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Abstract. We construct h-Fourier cosine-Laplace discrete generalized con-
volution with a weight function on time scale T0h and study its proper-
ties. We obtain some inequalities for this generalized convolution such as
Young’s type inequalities, Saitoh’s type inequalities. In the application,
we apply this generalized convolution to solve some linear equations of
generalized convolution type.

1. Introduction

Let h > 0 be a fixed number and T0h = hN0, here N0 = {0} ∪ N, where
N is the set of all positive integers. The definition of h-Laplace transform is
given by M. Bohner and G.Sh. Guseinov in [2, pp. 78]: For x : T0h → C, the
h-Laplace transform of x, denoted by L{x}, is represented as follows:

L{x}(u) = h

∞∑
n=0

x(nh)

(1 + hu)n+1
, u ∈ C \

{−1
h

}
.(1.1)

Key words and phrases: h-Laplace transform, h-Fourier cosine transform, generalized convo-
lution, generalized convolution inequality.
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Using the h-Fourier transform in [4, pp. 914], the h-Fourier cosine transform

is defined as follows: For x : T0h → C such that
∞∑
n=0

|x(nh)| < ∞, the h-Fourier

cosine transform of x, denoted by Fc{x}, is given by

Fc{x}(u) = hx(0) + 2h

∞∑
n=1

x(nh) cos(unh), u ∈ R.(1.2)

Recently, the generalized convolutions related to h-Laplace transform have
been studied in [8, 12]. However, as far as we know, there have not been any
published research results about generalized convolutions related to h-Laplace
transform with weight functions.

For the Fourier convolution

(
u ∗
F
v
)
(x) =

∞∫
−∞

u(x− y)v(y)dy, x ∈ R,

Young’s theorem states that (see [1])

∣∣∣ ∞∫
−∞

(
u ∗
F
v
)
(x)w(x)dx

∣∣∣ ≤ ‖u‖p‖v‖q‖w‖r,

for all u ∈ Lp(R), v ∈ Lq(R), w ∈ Lr(R), p, q, r ≥ 1, p−1 + q−1 + r−1 = 2.

In a recent paper [11], the authors established some Young’s type inequali-
ties for a Fourier cosine and sine polyconvolution and a generalized convolution.

The Saitoh’s inequality for the Fourier convolution was introduced in [5] as
follows:

For two nonvanishing continuous functions ρj(x), (j = 1, 2) in L1(R), and
for p > 1, we have∥∥((F1ρ1) ∗F (F2ρ2))(ρ1 ∗

F
ρ2)

1
p−1
∥∥
p
≤ ‖F1‖Lp(R,|ρ1|)‖F2‖Lp(R,|ρ2|),

where Fj ∈ Lp(R, |ρj |).
The reverse Saitoh’s inequality for Fourier convolution can be found in [6].

In this article, we are interested in generalized convolution with a weight
function for the h-Fourier cosine and h-Laplace transforms. We will investi-
gate some operator properties, generalized convolution type inequalities and
its applications.

The structure of this article is as follows. In Section 2, we present some
fundamental notations and lemmas used in this article. In Section 3, we give
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formula for the h-Fourier cosine-Laplace generalized convolution with weight
function and study some of its properties such as factorization identity, relation
with the h-Fourier cosine convolution, Titchmarsh’s type Theorem. In Section
4, we investigate the existence of this generalized convolution on some function
spaces and obtain some inequalities such as Young’s type inequalities, Saitoh’s
type inequalities and reverse Saitoh’s type inequalities. In the final section,
we apply the new generalized convolution to solve some linear equations of
generalized convolution type.

2. Preliminaries

Let 1 ≤ p < ∞. We consider the following vector spaces and norms:

(2.1)

�p(T
0
h) =

{
x : T0h → C

∣∣ ∞∑
n=0

|x(nh)|p < ∞
}
,

‖x‖p = h
( ∞∑
n=0

|x(nh)|p
) 1
p

, ‖x‖(1)p = h
(
|x(0)|p + 2p

∞∑
n=1

|x(nh)|p
) 1
p

,

�∞(T0h) =
{
x : T0h → C

∣∣ sup
n≥0

|x(nh)| < ∞
}
, ‖x‖∞ = h sup

n≥0
|x(nh)|.

For x : T0h → C we define H1{x} : T0h → C as follows:(
H1{x}

)
(0) :=

x(0)

2
, (H1{x})(nh) := x(nh), n ∈ N.(2.2)

From (2.1), it is easily proven that if x ∈ �p(T
0
h), 1 ≤ p < ∞ then H1{x} ∈

∈ �p(T
0
h) and

∞∑
n=0

∣∣H1{x}(nh)∣∣p = [‖x‖(1)p
2h

]p
.(2.3)

Definition 2.1. [9] The h-Fourier cosine convolution on time scale of two
functions x, y ∈ �1(T

0
h) is defined as

(x ∗
Fc

y)(kh) = h
{ ∞∑
n=1

x(nh)
[
y(|kh− nh|) + y(kh+ nh)

]
+ x(0)y(kh)

}
,(2.4)

for k ∈ N0.

