proposing new frameworks for this purpose.

Authors of [6] introduce a new cloud-based middle-ware platform that sup-
ports on-demand composition and configuration of security mechanisms to ease
regulatory compliance enablement. In the course of this work, the benefits of
the approach are highlighted by evaluating the performance impact and exam-
ining the trade-offs of different security mechanisms.

Authors of [9] propose a new framework for examining and modifying Spark
cluster resources taking into account the already available resources and com-
putation deadline. This is done by analyzing the execution model of Spark and
proposing a formula for estimating the execution time of jobs as an optimization
problem.

In [3], the determination of the proper parameter values that meet the
performance requirements of workloads had been studied. The paper also aims
to minimize both re-source cost and resource utilization time. A sampling and
simulation framework, a simulation-based cost model has been introduced to
predict the performance of jobs accurately and to recommend the total amount
of the vcore and memory resources toward the cost-effectiveness of Spark jobs.
The research also includes empirical experiments showing the efficiency and
effectiveness of the proposed algorithms.

In [10], a new authentication mechanism is proposed, implemented, and
evaluated, using certificates for data analytic tools, providing advantages over
Kerberos and thus giving better data protection by providing improved authen-
tication, meeting industry-level multi-factor authentication and scalability. To
evaluate the possibility of replacing Kerberos, the mechanism is implemented
in Spark.

Authors of [4] propose a general securing framework for end-to-end cloud en-
vironments to protect data-in-use while communicating between server nodes.
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For this purpose, they use the Intel SGX SoC encryption, available in proces-
sors starting with the Skylake series, and the analytic engine of Apache Spark
SQL. Despite the fact that this proposal addresses a suitable solution for the
first security problem we presented in the introduction, it does not focus on
the performance impact of securing these cloud systems. Nor do they examine
a general heuristic on the effect of applying their proposed framework.

Authors of [2] propose SafeSpark, a new framework for securing data anal-
ysis by encrypting processed files and using an environment secured by using
hardware-based protection. The proposed framework combines the cryptogra-
phy processing engine of Apache Spark SQL with Intel’s hardware-based SGX
encryption. The performance impact of this newly proposed framework is mea-
sured by evaluating three official TPC-DS benchmark scenarios. Results show
that run time performance overheads range from 10% up to 300% compared to
an unsecured version of vanilla Apache Spark.

In [8], authors introduce three new security approaches into the Apache
Spark framework with the aim to secure the exposure of data during process-
ing, caching, and spilling data to disk. Securing the temporary written data
is realized by using a combination of Shamir’s Perfect Sharing and the Infor-
mation Dispersal Algorithm. As a result, their evaluations show that encoding
temporary chunk files during computation using the newly introduced frame-
work, takes a penalty of between 10-25% on performance regarding the run
time.

In [7] authors present a secure stream processing system based on Intel SGX
aimed specifically for processing live medical biometric data. The implemented
system prototype is evaluated on several realistic datasets, showing that the
proposed system achieves a modest overhead compared to the vanilla Spark
run time while assuring protection guarantees under powerful attackers and
various threat models.

3. Technologies used

In this section, we present the technology of Apache Spark, show the cluster
composition on which Spark is deployed, and finally, give a brief summary of the
test cases and the motivation behind them. For our purposes, we use Apache
Spark version 3.0.0, a unified analytic engine for processing large-scale data.
This technology provides a wide variety of interoperability and compatibility
with other systems. In addition, it supports several client interfaces by the
help of which users can drive the system. These are all achieved by realizing
a relatively simple and clear interface, through its built-in operations on a
resilient distributed dataset (RDD) and DataFrame objects. RDD objects provide
a functional interface for transformations that can be applied to the data they
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represent, while DataFrame objects provide support for optimizing and running
queries on data using SQL syntax.

