THE RING OF ARITHMETICAL FUNCTIONS IN THE RATIONAL DOMAIN

Vilius Stakėnas (Vilnius, Lithuania)
Communicated by Imre Kátai

(Received April 16, 2023; accepted June 15, 2023)

Abstract

The arithmetical functions with rational argument are interpreted as sums of weighted divisors: $$
f(r)=\sum_{d \mid r} w(d) .
$$

The logarithmic density of subsets of rational numbers is introduced. It is proved, that if $w(d) \geqslant 0$, then asymptotic logarithmic density of the set $\{r: f(r) \geqslant z\}$ exists.

1. The classes of functions

The set of natural numbers will be denoted by \mathbb{N}. If the integers $m, n \in \mathbb{N}$ are coprime, we write $m \perp n$.

Let \mathbb{Q}_{+}be the set of positive rational numbers represented always as reduced fractions $\frac{m}{n}, m, n \in \mathbb{N}, m \perp n$. The notation $r \mid t$ for the reduced fractions $r=r_{1} / r_{2}, t=t_{1} / t_{2}$ means that $r_{1}\left|t_{1}, r_{2}\right| t_{2}$.

Consider the set \mathscr{F} of all functions $f: \mathbb{Q}_{+} \rightarrow \mathbb{R}$. The sum of functions $f, g \in \mathscr{F}$ is defined as usual

$$
(f+g)(r)=f(r)+g(r), \quad r \in \mathbb{Q}_{+} .
$$

Key words and phrases: Rational numbers, arithmetical functions, Dirichlet convolution, multiples, logarithmic density.
2010 Mathematics Subject Classification: 11N37, 11N64.

We define the second operation in \mathscr{F} (the Dirichlet convolution) denoted by o:

$$
(f \circ g)\left(\frac{m}{n}\right)=\sum_{\substack{a_{1} a_{2}=m \\ b_{1} b_{2}=n}} f\left(\frac{a_{1}}{b_{1}}\right) g\left(\frac{a_{2}}{b_{2}}\right) .
$$

Note, that the function $e: \mathbb{Q}_{+} \rightarrow \mathbb{R}$ defined by $e(1)=1, e(r)=0, r \neq 1$, is the unity element corresponding to this operation:

$$
f \circ e=f, \quad f \in \mathscr{F} .
$$

Theorem 1.1. The set of functions \mathscr{F} with the operations,$+ \circ$ is a commutative ring.

Proof. The commutativity and distributivity properties are obvious. The associativity follows from identity valid for all $f_{1}, f_{2}, f_{3} \in \mathscr{F}$:

$$
\begin{aligned}
\left(f_{1} \circ\left(f_{2} \circ f_{3}\right)\right)\left(\frac{m}{n}\right) & =\left(\left(f_{1} \circ f_{2}\right) \circ f_{3}\right)\left(\frac{m}{n}\right)= \\
& =\sum_{\substack{a_{1} a_{2} a_{3}=m \\
b_{1} b_{2} b_{3}=n}} f_{1}\left(\frac{a_{1}}{b_{1}}\right) f_{2}\left(\frac{a_{2}}{b_{2}}\right) f_{3}\left(\frac{a_{3}}{b_{3}}\right) .
\end{aligned}
$$

Let

$$
\begin{aligned}
\mathscr{F}^{\circ} & =\{f \in \mathscr{F}: f(1) \neq 0\}, \\
\mathscr{A}^{+} & =\{f \in \mathscr{F}: f(m / n)=f(m)+f(1 / n)\}, \\
\mathscr{A} & =\left\{f \in \mathscr{A}^{+}: f(m), g(n)=f(1 / n) \text { are additive functions in } \mathbb{N}\right\}, \\
\mathcal{M}^{\circ} & =\left\{f \in \mathscr{F}^{\circ}: f(m / n)=f(m) f(1 / n)\right\}, \\
\mathcal{M} & =\left\{f \in \mathcal{M}^{\circ}: f(m), g(n)=f(1 / n) \text { are multiplicative functions in } \mathbb{N}\right\}, \\
\mathscr{B} & =\{f \in \mathscr{F}: \text { if } r \mid t, \text { then } f(r) \leqslant f(t)\} .
\end{aligned}
$$

Note, that if $f \in \mathscr{A}$, then for $m_{1} / n_{1}, m_{2} / n_{2} \in \mathbb{Q}_{+}, m_{1} n_{1} \perp m_{2} n_{2}$, we have

$$
f\left(\frac{m_{1}}{n_{1}} \cdot \frac{m_{2}}{n_{2}}\right)=f\left(\frac{m_{1}}{n_{1}}\right)+f\left(\frac{m_{2}}{n_{2}}\right)
$$

Correspondingly for $f \in \mathcal{M}$,

$$
f\left(\frac{m_{1}}{n_{1}} \cdot \frac{m_{2}}{n_{2}}\right)=f\left(\frac{m_{1}}{n_{1}}\right) \cdot f\left(\frac{m_{2}}{n_{2}}\right) .
$$

We call the functions $f \in \mathscr{A}$ additive and $f \in \mathcal{M}$ multiplicative.
Theorem 1.2. The sets of functions $\mathcal{M} \subset \mathcal{M}^{\circ} \subset \mathscr{F}^{\circ}$ are groups in respect to operation \circ.