Lemma 2.1. [9] Let x, y ∈ �1(T
0
h) then x ∗

Fc
y ∈ �1(T

0
h),

‖x ∗
Fc

y‖(1)1 ≤ ‖x‖(1)1 ‖y‖(1)1
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and we have the factorization identity

Fc{x ∗
Fc

y}(u) = Fc{x}(u)Fc{y}(u), u ∈
[
0,

π

h

]
.(2.5)

Lemma 2.2. (Wiener-Lévy type Theorem for Fourier cosine series) Let x ∈
�1(T

0
h) and Φ(z) be an analytic function whose domain contains the range of

Fc{x}(u) and satisfies Φ(0) = 0. Then Φ(Fc{x}(u)) equals to h-Fourier cosine
transform of a function in �1(T

0
h).

3. Generalized convolution with a weight function for h-Fourier co-
sine and h-Laplace transforms

In this article, let μ ∈ N be a fixed natural number. We define a weight

function γ :
[
0,

π

h

]
→ R+ by

γ(u) = (1 + hu)−μ, u ∈
[
0,

π

h

]
.(3.1)

Definition 3.1. The generalized convolution with the weight function (3.1) of
two functions x, y : T0h → C with respect to the h-Fourier cosine and h-Laplace
transforms on time scale T0h is defined as

(x∗y)(kh) = h

2π
x(0)

∞∑
m=0

y(mh)θ(k, 0,m+ μ)+(3.2)

+
h

π

∞∑
n=1

∞∑
m=0

x(nh)y(mh)θ(k, n,m+ μ),

for k ∈ N0, in here

θ(k, n,m) = I(n+ k,m) + I(|n− k|,m), k, n,m ∈ N0,(3.3)

I(n,m) =

π∫
0

cos(nu)

(1 + u)m+1
du, n,m ∈ N0,(3.4)

assuming that the right hand side of (3.2) converges for all k ∈ N0.

We denote x1 := H1{x}, where H1{x} is defined from x by (2.2). The
formula (3.2) can be written in the form

(x∗y)(kh) = h

π

∞∑
n=0

∞∑
m=0

x1(nh)y(mh)θ(k, n,m+ μ), k ∈ N0.(3.5)
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Theorem 3.1. If x, y ∈ �1(T
0
h), then x∗y ∈ �1(T

0
h) and∥∥x∗y∥∥

1
≤
[
1 +

1

μπ

]
‖x‖(1)1 ‖y‖1.(3.6)

The inequality (3.6) becomes an equality if and only if x ≡ 0 or y ≡ 0. Moreover,
the following factorization identity holds:

Fc
{
x∗y
}
(u) = γ(u)Fc{x}(u)L{y}(u), u ∈

[
0,

π

h

]
.(3.7)

Proof. We define x1 := H1{x}, where H1{x} is given by (2.2). From the
result in [8, pp. 26], we have I(n,m) > 0 form,n ∈ N0. Hence, θ(k, n,m+μ) =
= I(n + k,m + μ) + I

(
|n − k|,m + μ

)
> 0 for k, n,m ∈ N0. We use formula

(3.5) to obtain

∞∑
k=0

∣∣(x∗y)(kh)∣∣ ≤ h

π

∞∑
n=0

|x1(nh)|
∞∑
m=0

|y(mh)|
∞∑
k=0

θ(k, n,m+ μ).(3.8)

For m,n ∈ N0, from (3.3), Lemma 3.1 and Lemma 3.4 in [8], we have

∞∑
k=0

θ(k, n,m+ μ) = I(n,m+ μ) + I(0,m+ μ) + 2

∞∑
j=1

I(j,m+ μ) <(3.9)

<
2

m+ μ
+ 2π ≤ 2

[
π +

1

μ

]
.

Plugging (3.9) into (3.8) yields

∞∑
k=0

∣∣(x∗y)(kh)∣∣ ≤ 2h

π

[
π +

1

μ

] ∞∑
n=0

|x1(nh)|
∞∑
m=0

|y(mh)| =(3.10)

= 2h
[
1 +

1

μπ

]‖x‖(1)1
2h

‖y‖1
h

< ∞.

Consequently x∗y ∈ �1(T
0
h). Multiplying (3.10) by h gives (3.6). The equality

holds if and only if x ≡ 0 or y ≡ 0.
For k ∈ N0, from (3.5), it follows that

(
x∗y
)
(kh) =

h

π

∞∑
n=0

∞∑
m=0

x1(nh)y(mh)θ(k, n,m+ μ) =

=
h

π

∞∑
n=0

∞∑
m=0

x1(nh)y(mh)
[
I(n+ k,m+ μ) + I(|n− k|,m+ μ)

]
=(3.11)

=
h

π

∞∑
n=0

∞∑
m=0

x1(nh)y(mh)

π∫
0

cos(n+ k)u+ cos(n− k)u

(1 + u)m+μ+1
du =
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=
h2

π

∞∑
n=0

∞∑
m=0

x1(nh)y(mh)

π
h∫
0

cos(n+ k)uh+ cos(n− k)uh

(1 + hu)m+μ+1
du =

=
2h2

π

∞∑
n=0

∞∑
m=0

x1(nh)y(mh)

π
h∫
0

cos(nuh) cos(kuh)

(1 + hu)m+μ+1
du =

=
1

π

π
h∫
0

2h2
∞∑
n=0

∞∑
m=0

cos(unh)

(1 + hu)m+μ+1
x1(nh)y(mh) cos(kuh)du.