Furthermore, it supports client interfaces for various popular programming
languages (i.e. Python, Java, Scala, R), from which we use pyspark as the
Python client for driving the system. Spark also provides compatibility with
underlying external systems by supporting other filesystems (e.g. HDFS) and
being easily deployable with other virtualization technologies (e.g. Docker,
Kubernetes) in cloud environments. For simplicity, we use the system in the
standalone mode which means Spark is installed directly on each machine of
the cluster and reads data directly from disk without involving other third-
party software to reach the data we want to analyze. This feature involves that
all processed data needs to be replicated on each of the involved machines.
Furthermore, to keep up with today’s fast evolution of technologies and traf-
fic magnitude, it supports processing streamed data, graph processing, and
machine learning by providing built-in libraries for these purposes. [5]

Besides Apache Spark, we considered finding other suitable solutions and
frameworks. Technologies examined were Apache Flink and Elasticsearch[1].
Despite the fact that they were providing satisfactory solutions for our goals,
the interface provided in Python by the former candidate was too rigid and
would require the rewriting of our whole codebase to Java or Scala. Meanwhile,
the latter alternative would involve higher unnecessary system complexity by
involving a pipe of several auxiliary APIs (Filebeat with Logstash, or Fluent
Bit with Fluentd Forwarder) for delivering data to the main search engine
components.

4. Test cases

On evaluating our test scenarios we use a cluster consisting of ten machines,
each equipped with an Intel Core, Haswell series twelve-core processor, running
at 2.5Ghz, 16Gb of RAM memory, and 250Gb of disk storage. These nodes
are strongly interconnected, such as each machine is reachable from any other
through the network with a bandwidth of 10Gbps.

Our work is part of a wider project aiming at monitoring and analyzing
node configuration, state descriptor, and log files, generated during the exe-
cution of automatic incremental software deployments on production customer
telecommunication network server nodes. These processes are executed on data
collected continuously on a daily basis. This collection of data is done with the
aim of getting more insights into the impact of these software upgrades by com-
paring states from before and after the execution of an upgrade. In addition,
these are performed to be able to treat system malfunctions and anomalies
faster, or in case to call back the upgrade.
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Hence, we are focusing on processing these generated log files by searching
for restart events, and the reasons behind them, calculating logging intensity
and boot time and comparing results from before and after the upgrades.

Since most of these customer networks contain thousands of nodes and
produce large amounts of several kinds of log files, it is required to use a suitable
platform, in our case Apache Spark, that supports distributed algorithms and
technologies in an effective way.

Even though realizing the processing of these files involves technical com-
plexity in itself, this paper focuses on evaluating the impact of securing network
communication between cluster nodes and processes during computation. For
this reason, we have chosen two test cases to run with different setups and
evaluate the obtained results. These two test cases are collecting the intensity
of local logs (counting the number of log lines generated in a given time frame),
and collecting restart counts on the different nodes, obtained from examining
two different types of error log files, generated daily on the telecommunication
server nodes.

These two separate kinds of files are used in the production environment too
for restart counts and for log intensities. The restart counts are extracted from
files containing filtered entries that are known to contain the restart events, but
contain fewer entries for a given time frame but also cover larger time frames.
The relevant lines from these logs are as in the example below:

12: 2019-01-11T17:07:23+0000#NOOP#eh#APU warm restart 0,

slot 9, error 193

13: 2019-01-11T17:07:26+0000#WARM#eh#Init NPU/node warm restart

14: 2019-01-11T17:08:17+0000#NOOP#eh#Node Warm Restart (Management)

Log intensities are extracted from log files containing unfiltered log mes-
sages. One sample line from these files is:

Jan 14 14:00:32 ML66-10-41-103-4 cli: .200

../platform/cmo/cm/src/cli-util.c(556)SYSLOG:NOOP: Backup ordered NOW!

The algorithms presented by these test cases can be sketched by the follow-
ing pseudocode:

init( result )

for path in input_files:

file = spark.read.text( path ).rdd.map()

result += file.filter( relevant lines )

.map( extract relevant parts of log lines )

.map( convert date format )

rows = spark.union( result )
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rows.collect()

table = spark.createDataFrame( rows )

return spark.sql( table )

Differences between these two cases lie in the parameterized operations
presented in the pseudocode structure of the test cases. First, files are read by
spark.read.text into RDD. Filter and map operations on log lines differ in the
way relevant data extraction and format conversion are done. In the case of the
restart analysis, filter searches for the elements of the log line triples that can
be seen above. In the case of intensity count, since there are entries containing
multiple lines and we only want to count each entry once, it filters for the first
lines of the entries, containing the date. In the case of the restart analysis,
extract relevant parts of log lines extracts the necessary information
for further analyses like the kind of restart triggered or the node module that
requested the restart. In the case of the log intensity count, it collects the data
that we want to use in the later grouping. After this, convert date format

just saves the date in a common format. In the end, the union of the results
are created and collected. The main difference between the two algorithms is
held by the conversion of RDDs to DataFrame objects and querying the resulting
table.

