THE RING OF ARITHMETICAL FUNCTIONS IN THE RATIONAL DOMAIN

Vilius Stakėnas (Vilnius, Lithuania)

Communicated by Imre Kátai

(Received April 16, 2023; accepted June 15, 2023)

Abstract. The arithmetical functions with rational argument are interpreted as sums of weighted divisors:

$$f(r) = \sum_{d \mid r} w(d).$$

The logarithmic density of subsets of rational numbers is introduced. It is proved, that if $w(d) \ge 0$, then asymptotic logarithmic density of the set $\{r: f(r) \ge z\}$ exists.

1. The classes of functions

The set of natural numbers will be denoted by \mathbb{N} . If the integers $m, n \in \mathbb{N}$ are coprime, we write $m \perp n$.

Let \mathbb{Q}_+ be the set of positive rational numbers represented always as reduced fractions $\frac{m}{n}$, m, $n \in \mathbb{N}$, $m \perp n$. The notation r|t for the reduced fractions $r = r_1/r_2$, $t = t_1/t_2$ means that $r_1|t_1, r_2|t_2$.

Consider the set \mathscr{F} of all functions $f:\mathbb{Q}_+\to\mathbb{R}$. The sum of functions $f,g\in\mathscr{F}$ is defined as usual

$$(f+g)(r) = f(r) + g(r), \quad r \in \mathbb{Q}_+.$$

Key words and phrases: Rational numbers, arithmetical functions, Dirichlet convolution, multiples, logarithmic density.

²⁰¹⁰ Mathematics Subject Classification: 11N37, 11N64.

We define the second operation in \mathscr{F} (the Dirichlet convolution) denoted by \circ :

$$(f \circ g) \left(\frac{m}{n}\right) = \sum_{\substack{a_1 a_2 = m \\ b_1 b_2 = n}} f\left(\frac{a_1}{b_1}\right) g\left(\frac{a_2}{b_2}\right).$$

Note, that the function $e: \mathbb{Q}_+ \to \mathbb{R}$ defined by $e(1) = 1, e(r) = 0, r \neq 1$, is the unity element corresponding to this operation:

$$f \circ e = f, \quad f \in \mathscr{F}.$$

Theorem 1.1. The set of functions \mathscr{F} with the operations $+, \circ$ is a commutative ring.

Proof. The commutativity and distributivity properties are obvious. The associativity follows from identity valid for all $f_1, f_2, f_3 \in \mathcal{F}$:

$$(f_1 \circ (f_2 \circ f_3)) \left(\frac{m}{n}\right) = ((f_1 \circ f_2) \circ f_3) \left(\frac{m}{n}\right) =$$

$$= \sum_{\substack{a_1 a_2 a_3 = m \\ b_1 b_2 b_2 = n}} f_1 \left(\frac{a_1}{b_1}\right) f_2 \left(\frac{a_2}{b_2}\right) f_3 \left(\frac{a_3}{b_3}\right).$$

Let

$$\begin{split} \mathscr{F}^{\circ} &= \{ f \in \mathscr{F} : f(1) \neq 0 \}, \\ \mathscr{A}^{+} &= \{ f \in \mathscr{F} : f(m/n) = f(m) + f(1/n) \}, \\ \mathscr{A} &= \{ f \in \mathscr{A}^{+} : f(m), g(n) = f(1/n) \text{ are additive functions in } \mathbb{N} \}, \\ \mathscr{M}^{\circ} &= \{ f \in \mathscr{F}^{\circ} : f(m/n) = f(m)f(1/n) \}, \\ \mathscr{M} &= \{ f \in \mathscr{M}^{\circ} : f(m), g(n) = f(1/n) \text{ are multiplicative functions in } \mathbb{N} \}, \\ \mathscr{B} &= \{ f \in \mathscr{F} : \text{ if } r | t, \text{ then } f(r) \leqslant f(t) \}. \end{split}$$