By using formulas (1.2) and (1.1), the product of γ(u), h-Fourier cosine of x
and h-Laplace transform of y can be written as follows:

γ(u)Fc{x}(u)L{y}(u) = 2h2
∞∑
n=0

x1(nh) cos(unh)

∞∑
m=0

y(mh)

(1 + hu)m+μ+1

= 2h2
∞∑
n=0

∞∑
m=0

cos(unh)

(1 + hu)m+μ+1
x1(nh)y(mh).(3.12)

Substituting (3.12) into (3.11) yields

(
x∗y
)
(kh) =

1

π

π
h∫
0

γ(u)Fc{x}(u)L{y}(u) cos(kuh)du, ∀k ∈ N0.(3.13)

Moreover, we use inverse h-Fourier cosine transform to obtain

(
x∗y
)
(kh) =

1

π

π
h∫
0

Fc
{
x

γ∗
FcL

y
}
(u) cos(kuh)du, ∀k ∈ N0.(3.14)

Combining (3.13) and (3.14), we derive the factorization identity (3.7).
The theorem is proved. �

For m ∈ N0 we define a function Jm : T0h → C by

Jm(nh) := I(n,m), n ∈ N0,(3.15)

where I(n,m) is defined in (3.4).
From Lemma 3.4 in [8] we have Jm ∈ �1(T

0
h).
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Lemma 3.1. Let x, y be any two functions in �1(T
0
h) then the following identity

holds

(x∗y)(kh) = 1

π

∞∑
m=0

y(mh)
[
x ∗
Fc

Jm+μ
]
(kh), ∀k ∈ N0.(3.16)

Proof. We denote x1 := H1{x}, where H1{x} is defined from x by (2.2).
Using (3.15), the definition of generalized convolution and convolution in (3.2)
and (2.4), we can transform the left hand side of (3.16) as follows:

(x∗y)(kh) = h

π

∞∑
n=0

∞∑
m=0

x1(nh)y(mh)θ(k, n,m+ μ), k ∈ N0 =

=
h

π

∞∑
m=0

y(mh)

∞∑
n=0

x1(nh)
[
I(k + n,m+ μ) + I(|k − n|,m+ μ)

]
=

=
h

π

∞∑
m=0

y(mh)

∞∑
n=0

x1(nh)
[
Jm+μ(kh+ nh) + Jm+μ(|kh− nh|)

]
=

=
h

π

∞∑
m=0

y(mh)

[
x ∗
Fc

Jm+μ
]
(kh)

h
=

=
1

π

∞∑
m=0

y(mh)
[
x ∗
Fc

Jm+μ
]
(kh). �

Theorem 3.2. (Titchmarsh’s type Theorem.) Let x, y ∈ �1(T
0
h). If x∗y ≡

≡ 0 then x ≡ 0 or y ≡ 0.

Proof. Since x∗y ≡ 0 we obtain

(1 + hu)μFc{x∗y}(u) = 0, for all u ∈
[
0,

π

h

]
.(3.17)

Combining (3.17) with (3.7) yields

Fc{x}(u)L{y}(u) ≡ 0, for all u ∈
[
0,

π

h

]
.(3.18)

Recalling that L{y}(u) is an analytic function in the complex region |1+hu| > 1
(see [12]). We consider the following two cases:

� Case 1: L{y}(u) ≡ 0 on
(
0,

π

h

)
. Since L{y}(u) is analytic in the complex

region |1+hu| > 1, we have L{y}(u) = 0 for |1+hu| > 1. From Theorem
4.8 in [2] we deduce that y ≡ 0.
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� Case 2: L{y}(u) 
≡ 0 on
(
0,

π

h

)
. From x ∈ �1(T

0
h), the series

hx(0) + 2h

∞∑
n=1

x(nh) cos(unh)

converges uniformly on R. Therefore, Fc{x}(u) is continuous on R.

Let u0 be an arbitrary point in
(
0,

π

h

)
, we will prove that Fc{x}(u0) = 0.

Assume that Fc{x}(u0) 
= 0. By continuity property of Fc{x}(u), there
exists a neighbourhood of u0 such that for u in that neighbourhood we
have Fc{x}(u) 
= 0. From (3.18) we can conclude that L{y}(u) = 0 on
that neighbourhood of u0. Additionally, L{y}(u) is an analytic function
in the complex region |1+hu| > 1. Hence, L{y}(u) ≡ 0 on

(
0,

π

h

)
, which

is a contradiction.

Therefore Fc{x}(u0) = 0 for u0 ∈
(
0,

π

h

)
. Using the inverse h-Fourier

cosine transform we get x ≡ 0.