In each of these cases, conversion of RDD objects to DataFrame consists of
simple correspondence of objects to table rows, but in each test case applying
different schema. Among these test cases, our codebase contains also analyzing
scripts for measuring restart intensity on nodes. In this case, this conversion
is a switching of the table rows to columns in order to calculate the number
of restart counts on each node for every restart type. Here the burden of
complexity is taken on creating the DataFrame instead of querying the data.

In the case of determining log intensities, the emphasis is taken on executing
the final SQL query. Here a GROUP BY operation is used on the result line for
counting the intensity of logs on the given day and node:

SELECT TimeStamp, NodeIp, COUNT(*) as Count FROM rows

GROUP BY TimeStamp, NodeIp ORDER BY TimeStamp ASC, NodeIp ASC;

In the case of collecting restarts the SQL part of it is equivalent to a standard
SELECT * FROM table; - the essence here being the preprocessing of files with
RDD transformations.

Besides the original version of the test cases, we evaluate also the simplified
versions of them. These differ from the structure of their original versions in
the body of the loop, such as simplified versions’ filter and two map opera-
tions are joined into a single flatMap operation. Other parts of the test cases
are left intact. Equivalence of the original and simplified versions was tested
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by using black box tests on results in several critical and general cases. This
optimization causes in some cases significant performance increase and in gen-
eral a noticeable improvement compared to the original versions. These results
are further presented in the next section.

5. Results

In this section, we present the results of run-time performance evaluations
executed on the two test cases presented in the previous section.

According to the official documentation [11] securing RPC network commu-
nication between processes in Apache Spark involves two steps in setting the
configuration. The first step is enabling authentication of its internal connec-
tions and consequently specifying a secret key by setting spark.authenticate

and spark.authenticate.secret. The second step is applying an AES-based
encryption protocol for RPC connections by setting

spark.network.crypto.enabled

spark.network.crypto.keyLength

spark.network.crypto.keyFactoryAlgorithm

properties on top of the previous authentication settings.

However, our initial aim was only to (a) test the job execution performance
of our test cases regarding security features, during test plan creation the idea
came up of (b) experimenting with alternating numbers of executors to suggest
an optimal cluster composition on these specific cases by considering the actual
hardware configurations. In addition, another two ideas came up and became
part of the test plan. One was (c) examining how the simplified versions of
these test cases perform with a different number of executors where only one RDD
operation is executed on each file, and the other one was (d) how the reduced
number of RDD operations influences the performance of secured communication
between processes.

Unfortunately, we managed to execute our encrypted test cases only without
enabling AES-based encryption algorithms, since some still unknown technical
reasons[12] this system feature causes an inability for Spark workers to establish
a connection with the master node. Therefore the presented secured benchmark
results involve only authentication between execution processes. Furthermore,
test cases were planned to run on up to ten thousand input files, but despite
physical limits regarding system memory, with an exception in some cases tests
by only up to one thousand input files could have been completed in some cases.

In spite of the aforementioned technical difficulties, we ran our test cases
using a varying number of input file counts - in each test case with 10, 30, 60,
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100, 300, 500, 1000, 3000, 5000, and 10000 input files with sizes from 204Kb
up to 438Mb - and different input file sorts (separate kind of files for restart
counts and for log intensities), where the files used for the restart calculations
consisted of 29 up to 1943 log lines in each file and the files used for the
intensity calculations consisted of 643 up to 2010 log lines in each file. These
input files were generated, and their structure is based on a sample of original
log files. Furthermore, we distinct measurements on enabling authentication of
communication between processes. Performance results are calculated from the
average of three different measurements to avoid unexpected accidental results.