Proof. Recall, that the unity element in respect to \circ is the function $e: \mathbb{Q}_{+} \rightarrow \mathbb{R}$ defined by $e(1)=1, e(r)=0$ if $r \neq 1$. Let

$$
\mathbb{Q}_{\Omega \leqslant N}=\left\{m / n \in \mathbb{Q}_{+}: \Omega(m n) \leqslant N\right\}, \quad N \geqslant 1,
$$

where $\Omega(k)$ stands for the total number of primes dividing an integer k.
For $f \in \mathscr{F}^{\circ}$ we have to define a function $g \in \mathscr{F}^{\circ}$, such that $f \circ g=e$. Note, that for $(f \circ g)(r)=e(r)$ as $r \in \mathbb{Q}_{\Omega \leqslant N}$, we have to define $g(r)$ only for $r \in \mathbb{Q}_{\Omega \leqslant N}$. Hence, if we take $g(1)=1 / f(1)$, then $(f \circ g)(r)=e(r)$ as $r \in \mathbb{Q}_{\Omega \leqslant 0}$.

Suppose $g(r)$ is already defined for $r \in \mathbb{Q}_{\Omega \leqslant N}$ in such a way that $(f \circ g)(r)=$ $=e(r)$ holds as $r \in \mathbb{Q}_{\Omega \leqslant N}$. We show that the definition of g can be extended to $r \in \mathbb{Q}_{\Omega \leqslant N+1}$ still preserving the condition $(f \circ g)(r)=e(r)$.

Indeed, we have to define g for the rationals $p m / n, m /(q n)$, where p, q are primes $p \perp n, q \perp m$ and $m / n \in \mathbb{Q}_{\Omega \leqslant N}$.

Because of

$$
(f \circ g)\left(\frac{p m}{n}\right)=\sum_{\substack{a_{1} a_{2}=p m \\ b_{1} b_{2}=n \\ a_{1} b_{1}>1}} f\left(\frac{a_{1}}{b_{1}}\right) g\left(\frac{a_{2}}{b_{2}}\right)+f(1) g\left(\frac{p m}{n}\right)
$$

and $g\left(a_{2} / b_{2}\right)$ is already defined, we will get $(f \circ g)(p m / n)=0$ taking

$$
g\left(\frac{p m}{n}\right)=-\frac{1}{f(1)} \sum_{\substack{a_{1} a_{2}=p m \\ b_{1} b_{2}=n \\ a_{1} b_{1}>1}} f\left(\frac{a_{1}}{b_{1}}\right) g\left(\frac{a_{2}}{b_{2}}\right) .
$$

Hence, by induction there is a function $g \in \mathscr{F}^{\circ}$ such that $f \circ g=e$, and \mathscr{F}° is a group.

Let $f, g \in \mathcal{M}^{\circ}$. It is straighforward to show that

$$
(f \circ g)\left(\frac{m}{n}\right)=\sum_{a_{1} a_{2}=n} f\left(a_{1}\right) g\left(a_{2}\right) \sum_{b_{1} b_{2}=m} f\left(\frac{1}{b_{1}}\right) g\left(\frac{1}{b_{2}}\right) .
$$

It follows then, that if $h=f \circ g$, then $h(m / n)=h(m) h(1 / n)$, i. e., $h \in \mathcal{M}^{\circ}$. Note, that arithmetical function $h(n), n \in \mathbb{N}$, is the Dirichlet convolution of arithmetical functions $f(n), g(n), n \in \mathbb{N}$. Hence, if $f(n), g(n)$ are multiplicative, then $h(n)$ is multiplicative, too. This claim is true for $f(1 / n), g(1 / n), h(1 / n)$ interpreted as arithmetical functions with natural argument. It follows from this, that \mathcal{M} is closed in respect to operation \circ. This completes the proof of proposition.