The proof is completed. �

4. Some inequalities for the generalized convolution (3.2)

4.1. The generalized convolution on some function spaces

Lemma 4.1. Suppose that 1 < p < ∞, x ∈ �p(T
0
h), y ∈ �1(T

0
h). Then,

the discrete generalized convolution x∗y is well defined and belongs to �∞(T0h).
Furthermore, we have the following inequality:

‖x∗y‖∞ ≤ Cp‖x‖(1)p ‖y‖1,(4.1)

where Cp =
[ 1
μπ

] 1
p
[
1 +

1

μπ

]1− 1
p

.

Proof. Let q =
p

p− 1
. We have 1 < q < ∞ and

1

p
+
1

q
= 1.

We define x1 := H1{x}, where H1{x} is given by formula (2.2). For k ∈ N0,
formula (3.5) implies that

∣∣(x∗y)(kh)∣∣ ≤ h

π

∞∑
n=0

∞∑
m=0

|x1(nh)||y(mh)|θ(k, n,m+ μ) =

(4.2)

=
h

π

∞∑
n=0

∞∑
m=0

|x1(nh)|
(
|y(mh)|θ(k, n,m+ μ)

) 1
p
(
|y(mh)|θ(k, n,m+ μ)

) 1
q .
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From (4.2) and applying Hölder’s inequality, we get

∣∣(x∗y)(kh)∣∣ ≤ h

π
A

1
p

k B
1
q

k ,(4.3)

where

Ak =

∞∑
n=0

∞∑
m=0

|x1(nh)|p|y(mh)|θ(k, n,m+ μ),

Bk =

∞∑
n=0

∞∑
m=0

|y(mh)|θ(k, n,m+ μ).

For k, n,m ∈ N0, since 0 < θ(k, n,m+μ) <
2

m+ μ
≤ 2

μ
(see [8, pp. 22, pp. 26]),

we have

Ak ≤ 2

μ

∞∑
n=0

|x1(nh)|p
∞∑
m=0

|y(mh)| = 2

μ

(‖x‖(1)p
2h

)p ‖y‖1
h

.(4.4)

Combining (3.9) and θ(k, n,m + μ) = I(n + k,m + μ) + I(|n − k|,m + μ) =
= θ(n, k,m+ μ), it follows that

∞∑
n=0

θ(k, n,m+ μ) =

∞∑
n=0

θ(n, k,m+ μ) < 2
[
π +

1

μ

]
, m, k ∈ N0.(4.5)

From (4.5), we obtain

Bk ≤ 2
[
π +

1

μ

] ∞∑
m=0

|y(mh)| = 2
[
π +

1

μ

]‖y‖1
h

.(4.6)

Substituting (4.4) and (4.6) into (4.3) yields

∣∣(x∗y)(kh)∣∣ ≤ 1

h

[ 1
μπ

] 1
p
[
1 +

1

μπ

] 1
q ‖x‖(1)p ‖y‖1 < ∞.

Therefore x∗y ∈ �∞(T0h) and the norm inequality (4.1) holds. �

Theorem 4.1. Suppose that 1 < p < ∞, x ∈ �p(T
0
h), y ∈ �1(T

0
h). Then the

generalized convolution x∗y belongs to �p(T
0
h). Moreover,

‖x∗y‖p ≤
[
1 +

1

μπ

]
‖x‖(1)p ‖y‖1.(4.7)

The equality holds if and only if x ≡ 0 or y ≡ 0.
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Proof. If x ≡ 0 or y ≡ 0, the inequality (4.7) evidently holds and the
inequality becomes an equality.
Now let x 
≡ 0 and y 
≡ 0, we will prove that

‖x∗y‖p <
[
1 +

1

μπ

]
‖x‖(1)p ‖y‖1.

Let q =
p

p− 1
. Then 1 < q < ∞ and

1

p
+
1

q
= 1.

According to Lemma 4.1, x∗y is well defined and belongs to �∞(T0h). We denote
x1 := H1{x}, where H1{x} is given by (2.2). From (4.3), (4.6), (3.9) and (2.3)
we get

S =
∞∑
k=0

|(x∗y)(kh)|p ≤

(4.8)

≤ hp

πp

[
2π +

2

μ

] p
q

[
‖y‖1
h

] p
q
∞∑
n=0

|x1(nh)|p
∞∑
m=0

|y(mh)|
∞∑
k=0

θ(k, n,m+ μ) <

<
hp

πp

[
2π +

2

μ

]1+ p
q

[
‖y‖1
h

] p
q
∞∑
n=0

|x1(nh)|p
∞∑
m=0

|y(mh)| =

=
hp

πp

[
2π +

2

μ

]1+ p
q

[
‖y‖1
h

]1+ p
q
[
‖x‖(1)p
2h

]p
< ∞.

From (4.8), we obtain x∗y ∈ �p(T
0
h) and

‖x∗y‖p = hS
1
p <

h2

π

[
2π +

2

μ

] 1
p+

1
q

[
‖y‖1
h

] 1
p+

1
q
[
‖x‖(1)p
2h

]
=

=
h2

π

[
2π +

2

μ

][‖y‖1
h

][
‖x‖(1)p
2h

]
=

=
[
1 +

1

μπ

]
‖x‖(1)p ‖y‖1.