In the following tables, our measurement results will be presented as follows.
Tables 1, 2, 3 and 4 contain run time results in seconds, obtained from running
the restart counts test case. Tables 5, 6, 7 and 8 contain run time results also
in seconds, obtained from running the log intensity test case with varying even
count of cluster nodes and file counts, abbreviated as FC in table headers.

Furthermore, simplified versions of these test cases were created to evaluate
run times using less RDD operations, hence less communication between pro-
cesses being involved. Matching of results considering the simplified versions
was proven with black box unit tests, taking care also on corner cases i.e. no
input files, or input files without relevant log lines.

5.1. Restart counts

Table 1 contains benchmark results from running the original version of the
restart counts test case without using RPC authentication between execution
processes. Here we can notice that distributing job execution on multiple nodes
returns its effect only when there are more than five hundred files (sum of file
sizes: 15Mb) to process.

FC 1 2 4 6 8 10
10 11.63 15.59 14.67 14.56 14.71 14.78
30 13.42 16.91 16.78 16.93 16.76 16.87
60 15.76 18.93 19.03 18.77 19.00 18.87
100 19.06 21.93 21.82 21.77 21.78 21.98
300 35.17 35.12 34.99 35.09 35.48 35.18
500 54.45 48.40 49.13 49.23 49.28 48.90

1000 130.14 92.88 94.04 93.15 92.91 93.40
3000 551.22 403.82 406.88 404.58 404.17 401.54
5000 1306.10 1152.87 1194.75 1214.81 1222.72 1207.24

10000 4939.18 4228.67 4326.44 4109.65 4076.14 4069.45

Table 1. Restart count processing times in seconds without authentication
using different number of files and cluster nodes
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We can further notice that processing times in the last row are much higher
than expected. This effect is caused by the lack of a sufficient amount of
memory, therefore the system has to write temporary computation chunks on
the disk instead of utilizing only in-memory calculations. Furthermore, run
times until three hundred files (below 15Mb of input size) performs best when
applying only a single node for computation. This phenomenon can be caused
by the reason that the system does not have to distribute the task and schedule
workers to execute new incoming processes, thus saving the overhead derived
from distributing execution.

FC 1 2 4 6 8 10
10 11.33 15.01 14.97 14.99 14.71 15.00
30 13.46 16.93 16.83 16.92 17.12 16.85
60 15.94 19.11 19.12 19.29 19.07 19.27
100 19.28 21.89 22.20 22.03 21.93 22.26
300 35.15 35.82 35.64 35.22 35.20 35.81
500 53.64 49.93 49.12 49.17 49.17 48.72
1000 111.34 94.05 93.61 93.58 93.60 93.52
3000 542.62 405.36 400.85 403.71 403.29 400.63

Table 2. Restart count processing times in seconds with authentication
enabled using different number of files and cluster nodes

Table 2 presents benchmark results obtained from run times of the origi-
nal restart counts script with enabled authentication between Spark execution
processes. The same observation on these results holds here as before, and we
can now complete them by correlating with run times obtained from disabled
authentication measurements. Minimal deviations in benchmark results are no-
ticeable, between -14.45% and 3.6% in standalone mode and -3.77% and 3.17%
in cluster node, meaning that enabling authentication between processes had
the impact of increasing run time in standalone setup by slightly more than
three and a half percent and cluster mode setups were completing faster with
a maximum decrease of fourteen and a half percent, and an average of around
half percent. Looking deeper into the insights we can further notice that the
most dominant value differences appear when running the test case on three
thousand files. In these cases, run time deviations vary only between -1.48%
and 0.38% which is not a significant performance impact, considering the over-
all time requirement of the test case in this setup.