Let us extend the Möbius function $\mu: \mathbb{N} \rightarrow\{-1,0,1\}$ to \mathbb{Q}_{+}taking

$$
\mu\left(\frac{m}{n}\right)=\mu(m) \mu(n)
$$

Then $\mu \in \mathcal{M}$. We denote by I the function $I(r)=1, r \in \mathbb{Q}_{+}$. As the functions of natural argument μ and I are inverses to each other in respect to Dirichlet convolution. This is true also in the domain of rational numbers, i. e.,

$$
(\mu \circ I)(r)=e(r), \quad r \in \mathbb{Q}_{+}
$$

Let $f \in \mathscr{F}$ be an arbitrary function. Then

$$
f(r)=(f \circ e)(r)=(I \circ(f \circ \mu))(r)=\sum_{d \mid r} w(d), \quad w=f \circ \mu
$$

here for $d=d_{1} / d_{2}, r=r_{1} / r_{2}$, as agreed, we write $d \mid r$ if $d_{1}\left|r_{1}, d_{2}\right| r_{2}$.
Let us consider this relation as injective mapping $F_{I}: \mathscr{F} \rightarrow \mathscr{F}:$

$$
f=F_{I}(w)=I \circ w
$$

The injectivity property remains, if we consider restrictions of F_{I} to $\mathscr{F}^{\circ}, \mathcal{M}^{\circ}$, \mathcal{M}.

For $r=m / n$ we write $\omega(r)=\omega(m n)$, where $\omega(k)$ stands for the number of distinct prime divisors of k.

Theorem 1.3. The function $f=F_{I}(w)$ is in \mathscr{A}^{+}, if and only if $w(1)=0$ and $w(d)=0$ for all $d \in \mathbb{Q}_{+}$, such that $d, 1 / d \notin \mathbb{N}$.

The function $f=F_{I}(w)$ is in \mathscr{A}, if and only if $w(d)=0$ for all $d \in \mathbb{Q}_{+}$, such that $\omega(d) \neq 1$.

The function $f=F_{I}(w)$ is in \mathscr{B}, if and only if $w(d) \geqslant 0$ for all $d, d \neq 1$.
Proof. If $w(1)=0$ and $w\left(d_{1} / d_{2}\right)=0$ for all fractions with $d_{1}>1, d_{2}>1$, then $F_{I}(w) \in \mathscr{A}^{+}$, because

$$
f\left(\frac{m}{n}\right)=\sum_{d_{1} \mid m} w\left(d_{1}\right)+\sum_{d_{2} \mid n} w\left(1 / d_{2}\right)=f(m)+f(1 / n)
$$

Let $f \in \mathscr{A}^{+}$. Obviously, $w(1)=0$. We prove $w\left(d_{1} / d_{2}\right)=0$ as $d_{1}, d_{2}>1$ by induction on $N=\Omega\left(d_{1} d_{2}\right)$. If $N=2$, i.e., d_{1}, d_{2} are prime, we have

$$
f\left(\frac{d_{1}}{d_{2}}\right)=f\left(d_{1}\right)+f\left(1 / d_{2}\right)=w\left(d_{1}\right)+w\left(\frac{1}{d_{2}}\right)+w\left(\frac{d_{1}}{d_{2}}\right)
$$

and $w\left(d_{1} / d_{2}\right)=0$ follows because of $w\left(d_{1}\right)=f\left(d_{1}\right), w\left(d_{2}\right)=f\left(1 / d_{2}\right)$. Suppose $w\left(b_{1} / b_{2}\right)=0$ as $b_{1}, b_{2}>1$ and $\Omega\left(b_{1} b_{2}\right) \leqslant N$. Let $\Omega\left(d_{1} d_{2}\right)=N+1$, where $d_{1}, d_{2}>1$ and $d_{1} \perp d_{2}$. Then either $d_{1} / d_{2}=p c_{1} / c_{2}, p \perp c_{2}$ or $d_{1} / d_{2}=$ $=c_{1} /\left(p c_{2}\right), p \perp c_{1}$, where $c_{1} \perp c_{2}$ and $\Omega\left(c_{1} c_{2}\right)=N$. Let us consider the first case:

$$
f\left(\frac{p c_{1}}{c_{2}}\right)=\sum_{b_{1} \mid p c_{1}} w\left(b_{1}\right)+\sum_{b_{2} \mid c_{2}} w\left(\frac{1}{b_{2}}\right)+w\left(\frac{p c_{1}}{c_{2}}\right)=f\left(p c_{1}\right)+f\left(\frac{1}{c_{2}}\right)
$$

hence $w\left(\frac{p c_{1}}{c_{2}}\right)=0$. The equality $w\left(\frac{c_{1}}{p c_{2}}\right)=0$ follows in the same way.
Introducing some minor changes we can provide the proof of the assertion on $F_{I}(w) \in \mathscr{A}$.

The same simple reasoning by induction on $\Omega(r)$ gives the proof of the claim on $F_{I}(w) \in \mathscr{B}$.

2. The densities and multiples

For a subset A of natural numbers \mathbb{N} and natural number $x>1$ denote

$$
\nu_{x}^{0}(A)=\frac{1}{x} \sum_{n \in A \cap[1 ; x]} 1, \quad \nu_{x}^{1}(A)=\frac{1}{\log x} \sum_{n \in A \cap[1 ; x]} \frac{1}{n} .
$$

The lower and upper limits as $x \rightarrow \infty$ will be denoted by $\underline{\nu}^{r}(A), \bar{\nu}^{r}(A)$ the value of the limit, if it exists, by $\nu^{r}(A)$, respectively, $r=0,1$.