The theorem is proved. �
Let q > 1 and � : T0h → R+ is a given weight function. We define the

following weighted space and norm:

�q(T
0
h, �) =

{
x : T0h → C

∣∣ ∞∑
n=0

|x(nh)|q�(nh) < ∞
}
,

‖x‖�q(T0h,�) = h
[ ∞∑
n=0

|x(nh)|q�(nh)
] 1
q

.
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Assume that α is a fixed positive number. We consider the weight function
ρ : T0h → R+ as follows:

ρ(nh) = (1 + n)α, n ∈ N0.(4.9)

Lemma 4.2. Let p ≥ 1, q > 1 such that
1

p
+
1

q
≥ 1 and ρ be the weight function

defined in (4.9). Then for x ∈ �p(T
0
h) and y ∈ �q(T

0
h, ρ) the discrete generalized

convolution x∗y is well defined in �∞(T0h) and we have the following estimate

‖x∗y‖∞ ≤ C(q)‖x‖(1)p ‖y‖�q(T0h,ρ),(4.10)

where the constant C(q) > 0 is given by

C0(q) =

∞∑
m=0

1

(m+ μ)(m+ 1)
α
q−1

,

C(q) =
1

π

[
C0(q)

]1− 1
q

[
π +

1

μ

] 1
q

.(4.11)

Proof. Let β =
α

q − 1
> 0, r =

q

q − 1
. Using (3.3) and Lemma 3.1 in [8], for

k, n,m ∈ N0 we have

θ(k, n,m+ μ) = I(n+ k,m+ μ) + I
(
|n− k|,m+ μ

)
<

2

m+ μ
.

Hence

∞∑
m=0

θ(k, n,m+ μ)

(m+ 1)β
<

∞∑
m=0

2

(m+ μ)(m+ 1)β
= 2C0(q).(4.12)

From (4.12), (4.5), using Hölder’s inequality we can prove (4.10). �

Lemma 4.3. Let x, y : T0h → R be two functions in �1(T
0
h) such that ∀k ∈ N0

we have x(kh) ≥ 0, y(kh) ≥ 0. Then x∗y ∈ �1(T
0
h) and the following estimate

holds

‖x∗y‖1 ≥
[1
4
− 1

2μπ(1 + π)μ

]
‖x‖(1)1 ‖y‖1.(4.13)

The equality in (4.13) is attained if and only if x ≡ 0 or y ≡ 0.

Proof. If x ≡ 0 or y ≡ 0 then we can see that (4.13) becomes an equality.
Suppose that x, y are non-zero, non-negative functions, we will prove that

‖x∗y‖1 >
[1
4
− 1

2μπ(1 + π)μ

]
‖x‖(1)1 ‖y‖1.
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Set x1 := H1{x} ∈ �1(T
0
h), where H1 is given by formula (2.2).

For m,n ∈ N0 we have
∞∑
k=0

θ(k, n,m+ μ) >
π

2
− 1

(m+ μ)(1 + π)m+μ
≥ π

2
− 1

μ(1 + π)μ
.(4.14)

Since x, y are non-negative functions, from (3.5) and (4.14) we have

‖x∗y‖1 = h

∞∑
k=0

∣∣(x∗y)(kh)∣∣ = h2

π

∞∑
n=0

x1(nh)

∞∑
m=0

y(mh)

∞∑
k=0

θ(k, n,m+ μ) >

>
h2

π

[π
2

− 1

μ(1 + π)μ

] ∞∑
n=0

x1(nh)

∞∑
m=0

y(mh) =

=
h2

π

[π
2

− 1

μ(1 + π)μ

]‖x‖(1)1
2h

‖y‖1
h

=
[1
4
− 1

2μπ(1 + π)μ

]
‖x‖(1)1 ‖y‖1.

The proof is completed. �

4.2. Young’s type and Saitoh’s type inequalities

Theorem 4.2. (A Young’s type theorem.) Let p, q, r > 1 satisfy the condition

1

p
+
1

q
+
1

r
= 2

and ρ be the weight function defined in (4.9). Then for x ∈ �p(T
0
h), y ∈

∈ �q(T
0
h, ρ), z ∈ �r(T

0
h) the generalized convolution x∗y is well defined in

�∞(T0h) and the following inequality holds

∣∣ ∞∑
k=0

(x∗y)(kh)z(kh)
∣∣ ≤ C(q)

h2
‖x‖(1)p ‖y‖�q(T0h,ρ)‖z‖r,(4.15)

where the constant C(q) > 0 is given by (4.11).

The inequality in (4.15) becomes an equality if and only if x ≡ 0 or y ≡ 0
or z ≡ 0.