Table 3 presents performance results obtained from running the simplified
version of the restart counts test case. Simplified versions, as discussed before
involve an equivalent implementation of the same algorithm but using only a
single flatMap RDD operation for each input file, obtained by joining opera-
tions.
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FC 1 2 4 6 8 10
10 11.18 16.39 14.87 14.72 14.62 14.43
30 13.39 16.82 16.79 16.65 16.64 16.78
60 15.98 19.05 18.81 19.14 18.80 18.94
100 19.18 21.75 21.81 22.22 21.72 21.50
300 34.33 35.13 35.40 34.57 34.83 35.06
500 52.29 48.30 48.37 48.01 48.07 48.01

1000 108.61 90.49 90.77 90.57 91.13 91.62
3000 548.88 393.12 393.68 393.77 391.38 394.80
5000 1312.48 1166.55 1169.19 1160.15 1173.18 1203.14

10000 4653.05 4120.01 4148.37 4129.37 4103.91 4119.52

Table 3. Restart count processing times in seconds without authentication
using a single operation, different number of files and cluster nodes

Observations from the original version of this test case also hold here. Com-
pared to the results of the original version, run time result deviations are be-
tween -16.55% and 5.08%, where the run time decrease is achieved by using
the standalone setup and the highest increase is when executing the test case
on ten files with two executors. In addition, the highest run time decrease con-
sidering only the distributed measurements can be noticed when executing the
test case on five thousand input files using six nodes for computation, achiev-
ing a decrease of 4.5%, which percentage can be a significant improvement. An
average of 1.35% of run time decrease was measured during test runs of this
case.

FC 1 2 4 6 8 10
10 11.95 15.11 14.87 14.84 14.96 14.83
30 13.88 16.82 16.84 16.96 17.27 16.96
60 16.42 19.16 19.16 19.10 19.08 19.17
100 20.23 21.67 21.83 22.00 22.11 21.95
300 36.00 34.85 35.24 34.64 35.21 35.00
500 54.28 48.28 48.42 48.31 48.71 48.64
1000 114.21 91.66 91.36 91.71 92.20 91.38
3000 586.25 404.62 406.87 401.77 394.26 393.18

Table 4. Restart count processing times in seconds with authentication
enabled using a single operation, different number of files and cluster nodes

Table 4 contains run time results obtained from running the simplified ver-
sion of the restart counts test case with enabled authentication between Spark
execution processes. Observations from the non-authenticated benchmark re-
sults hold here too. Interestingly, authentication impacts more consistently
compared to the unsecured version, having a maximum run time penalty of
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7.13% in standalone and 3.78% increase in cluster mode against run times of
the non-authenticated and simplified test runs. Furthermore, there was mea-
sured a run time decrease of at most 1% and an outstanding value of 7.82%
when comparing the test case executing with two executors on ten files.

Figure 1. Restart data calculation on 10 nodes

Compared to the secured version of the original test case, run time per-
formance deviations of the simplified versions were measured between -3.31%
and 8.04%, where the highest improvement was detected when running the
test case with a single node on three thousand files. The highest improvement
between distributed versions was only 1.74% when running the test case on ten
files with eight executors. In conclusion for this test case, simplified versions
did not improve run times significantly when enabling authentication between
processes, only by an average of 0.82% run time decrease.

At the end of examining the results of this test case, Figure 1 shows the
summary of the four kinds of algorithms: the original, the original secured
(with authentication), the simplified, and the simplified secured (with authen-
tication). The processing time of the calculation can be seen in seconds for
10, 100, 300, 500, and 1000 files on 10 nodes. As it is detailed above, enabling
the authentication and the algorithm simplification have little effect on the
processing time.
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5.2. Log intensities

To ensure that our results are not limited to a specific test case we involved
a second one with a similar execution structure and with a more complex logic
involved, also using different input sources with the purpose of being able to
compare the outcomes of these two cases. In addition, we implement and
compare simplified versions of these test cases by the different setups.