It follows from the chain of inequalities

$$
\underline{\nu}^{0}(A) \leqslant \underline{\nu}^{1}(A) \leqslant \bar{\nu}^{1}(A) \leqslant \bar{\nu}^{0}(A),
$$

that the existence of $\nu^{0}(A)$ implies the existence of $\nu^{1}(A)$. If $\nu^{0}(A)$ exists, we say that A possesses asymptotic density, and if $\nu^{1}(A)$ exists, A possesses asymptotic logarithmic density. Even the subsets A of apparently simple structure may not possess asymptotic density.

For $A \subset \mathbb{N}$ the set of natural numbers divisible by some $a \in A$ will be denoted by $\mathcal{M}(A)$, i.e., $\mathcal{M}(A)$ is the set of multiples of $a \in A$.
A.S. Besicovitch gave an example of A such that $\mathcal{M}(A)$ does not possess asymptotic density, see [1]. In 1937 H. Davenport and P. Erdős proved that every set of multiples have logarithmic density. Their original proof in [2] is based on Tauberian theorems, see also [6], Theorem 02. The direct and elementary proof of this theorem was provided by the authors in [3], it can be found also in the monograph of H. Halberstam and K.F. Roth, [5]. We will use the Erdős-Davenport theorem in the form, which results from the arguments in [5].

Lemma 2.1 (Erdős-Davenport). Let $A \subset \mathbb{N}$ and $A_{N}=A \cap[1 ; N]$ for $N \in \mathbb{N}$.
Then $\nu^{1}\left(\mathcal{M}\left(A_{N}\right)\right), \nu^{1}(\mathcal{M}(A))$ exist, and

$$
\begin{equation*}
\nu^{1}(\mathcal{M}(A))=\lim _{N \rightarrow \infty} \nu^{1}\left(\mathcal{M}\left(A_{N}\right)\right) \tag{2.1}
\end{equation*}
$$

Let $0<\lambda_{1}<\lambda_{2}$ some fixed numbers, $J=\left(\lambda_{1} ; \lambda_{2}\right)$ and $x>1$. We introduce the sets

$$
\mathbb{Q}_{x, J}=\left\{\frac{m}{n} \in \mathbb{Q}_{+}: n \leqslant x\right\} \cap J .
$$

Let $R \subset \mathbb{Q}_{+}$and $r_{1}, r_{2} \in\{0,1\}$. Then if $\mathbb{Q}_{x, J} \neq \emptyset$, we denote

$$
S_{x, J}^{r_{1} r_{2}}(R)=\sum_{m / n \in \mathbb{Q}_{x, J} \cap R} m^{-r_{1}} n^{-r_{2}}, \quad \nu_{x}^{r_{1} r_{2}}(R)=\frac{S_{x, J}^{r_{1} r_{2}}(R)}{S_{x, J}^{r_{1} r_{2}}\left(\mathbb{Q}_{x, J}\right)} .
$$

Let q_{1}, q_{2} be some coprime natural numbers and

$$
\begin{equation*}
\mathbb{Q}^{q_{1}, q_{2}}=\left\{\frac{m}{n} \in \mathbb{Q}_{+}: m q_{1} \perp n q_{2}\right\} . \tag{2.2}
\end{equation*}
$$

Note, that taking $q_{1}=q_{2}=1$, we get $\mathbb{Q}^{q_{1}, q_{2}}=\mathbb{Q}_{+}$. We use the asymptotics for $S_{x, J}^{r_{1} r_{2}}\left(\mathbb{Q}^{q_{1}, q_{2}}\right)$ established in [7].

Lemma 2.2. Let for the coprime integers q_{1}, q_{2}

$$
\Pi\left(q_{1}, q_{2}\right)=\prod_{p \mid q_{1} q_{2}}\left(1-\frac{1}{p+1}\right)
$$

Then the following asymptotics hold

$$
\begin{aligned}
\frac{S_{x, J}^{00}\left(\mathbb{Q}^{q_{1}, q_{2}}\right)}{\Pi\left(q_{1}, q_{2}\right)} & =\frac{3}{\pi^{2}}\left(\lambda_{2}-\lambda_{1}\right) x^{2}\left\{1+O\left(\frac{\log x}{x}\right)\right\} \\
\frac{S_{x, J}^{01}\left(\mathbb{Q}^{q_{1}, q_{2}}\right)}{\Pi\left(q_{1}, q_{2}\right)} & =\frac{6}{\pi^{2}}\left(\lambda_{2}-\lambda_{1}\right) x\left\{1+O\left(\frac{\log ^{2} x}{x}\right)\right\} \\
\frac{S_{x, J}^{10}\left(\mathbb{Q}^{q_{1}, q_{2}}\right)}{\Pi\left(q_{1}, q_{2}\right)} & =\frac{6}{\pi^{2}} \log \left(\frac{\lambda_{2}}{\lambda_{1}}\right) x\left\{1+O\left(\frac{\log ^{2} x}{x}\right)\right\} \\
\frac{S_{x, J}^{11}\left(\mathbb{Q}^{q_{1}, q_{2}}\right)}{\Pi\left(q_{1}, q_{2}\right)} & =\frac{6}{\pi^{2}} \log \left(\frac{\lambda_{2}}{\lambda_{1}}\right) \log x\left\{1+O\left(\frac{1}{\log x}\right)\right\} .
\end{aligned}
$$