Proof. Using the inequalities (4.5), (4.12), (3.9) and performing some anal-
ogous arguments to the proofs of other Young’s type theorems for other gen-
eralized convolutions in the literature, we get (4.15). The inequality in (4.15)
becomes an equality if and only if x ≡ 0 or y ≡ 0 or z ≡ 0. �
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From Theorem 4.2, we have the following corollary:

Corollary 4.1. (A Young’s type inequality). Let α > 0 and p, q, r > 1 satisfy

the condition
1

p
+
1

q
= 1+

1

r
and ρ be the weight function defined in (4.9). Let

x ∈ �p(T
0
h), y ∈ �q(T

0
h, ρ) then x∗y ∈ �r(T

0
h) and

‖x∗y‖r ≤ C(q)‖x‖(1)p ‖y‖�q(T0h,ρ),(4.16)

where the constant C(q) > 0 is given by (4.11).

The inequality (4.16) becomes an equality if and only if x ≡ 0 or y ≡ 0.

Theorem 4.3. (A Saitoh’s type inequality.) Let p > 1 and ρj ∈ �1(T
0
h), (j =

= 1, 2) be two functions such that ρj(nh) > 0, ∀n ∈ N0. Then for any Fj ∈
∈ �p(T

0
h, ρj), (j = 1, 2) we have

F1ρ1, F2ρ2 ∈ �1(T
0
h),

(
(F1ρ1)∗(F2ρ2)

)
(ρ1∗ρ2)

1
p−1 ∈ �p(T

0
h)

and the following �p(T
0
h)-weighted inequality for the h-Fourier cosine-Laplace

generalized convolution holds∥∥((F1ρ1)∗(F2ρ2))(ρ1∗ρ2) 1p−1∥∥p ≤ C‖F1‖�p(T0h,ρ1)‖F2‖�p(T0h,ρ2),(4.17)

where

C = h
1−p
p

(
2 +

2

μπ

) 1
p

.

The equality holds if and only if F1 ≡ 0 or F2 ≡ 0.

Proof. Using the inequality (3.9) and Hölder’s inequality, by performing
some analogous arguments to the proofs of other Saitoh’s type inequalities for
other generalized convolutions in the literature, we get (4.17). The equality
holds if and only if F1 ≡ 0 or F2 ≡ 0. �

The Specht’s ratio was defined by [7, 3, 10]

S(t) =
t

1
t−1

e log
(
t

1
t−1
)(4.18)

for t > 0, t 
= 1, where the log function is the natural logarithm function and
S(1) = 1.

Theorem 4.4. (A reverse Saitoh’s type inequality.) Let p > 1 and ρj ∈ �1(T
0
h),

(j = 1, 2) be two functions such that ρj(nh) > 0, ∀n ∈ N0. Let F1 and F2 be
positive functions on T0h satisfying

0 < M
1
p

1 ≤ F1(nh) ≤ M
1
p

2 , 0 < M
1
p

3 ≤ F2(nh) ≤ M
1
p

4 , ∀n ∈ N0.



334 N. X. Thao and H. Tung

Then Fjρj ∈ �1(T
0
h), Fj ∈ �p(T

0
h, ρj), (j = 1, 2),(

(F1ρ1)∗(F2ρ2)
)
(ρ1∗ρ2)

1
p−1 ∈ �p(T

0
h).

Moreover, the following inequality holds∥∥((F1ρ1)∗(F2ρ2))(ρ1∗ρ2) 1p−1∥∥p > C‖F1‖�p(T0h,ρ1)‖F2‖�p(T0h,ρ2),(4.19)

where

C =
(1
4
− 1

2μπ(1 + π)μ

) 1
p

[
S
(M1M3

M2M4

)]−1
h

1−p
p ,

S is given by (4.18).

Proof. Using (4.14) and reverse inequality for Hölder’s inequality, by do-
ing some similar arguments to the proofs of other reverse Saitoh’s type in-
equalities for other generalized convolutions in the literature, we can prove
(4.19).

5. Applications

5.1. Two linear equations

Consider the following two linear equations

x(0)M(kh, 0) +

∞∑
j=1

x(jh)M(kh, jh) = w(kh), k ∈ N0,(5.1)

x(kh) + x(0)M(kh, 0) +

∞∑
j=1

x(jh)M(kh, jh) = w(kh),(5.2)

here, for k ∈ N0, j ∈ N

M(kh, 0) =
h2

π
y(0)

∞∑
m=0

v(mh)I(k,m+ μ)+

+
h2

π

∞∑
n=1

∞∑
m=0

y(nh)v(mh)θ(k, n,m+ μ),

M(kh, jh) =
2h2

π
y(jh)

∞∑
m=0

v(mh)I(k,m+ μ)+

+
h2

π

∞∑
n=1

∞∑
m=0

[
y(|nh− jh|) + y(nh+ jh)

]
v(mh)θ(k, n,m+ μ),
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where y, v, w are given functions in �1(T
0
h), μ is fixed in N, x is an unknown

function in �1(T
0
h).

Denote

Ac :=
{
Fc{x}(u), u ∈

[
0,

π

h

]∣∣x ∈ �1(T
0
h)
}
.(5.3)

In this subsection, we will use the weight function γ given by (3.1) and apply
the generalized convolution in (3.2) to handle our problems.