FC 1 2 4 6 8 10
10 12.29 18.51 22.65 22.60 22.23 19.82
30 14.13 20.21 20.62 20.70 20.49 20.48
60 16.22 22.20 22.32 22.42 22.45 22.20
100 19.10 24.49 24.94 24.77 24.72 25.13
300 34.71 38.93 39.19 39.36 38.85 39.25
500 53.88 57.36 57.43 57.39 56.84 57.37
1000 120.00 118.01 118.36 118.50 118.91 118.73
3000 1739.80 546.14 814.14 945.00 1010.76

Table 5. Log intensity processing times in seconds without authentication
using different number of files and cluster nodes

Table 5 contains run-time results from executing the original log intensity
test case without enabling authentication between Spark processes. One can
observe, that the efficiency of using more than one machine takes its effect by
analyzing more than one thousand input files with a total size of 146Mb data.
The non-linear proportion in the increase of run times above one thousand files
can be caused by the behavior of the system, spilling to disk temporary files
during computation that can not fit into the memory. We also note that blank
cells in these tables indicate execution failure during running the test case,
caused by exceeding the available amount of memory on cluster nodes.

FC 1 2 4 6 8 10
10 13.58 18.42 19.91 20.07 22.24 22.46
30 15.43 20.81 20.73 20.87 20.94 20.74
60 17.76 22.53 22.56 22.49 22.64 22.52
100 20.69 24.85 24.78 25.05 25.11 25.02
300 37.25 38.79 39.34 39.30 39.82 39.27
500 58.44 57.14 57.80 58.14 57.26 57.38
1000 126.15 118.64 119.37 119.19 120.99 119.55
3000 980.55 1282.12

Table 6. Log intensity processing times in seconds with authentication
enabled using different number of files and cluster nodes
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Table 6 contains run time results of the log intensity test case with au-
thentication enabled between execution processes. Observations regarding the
increase rate between test cases from the non-authenticated version hold here
also, but with more noticeable differences. In addition has to be mentioned
that in most cases above one thousand input files results could not be obtained
due to the memory limit exceeding.

Compared to the unsecured version, the largest run time increase of 26.85%
was measured when running the test case on 3000 files using ten nodes for
execution. Furthermore, without considering this outlier value, the maximum
increase in standalone mode was 10.45% when computing ten files, and in
cluster mode was 13.98%, when computing 10 files using 10 nodes. When
considering cases only with one thousand files, where run times were measured
around almost two minutes, run time deviations were showing an increase of
5.12% in standalone mode, meanwhile between 0.54% and 1.75% in cluster
mode, meaning that in general applying authentication between processes adds
a minimal but noticeable overhead of more than a half percent, compared to
the unsecured setup.

FC 1 2 4 6 8 10
10 13.10 18.96 21.98 19.65 21.96 21.41
30 14.98 19.59 19.74 20.24 19.97 19.96
60 17.15 21.44 21.42 21.63 21.49 21.73
100 197.85 23.74 23.42 23.23 23.52 23.79
300 35.50 36.72 36.06 36.45 36.21 36.82
500 55.01 52.87 52.21 52.46 52.27 51.91
1000 121.90 105.21 105.96 106.08 105.92 106.08
3000 1800.12 435.58

Table 7. Log intensity processing times in seconds without authentication
using a single operation, different number of files and cluster nodes

Table 7 presents test results of the simplified log intensity test case without
securing network communication. Same observation on run time increase from
the original test case results also apply here. In addition, compared to the
original version, run time result differences vary from -13.05% up to 8% in
both the standalone and cluster mode setups. The maximum decrease was
achieved by running the test case on ten executors computing its result from
ten files, while the maximum increase in performance was measured by using
four executors and processing ten files. The average benefit of simplifying these
processes was a decrease of 3.98% in run time.

Table 8 contains run time results from running simplified versions of the
log intensity test case with enabled authentication between Spark processes.
Observation from the original version results cannot be applied here, since
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FC 1 2 4 6 8 10
10 13.75 19.58 22.67 22.87 21.89 22.26
30 15.81 20.16 20.22 20.25 20.43 20.24
60 18.02 21.79 21.81 21.52 22.11 21.53
100 20.87 23.81 23.74 23.69 23.59 23.88
300 37.26 36.73 36.38 36.49 36.70 36.67
500 58.62 52.65 52.84 53.09 52.77 52.61
1000 135.16 106.08 105.72 104.94 106.17 105.51

Table 8. Log intensity processing times in seconds with authentication
enabled using a single operation, different number of files and cluster nodes

measurements above one thousand files were failing due to memory constraints.