The constants in O-signs depend on q_{1}, q_{2} and λ_{1}, λ_{2}.
As a Corrollary we have, that for all $q_{1} \perp q_{2}$

$$
\lim _{x \rightarrow \infty} \nu_{x}^{r_{1} r_{2}}\left(\mathbb{Q}^{q_{1}, q_{2}}\right)=\Pi\left(q_{1}, q_{2}\right) .
$$

Let $t=t_{1} / t_{2} \in \mathbb{Q}_{+}$; we define the set of multiples of t by

$$
\mathcal{M}(t)=\left\{\frac{m}{n}: m \perp n, t_{1}\left|m, t_{2}\right| n\right\} .
$$

Note, that

$$
S_{x, J}^{r_{1} r_{2}}(\mathcal{M}(t))=t_{1}^{r_{1}} t_{2}^{r_{2}} S_{x^{*}, J^{*}}^{r_{1}, r_{2}}\left(\mathbb{Q}^{t_{2}, t_{1}}\right), \quad x^{*}=x / t_{2}, \quad J^{*}=\left(t_{2} \lambda_{1} / t_{1} ; t_{2} \lambda_{2} / t_{1}\right)
$$

It follows now from the Lemma 2.2, that

$$
\lim _{x \rightarrow \infty} \nu_{x}^{r_{1} r_{2}}(\mathcal{M}(t))=\frac{1}{t_{1} t_{2}} \prod_{p \mid t_{1} t_{2}}\left(1-\frac{1}{p+1}\right)
$$

For the subset $T \subset \mathbb{Q}_{+}$define

$$
\mathcal{M}(T)=\bigcup_{t \in T} \mathcal{M}(t)
$$

Remark 2.1. If $t=t_{1} / t_{2}, s=s_{1} / s_{2}$, then either $\mathcal{M}(t) \cap \mathcal{M}(s)=\emptyset$, or

$$
\mathcal{M}(t) \cap \mathcal{M}(s)=\mathcal{M}\left(\left[t_{1}, s_{1}\right] /\left[t_{2}, s_{2}\right]\right),
$$

where $[a, b]$ stands for the smallest common multiple. Hence, if T is finite, then due to the sieving procedure the densities

$$
\nu^{r_{1} r_{2}}(\mathcal{M}(T))=\lim _{x \rightarrow \infty} \nu_{x}^{r_{1} r_{2}}(\mathcal{M}(T)), \quad r_{1}, r_{2} \in\{0,1\}
$$

exist and are equal.
Theorem 2.1. For arbitrary subset $T \subset \mathbb{Q}_{+}$the logarithmic density

$$
\nu^{11}(\mathcal{M}(T))=\lim _{x \rightarrow \infty} \nu_{x}^{11}(\mathcal{M}(T))
$$

exists.
Proof. Let $N>1$ be an integer. We define

$$
T_{N}=\left\{\frac{t_{1}}{t_{2}} \in T: t_{1}, t_{2} \leqslant N\right\}
$$

Note, that $\mathcal{M}\left(T_{N}\right)$ is the finite union of the sets having the asymptotic densities; moreover, the itersection of these sets also have the asymptotic densities. We conclude, that $\nu^{r_{1} r_{2}}\left(\mathcal{M}\left(T_{N}\right)\right)$ exists due to the inclusion-exclusion identity for the measure of finite union of sets. Hence, it is sufficient to show, that

$$
\bar{\nu}^{11}\left(\mathcal{M}(T) \backslash \mathcal{M}\left(T_{N}\right)\right) \leqslant \epsilon
$$

for an arbitrary $\epsilon>0$ as $N>N(\epsilon)$. Let us define

$$
\begin{array}{ll}
T^{1}=\left\{t_{1}: \text { there exists } t_{2}, \frac{t_{1}}{t_{2}} \in T\right\}, & T_{N}^{1}=T^{1} \cap[N,+\infty) \\
T^{2}=\left\{t_{2}: \text { there exists } t_{1}, \frac{t_{1}}{t_{2}} \in T\right\}, & T_{N}^{2}=T^{2} \cap[N,+\infty)
\end{array}
$$