Theorem 5.1. Let y, v ∈ �1(T
0
h) and Fc{y}(u)L{v}(u) 
= 0 on

[
0,

π

h

]
. Then,

the necessary and sufficient condition for the existence of the unique solution

of equation (5.1) in �1(T
0
h) is

(1 + hu)μFc{w}(u)
Fc{y}(u)L{v}(u) ∈ Ac, where Ac is defined in

(5.3). The solution of equation (5.1) can be written in the form

x(nh) =
1

π

π
h∫
0

(1 + hu)μFc{w}(u)
Fc{y}(u)L{v}(u) cos(unh)du, n ∈ N0.(5.4)

Furthermore, we have the following inequality for all p ≥ 1:

‖x ∗
Fc

y‖(1)p ≥ μπ‖w‖p
(1 + μπ)‖v‖1

.(5.5)

Proof. From (2.4) and (3.2), equation (5.1) can be rewritten in the form[(
x ∗
Fc

y
)
∗v
]
(kh) = w(kh), k ∈ N0.(5.6)

� The necessary condition. Applying the h-Fourier cosine transform to
equation (5.6) and using factorization identities (2.5) and (3.7), for u ∈
∈
[
0,

π

h

]
we have

Fc{w}(u) = γ(u)Fc{x ∗
Fc

y}(u)L{v}(u) = γ(u)Fc{x}(u)Fc{y}(u)L{v}(u).

Hence,

Fc{x}(u) =
(1 + hu)μFc{w}(u)
Fc{y}(u)L{v}(u) .

Thus,
(1 + hu)μFc{w}(u)
Fc{y}(u)L{v}(u) ∈ Ac and the solution is given by (5.4).

We use (3.6) and (4.7) to obtain∥∥(x ∗
Fc

y
)
∗v
∥∥
p
≤
[
1 +

1

μπ

]
‖x ∗
Fc

y‖(1)p ‖v‖1.(5.7)

From (5.6) and (5.7) we get (5.5).
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� The sufficient condition. Assume that
(1 + hu)μFc{w}(u)
Fc{y}(u)L{v}(u) ∈ Ac. There

exists x ∈ �1(T
0
h) such that

Fc{x}(u) =
(1 + hu)μFc{w}(u)
Fc{y}(u)L{v}(u) , u ∈

[
0,

π

h

]
.

Consequently,

Fc{w}(u) = γ(u)Fc{x}(u)Fc{y}(u)L{v}(u) = γ(u)Fc{x ∗
Fc

y}(u)L{v}(u)

= Fc{
(
x ∗
Fc

y
)
∗v}(u), u ∈

[
0,

π

h

]
.

Taking the inverse h-Fourier cosine transform of the above we get (5.6).

The proof is completed. �

Remark 5.1. In Theorem 5.1, if we make additional assumption that v ∈
∈ �q(T

0
h, ρ), where p, q, r > 1 satisfy

1

p
+
1

q
= 1 +

1

r
and ρ be the weight

function defined in (4.9), then by using Young’s type inequality (4.16) and the
same arguments we obtain

‖x ∗
Fc

y‖(1)p ≥ ‖w‖r
C(q)‖v‖�q(T0h,ρ)

,

where the constant C(q) > 0 is given by (4.11).

Theorem 5.2. The necessary and sufficient condition for the equation (5.2)
to have a unique solution in �1(T

0
h), for all right hand side w ∈ �1(T

0
h) is

1 + (1 + hu)−μFc{y}(u)L{v}(u) 
= 0, u ∈
[
0,

π

h

]
.(5.8)

Moreover, the solution of (5.2) can be presented in closed form as follows:

x(nh) = w(nh)− (w ∗
Fc

ψ)(nh), n ∈ N0,(5.9)

where ψ is defined by

Fc{ψ}(u) = (1 + hu)−μFc{y}(u)L{v}(u)
1 + (1 + hu)−μFc{y}(u)L{v}(u) , u ∈

[
0,

π

h

]
.

Proof. Necessity. Equation (5.2) can be written as

x(kh) +
[(
x ∗
Fc

y
)
∗v
]
(kh) = w(kh), k ∈ N0.(5.10)
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Applying the h-Fourier cosine transform to both sides of (5.10) and using fac-
torization identities (2.5) and (3.7), we have

Fc{w}(u) = Fc{x}(u) + γ(u)Fc{x ∗
Fc

y}(u)L{v}(u)

= Fc{x}(u)
[
1 + γ(u)Fc{y}(u)L{v}(u)

]
, u ∈

[
0,

π

h

]
.(5.11)

It shows that (5.8) is the necessary condition for the equation (5.2) to have a
unique solution in �1(T

0
h), for all right hand side w ∈ �1(T

0
h).

Sufficiency. Assume that (5.8) holds. We use (5.11), (5.8) and (3.7) to obtain

Fc{x}(u) =
Fc{w}(u)

1 + γ(u)Fc{y}(u)L{v}(u) =
Fc{w}(u)

1 + Fc{y∗v}(u)
, u ∈

[
0,

π

h

]
.