Compared to the unsecured version results, the largest run time increase of
16.38% was measured when running the test case on 10 files with six executors.
In addition, without considering this outlier value the maximum increase in
standalone mode was 10.89% when computing one thousand files. In cluster
mode, the largest increase was 3.98%, when computing 10 files using 10 nodes,
showing an average increase of 1.44% in run times compared to the unsecured
results.

In addition, compared to the results on the original variant with enabled
authentication, run time results deviate from -12.24% to 13.91%, the highest
increase among results being measured using six executors when analyzing 10
files. Meanwhile, a decrease of more than 12% shows up when running the test
case with eight executors and one thousand files, showing an average decrease
of 3.43% of run time in the authenticated cluster setup.

At the end of examining this test case, Figure 2 shows similar results as
Figure 1 in the means of correlation of the different dimensions. However,
simplifying the algorithm decreased the processing time by a greater amount.

5.3. Summary

Summarizing the outcomes of our test cases, we measured the execution
times of two different test cases with similar algorithm structures. A simplified
version was created from each of them. Having the equivalent original and
simplified versions of each test case we examined their run times on the different
number of worker nodes and amount of input files, each execution being tested
with both the unsecured and secured setup. To validate and avoid accidental
outcomes of our results we ran each case three times.

Therefore, results have shown that enabling authentication between pro-
cesses with a significant amount of files increased run times by up to 3.35%
running our test cases. In addition, between original and simplified versions
we measured a run time decrease of up to 3.98% on average, where processing
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Figure 2. Log intensity calculated on 10 nodes

each input file consisted of only one flatMap RDD transformation.

Summarizing the number of used cluster nodes, based on our tests, it can
be concluded, that using a smaller test set, up to 100 files, using a single cluster
node resulted in lower processing time. From 1000 files, the processing times
were always lower using multiple cluster nodes.

6. Conclusion and future work

Constantly accelerating development of technologies and the evolution of
industries require nowadays innovative, stable, efficient, and most importantly
secure solutions for their products and services to be able to keep up with the
market competition. To constantly provide and improve serving these contin-
uously evolving market facilities, organizations have to monitor their systems
with the purpose of developing efficient ways for maintaining and upgrading
them. This involves examining massive amounts of machine-generated data
to provide efficient ways on supporting distributed algorithms. The security
aspect of these solutions also becomes more and more important.

In our work, we examined the run time results of two different test scenarios,
then evaluated the performance impact of securing network communication
between execution processes, using the unified analytic engine of Apache Spark.
As result, we found that enabling authentication between execution processes
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can impact run time by decreasing it up to 3.5%. Furthermore, as a side
increment of these examinations, we found that simplifying the algorithm by
rationally decreasing the number of Spark operations to only one on each input
file can positively influence execution time by decreasing it by up to 8.04% using
different system configurations. In addition, based on the presented test cases
our recommendation is to use a single machine for analyzing low amounts of
input files. For higher counts of input files fewer executors performed better
in general, hence based on our results we suggest using cluster mode with two
nodes for inputs between 500 and 3000 files and four nodes above 3000 input
files.

In the following, we are going to look into overcoming the arisen technical
issues to be able to perform similar benchmarks with encrypted communication
between execution processes by using advanced encryption algorithms for this
purpose. In addition, we would like to extend our measurements on larger
amounts of files. Further investigations have to be conducted about the memory
constraint failures when experimenting with more than 1000 files. It would be
also interesting to run them on horizontally scaled machines in meanings of
memory. Furthermore, we intend to design a framework, with the help of
which one can determine the execution time of tasks by considering overhead
on network communication between nodes and processes of the distributed
Apache Spark system.
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Supported by the ÚNKP-22-4 New National Excellence Program of the Min-
istry for Culture and Innovation from the source of the National Research,
Development and Innovation Fund.
This publication is the partial result of the Research & Development Opera-
tional Programme for the project ”Modernisation and Improvement of Tech-
nical Infrastructure for Research and Development of J. Selye University in
the Fields of Nanotechnology and Intelligent Space”, ITMS 26210120042, co-
funded by the European Regional Development Fund.
The project was also supported by the Ericsson-ELTE Software Technology
Lab.

References
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