Let us agree, that if $A \subset \mathbb{N}$, then $\mathcal{M}(A)$ stands for the subset of \mathbb{N}, i.e.

$$
\mathcal{M}(A)=\bigcup_{a \in A}\{a k: k=1,2, \ldots\}
$$

From the Erdős-Davenport theorem we have, that $\nu^{1}\left(\mathcal{M}\left(T^{i}\right)\right), i=1,2$, exist. Moreover, $\nu^{1}\left(\mathcal{M}\left(T_{N}^{i}\right)\right) \leqslant \epsilon_{N}$, where $\epsilon_{N} \rightarrow 0$ as $N \rightarrow \infty$. We shall use this is the form

$$
\begin{equation*}
\sum_{n \in \mathcal{M}\left(T_{N}^{i}\right) \cap[1 ; x]} \frac{1}{n} \ll \epsilon_{N} \cdot \log x, \quad x \rightarrow \infty . \tag{2.3}
\end{equation*}
$$

Start with the observation

$$
\mathcal{M}(T) \backslash \mathcal{M}\left(T_{N}\right) \subset \mathcal{M}_{1}\left(T_{N}\right) \cup \mathcal{M}_{2}\left(T_{N}\right)
$$

where

$$
\begin{aligned}
& \mathcal{M}_{1}\left(T_{N}\right)=\left\{m / n \in \mathbb{Q}_{+}: m \in \mathcal{M}\left(T_{N}^{1}\right)\right\} \cap J \\
& \mathcal{M}_{2}\left(T_{N}\right)=\left\{m / n \in \mathbb{Q}_{+}: n \in \mathcal{M}\left(T_{N}^{2}\right)\right\} \cap J
\end{aligned}
$$

It is sufficient to show, that $\bar{\nu}^{11}\left(\mathcal{M}_{i}\left(T_{N}\right)\right) \rightarrow 0$ as $i=1,2$ and $N \rightarrow \infty$. Using (2.3) we get

$$
\begin{aligned}
S_{x, J}^{11}\left(\mathcal{M}_{2}\left(T_{N}\right)\right) & \leqslant \sum_{n \in \mathcal{M}\left(T_{N}^{2}\right) \cap[1 ; x]} \frac{1}{n} \sum_{\lambda_{1} n<m<\lambda_{2} n} \frac{1}{m} \ll \\
& \ll \sum_{n \in \mathcal{M}\left(T_{N}^{2}\right) \cap[1 ; x]} \frac{1}{n}\left\{\log \left(\frac{\lambda_{2}}{\lambda_{1}}\right)+\frac{1}{\lambda_{1} n}\right\} \ll \\
& \ll \log \left(\frac{\lambda_{2}}{\lambda_{1}}\right) \log x\left(\epsilon_{N}+\frac{1}{\lambda_{1} \log x}\right)
\end{aligned}
$$

Hence, $\bar{\nu}^{11}\left(\mathcal{M}_{2}\left(T_{N}\right)\right) \rightarrow 0$ as $N \rightarrow \infty$ follows because of asymptotics

$$
S_{x, J}^{11}\left(\mathbb{Q}_{+}\right) \sim \frac{6}{\pi^{2}} \log \left(\frac{\lambda_{2}}{\lambda_{1}}\right) \log x \quad \text { as } x \rightarrow \infty
$$

For $S_{x, J}^{11}\left(\mathcal{M}_{1}\left(T_{N}\right)\right)$ we proceed as follows:

$$
\begin{equation*}
S_{x, I}^{11}\left(\mathcal{M}_{1}\left(T_{N}\right)\right) \leqslant \sum_{\substack{m \leqslant \lambda_{2} \\ m \in \mathcal{M}\left(T_{N}^{1}\right)}} \frac{1}{m} \sum_{n<m / \lambda_{1}} \frac{1}{n}+\sum_{\substack{\lambda_{2}<m<\lambda_{2} x \\ m \in \mathcal{M}\left(T_{N}^{1}\right)}} \frac{1}{m} \sum_{m / \lambda_{2}<n<m / \lambda_{1}} \frac{1}{n} . \tag{2.4}
\end{equation*}
$$

Because λ_{2} is fixed, then the first sum in (2.4) is zero for N sufficiently large. For the second sum in (2.4) we obtain

$$
\begin{aligned}
\sum_{\substack{\lambda_{2}<m<\lambda_{2} x \\
m \in \mathcal{M}\left(T_{N}^{1}\right)}} \frac{1}{m} \sum_{m / \lambda_{2}<n<m / \lambda_{1}} \frac{1}{n} & \ll \sum_{\substack{\lambda_{2}<m<\lambda_{2} x \\
m \in \mathcal{M}\left(T_{N}^{1}\right)}} \frac{1}{m}\left\{\log \left(\frac{\lambda_{2}}{\lambda_{1}}\right)+\frac{\lambda_{2}}{m}\right\} \ll \\
& \ll \epsilon_{N}\left(\log \left(\frac{\lambda_{2}}{\lambda_{1}}\right)+1\right) \log \left(\lambda_{2} x\right)
\end{aligned}
$$

This is sufficient to conclude that $\bar{\nu}^{11}\left(\mathcal{M}_{1}\left(T_{N}\right)\right) \rightarrow 0$ as $N \rightarrow \infty$. The Theorem is proved.