(5.12)

Since y∗v ∈ �1(T
0
h), due to Wiener-Lévy type Theorem, there exists a function

ψ ∈ �1(T
0
h) satisfying

Fc{ψ}(u) = Fc{y∗v}(u)
1 + Fc{y∗v}(u)

=
(1 + hu)−μFc{y}(u)L{v}(u)

1 + (1 + hu)−μFc{y}(u)L{v}(u) , u ∈
[
0,

π

h

]
.

Using factorization identity (2.5), equation (5.12) can be written as

Fc{x}(u) = Fc{w}(u)− Fc{w}(u)Fc{ψ}(u)

= Fc{w}(u)− Fc{w ∗
Fc

ψ}(u), u ∈
[
0,

π

h

]
.(5.13)

Taking the inverse h-Fourier cosine transform of (5.13) we get (5.9). �
Remark 5.2. In Theorem 5.2, we consider the case when the function y sat-

isfies y(0) =
1

h
, y(nh) = 0, ∀n ∈ N. We have Fc{y}(u) ≡ 1, u ∈ R. Hence,

x ∗
Fc

y ≡ x, ∀x ∈ �1(T
0
h).

Let p ≥ 1 be a given number. From (5.10), we obtain the following estimate
for the solution x of equation (5.2):

‖w‖p ≤ ‖x‖p + ‖x ∗ v‖p(5.14)

Combining (3.6) and (4.7) with (5.14) yields

‖w‖p ≤ ‖x‖p +
[
1 +

1

μπ

]
‖x‖(1)p ‖v‖1 ≤

≤ ‖x‖p + 2
[
1 +

1

μπ

]
‖x‖p‖v‖1.

Therefore,

‖x‖p ≥
{
1 + 2

[
1 +

1

μπ

]
‖v‖1

}−1
‖w‖p.
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5.2. A class of linear equations related to operator K

Assume that p > 1, a0 = 1, ak ∈ C, k = 1, 2, . . . ,m are given numbers, � is
a given function in �1(T

0
h) such that �(nh) > 0, ∀n ∈ N0. We define operator

K : �1(T
0
h)→ �1(T

0
h) by

(
K(x)

)
(0) : =

−1
h2

[π2
3
x(0) + 4

∞∑
n=1

(−1)n
n2

x(nh)
]
,

(
K(x)

)
(jh) : =

−1
h2

[2(−1)j
j2

x(0) +A{x}(jh)
]
, j ∈ N,

where

A{x}(jh) =
(π2
3
+

1

2j2

)
x(jh) +

∑
n∈N\{j}

(−1)j+n 4(j
2 + n2)

(j2 − n2)2
x(nh), j ∈ N.

We consider the following linear equation related to the operator K

( m∑
k=0

(−1)kakKk
)
x = y�.(5.15)

Here, y ∈ �p(T
0
h, �) is a given function and x is an unknown function in �1(T

0
h).

Lemma 5.1. Suppose η ∈ �1(T
0
h) is a given function such that η(nh) > 0,

∀n ∈ N0. Assume that there exists Q ∈ �p(T
0
h, η) with the following property:

L{Qη}(u) = (1 + hu)μ

m∑
k=0

aku2k
, ∀u ∈

[
0,

π

h

]
.(5.16)

Then the equation (5.15) has a unique solution in �1(T
0
h). Moreover, the so-

lution can be written in the form x = (y�)∗(Qη) and we have the following
inequality

∥∥x(�∗η) 1p−1∥∥
p
≤ h

1−p
p

(
2 +

2

μπ

) 1
p ‖y‖�p(T0h,�)‖Q‖�p(T0h,η).(5.17)

The equality holds if and only if y ≡ 0.

Proof. The following formula is valid:

Fc
{
K(x)

}
(u) = −u2Fc{x}(u), u ∈

[
0,

π

h

]
.(5.18)
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Applying the h-Fourier cosine to equation (5.15) and using formula (5.18), we
have ( m∑

k=0

aku
2k
)
Fc{x}(u) = Fc{y�}(u), u ∈

[
0,

π

h

]
.(5.19)

Combining (5.16) and (5.19), it follows that

Fc{x}(u) = (1 + hu)−μFc{y�}(u)L{Qη}(u), u ∈
[
0,

π

h

]
.(5.20)

From factorization identity (3.7) and (5.20) we deduce that x = (y�)∗(Qη).
We then use Theorem 4.3 to obtain (5.17). �

Remark 5.3. In Lemma 5.1, if the functions y and Q satisfy

0 < M
1
p

1 ≤ y(nh) ≤ M
1
p

2 , 0 < M
1
p

3 ≤ Q(nh) ≤ M
1
p

4 , ∀n ∈ N0,

then from Theorem 4.4, we obtain the following inequality∥∥x(�∗η) 1p−1∥∥
p

‖Q‖�p(T0h,η)
>
(1
4
− 1

2μπ(1 + π)μ

) 1
p

[
S
(M1M3

M2M4

)]−1
h

1−p
p ‖y‖�p(T0h,�).
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