3. The class \mathscr{B}

Recall the definition of the class \mathscr{B} :

$$
\mathscr{B}=\{f \in \mathscr{F}: \text { if } r \mid t, \text { then } f(r) \leqslant f(t)\} .
$$

Note, that an additive function f belongs to \mathscr{B}, if and only if it satisfies the condition: for all primes p

$$
0 \leqslant f(p) \leqslant f\left(p^{2}\right) \leqslant \cdots, \quad 0 \leqslant f(1 / p) \leqslant f\left(1 / p^{2}\right) \leqslant \cdots
$$

Correspondingly, a multiplicative function g belongs to \mathscr{B}, if and only if it satisfies the condition: for all primes p

$$
1 \leqslant g(p) \leqslant g\left(p^{2}\right) \leqslant \cdots, \quad 1 \leqslant g(1 / p) \leqslant g\left(1 / p^{2}\right) \leqslant \cdots .
$$

Theorem 3.1. For every $f \in \mathscr{B}$ and $z \in \mathbb{R}$ the density

$$
\nu^{11}\left(r \in \mathbb{Q}_{+}: f(r) \geqslant z\right)
$$

exists.
Let $0<\delta<1$. There exist functions $f \in \mathscr{B}$ such that

$$
\begin{equation*}
\bar{\nu}^{00}\left(r \in \mathbb{Q}_{+}: f(r) \geqslant z\right)-\underline{\nu}^{00}\left(r \in \mathbb{Q}_{+}: f(r) \geqslant z\right)>\delta \tag{3.1}
\end{equation*}
$$

for all $z \geqslant z_{0}$.
We will use in the proof the following result of Erdős.
Lemma 3.1 (see, [4]). Let $[T ; 2 T]$ denotes the set of integers satisfying the inequalities $T \leqslant m \leqslant 2 T$. Then

$$
\nu^{0}(\mathcal{M}([T ; 2 T]) \rightarrow 0, \quad T \rightarrow \infty .
$$

Note, that the existence of $\nu^{0}(\mathcal{M}([T ; 2 T])$ follows from the representation of $\mathcal{M}([T ; 2 T])$ as finite union of arithmetical progressions.
Proof. Let $f \in \mathscr{B}, z \in \mathbb{R}$ and $A(f, z)=\left\{r \in \mathbb{Q}_{+}: f(r) \geqslant z\right\}$. If $r \in$ $\in A(f, z)$, then $\mathcal{M}(r) \subset A(f, z)$. Hence, $\mathcal{M}(A(f, z))=A(f, z)$ and the existence of $\nu^{11}(A(f, z))$ follows from the Theorem 3.1.

We construct now a function $f \in \mathscr{B}, f=I \circ w$, satisfying (3.1). We have to define $w(d) \geqslant 0$ for all $d \in \mathbb{Q}_{+}$. Let us take $w(u / v)=0$ if $u>1, u \perp v$ and define $w(1 / v)$ for $v \in \mathbb{N}$.

The construction is based on the result of Erdős given in Lemma 3.1.
Let $k \geqslant 1$ be an integer to be specified later. Consider the sequence T_{n} of integers and introduce the sets of integers

$$
I_{n}=\left[T_{n} ; 2^{k} T_{n}\right] \cap \mathbb{N}, \quad \text { where } 2^{k} T_{n}<T_{n+1}
$$

Let $\epsilon>0$ be an arbitrary number. Due to Lemma 3.1 it is possible to choose the sequence T_{n} such that

$$
\begin{aligned}
& \sum_{n \geqslant 1} \nu^{0}\left(\mathcal{M}\left(I_{n}\right)\right)<\epsilon, \\
& \nu_{x}^{0}\left(\mathcal{M}\left(\bigcup_{m \leqslant n} I_{m}\right)<2 \sum_{m \leqslant n} \nu^{0}\left(\mathcal{M}\left(I_{m}\right)\right)<2 \epsilon \quad \text { as } x \geqslant T_{n+1} .\right.
\end{aligned}
$$

Take an arbitrary sequence $0<z_{1}<z_{2}<\cdots$ and define $w(1 / v)=z_{n}$ if $v \in I_{n}$ and $w(1 / v)=0$, if $v \notin I_{n}$ for all $n \geqslant 1$. Denote for brevity $\mathcal{M}=\mathcal{M}\left(\cup_{n} I_{n}\right)$.

Then for the function $f=I \circ w$ we have

$$
\#\left(\left\{r: r=u / v, v \leqslant x, f(r) \geqslant z_{1}\right\} \cap J\right) \leqslant\left(\lambda_{2}-\lambda_{1}\right) \cdot x \cdot \#\{v: v \leqslant x, v \in \mathcal{M}\}
$$

If $x=T_{n+1}$

$$
\#\{v: v \leqslant x, v \in \mathcal{M}\}=\#\left\{v: v \leqslant x, v \in \mathcal{M}\left(\cup_{m \leqslant n} I_{m}\right)\right\} \leqslant 2 \epsilon x .
$$

Hence,

$$
\#\left(\left\{r: r=u / v, v \leqslant x, f(r) \geqslant z_{1}\right\} \cap J\right) \ll \epsilon\left(\lambda_{2}-\lambda_{1}\right) x^{2}
$$

and

$$
\begin{equation*}
\underline{\nu}^{00}\left(r \in \mathbb{Q}_{+}: f(r) \geqslant z\right) \ll \epsilon \tag{3.2}
\end{equation*}
$$

For $z \geqslant z_{1}$ let $z_{m-1} \leqslant z<z_{m}$. Then

$$
\begin{aligned}
\nu_{x}^{00}\left(r \in \mathbb{Q}_{+}: f(r) \geqslant z\right) & \geqslant \nu_{x}^{00}\left(r \in \mathbb{Q}_{+}: f(r) \geqslant z_{m}\right) \geqslant \\
& \geqslant \nu_{x}^{00}\left(u / v: u / v \in \mathbb{Q}_{+}, v \in\left[T_{m} ; 2^{k} T_{m}\right]\right)
\end{aligned}
$$

If $x \geqslant 2^{k} T_{m}$

$$
\nu_{x}^{00}\left(u / v: u / v \in \mathbb{Q}_{+}, v \in\left[T_{m} ; 2^{k} T_{m}\right]=\frac{S_{2^{k} T_{m}, J}^{00}-S_{T_{m}, J}^{00}}{S_{x, J}^{00}}\right.
$$

Taking $x=2^{k} T_{m}$ and using asymptotics from Lemma 2.2 we get

$$
\begin{equation*}
\nu_{x}^{00}\left(r \in \mathbb{Q}_{+}: f(r) \geqslant z\right) \geqslant 1-\frac{S_{T_{m}, J}^{00}}{S_{2^{k} T_{m}, J}^{00}}=1-2^{-2 k}(1+o(1)) \tag{3.3}
\end{equation*}
$$

Obviously due to (3.2) and (3.3) the choice of k and ϵ can be combined to get the inequality (3.1). The proof is complete.

Remark 3.1. If $f \in \mathscr{B}$ and the set of $d \in \mathbb{Q}_{+}$, such that $w(d)>0$, is finite, then $\left\{r \in \mathbb{Q}_{+}: f(r) \geqslant z\right\}=\mathcal{M}(T)$ for some finite set T. Then due to the Remark 2.1 all densities $\nu^{r_{1} r_{2}}\left(r \in \mathbb{Q}_{+}: f(r) \geqslant z\right), r_{1}, r_{2}=0,1$, exist and are equal.

Let $Q \subset \mathbb{Q}_{+}$. Define $w: \mathbb{Q}_{+} \rightarrow\{0,1\}$ taking $w(r)=1$ if $r \in Q$ and $w(r)=0$ otherwise.

Then $f_{Q}=I \circ w$ is the counting function of divisors, i.e.,

$$
f_{Q}(r)=\#\{d: d \in Q, d \mid r\}
$$

where the notation $d \mid r$ for rational numbers has the same meaning as above. Then it follows from the Theorem 3.1, that for every $Q \subset \mathbb{Q}_{+}$and $m \geqslant 0$ the density

$$
\nu^{11}\left(r \in \mathbb{Q}_{+}: f_{Q}(r)=m\right)
$$

exists.

References

[1] Besicovitch, A.S, On the density of certain sequences of integers, Mathematische Annalen, 110 (1934), 197-211.
[2] Davenport, H. and P. Erdős, On sequences of positive integers, Acta Arithmetica, 2 (1937), 147-151.
[3] Davenport, H. and P. Erdős, On sequences of positive integers, J. Indian Math. Soc.(2), 15 (1951), 19-24
[4] Erdős, P., Note on sequences of integers no one of which is divisible by any other, J. London Math. Soc., 10 (1935), 126-128.
[5] Halberstam, H. and K.F. Roth, Sequences, Oxford University Press, 1966.
[6] Hall, R.R., Sets of Multiples, Cambridge University Press, 1996.
[7] Stakènas, V., On the densities of rational multiples, Lithuanian Mathematical Journal, 50 (2010), 459-473.

V. Stakėnas
Vilnius University
Institute of Computer Science
Vilnius
Lithuania
vilius.stakenas@mif.vu.lt