Note, that if $f \in \mathcal{A}$, then for $m_1/n_1, m_2/n_2 \in \mathbb{Q}_+, m_1n_1 \perp m_2n_2$, we have

$$f\big(\frac{m_1}{n_1}\cdot\frac{m_2}{n_2}\big)=f\big(\frac{m_1}{n_1}\big)+f\big(\frac{m_2}{n_2}\big).$$

Correspondingly for $f \in \mathcal{M}$,

$$f\big(\frac{m_1}{n_1}\cdot\frac{m_2}{n_2}\big)=f\big(\frac{m_1}{n_1}\big)\cdot f\big(\frac{m_2}{n_2}\big).$$

We call the functions $f \in \mathcal{A}$ additive and $f \in \mathcal{M}$ multiplicative.

Theorem 1.2. The sets of functions $\mathcal{M} \subset \mathcal{M}^{\circ} \subset \mathscr{F}^{\circ}$ are groups in respect to operation \circ .

Proof. Recall, that the unity element in respect to \circ is the function $e: \mathbb{Q}_+ \to \mathbb{R}$ defined by e(1) = 1, e(r) = 0 if $r \neq 1$. Let

$$\mathbb{Q}_{\Omega \leq N} = \{ m/n \in \mathbb{Q}_+ : \Omega(mn) \leq N \}, \quad N \geqslant 1,$$

where $\Omega(k)$ stands for the total number of primes dividing an integer k.

For $f \in \mathscr{F}^{\circ}$ we have to define a function $g \in \mathscr{F}^{\circ}$, such that $f \circ g = e$. Note, that for $(f \circ g)(r) = e(r)$ as $r \in \mathbb{Q}_{\Omega \leq N}$, we have to define g(r) only for $r \in \mathbb{Q}_{\Omega \leq N}$. Hence, if we take g(1) = 1/f(1), then $(f \circ g)(r) = e(r)$ as $r \in \mathbb{Q}_{\Omega \leq 0}$.

Suppose g(r) is already defined for $r \in \mathbb{Q}_{\Omega \leq N}$ in such a way that $(f \circ g)(r) = e(r)$ holds as $r \in \mathbb{Q}_{\Omega \leq N}$. We show that the definition of g can be extended to $r \in \mathbb{Q}_{\Omega \leq N+1}$ still preserving the condition $(f \circ g)(r) = e(r)$.

Indeed, we have to define g for the rationals pm/n, m/(qn), where p,q are primes $p \perp n, q \perp m$ and $m/n \in \mathbb{Q}_{\Omega \leq N}$.

Because of

$$(f \circ g) \left(\frac{pm}{n}\right) = \sum_{\substack{a_1 a_2 = pm \\ b_1 b_2 = n \\ a_1 b_1 > 1}} f\left(\frac{a_1}{b_1}\right) g\left(\frac{a_2}{b_2}\right) + f(1) g\left(\frac{pm}{n}\right)$$

and $g(a_2/b_2)$ is already defined, we will get $(f \circ g)(pm/n) = 0$ taking

$$g\Big(\frac{pm}{n}\Big) = -\frac{1}{f(1)} \sum_{\substack{a_1a_2 = pm \\ b_1b_2 = n \\ a_1b_1 > 1}} f\Big(\frac{a_1}{b_1}\Big) g\Big(\frac{a_2}{b_2}\Big).$$

Hence, by induction there is a function $g \in \mathscr{F}^{\circ}$ such that $f \circ g = e$, and \mathscr{F}° is a group.

Let $f, g \in \mathcal{M}^{\circ}$. It is straighforward to show that

$$(f \circ g) \left(\frac{m}{n}\right) = \sum_{a_1 a_2 = n} f(a_1) g(a_2) \sum_{b_1 b_2 = m} f\left(\frac{1}{b_1}\right) g\left(\frac{1}{b_2}\right).$$

It follows then, that if $h = f \circ g$, then h(m/n) = h(m)h(1/n), i. e., $h \in \mathcal{M}^{\circ}$. Note, that arithmetical function $h(n), n \in \mathbb{N}$, is the Dirichlet convolution of arithmetical functions $f(n), g(n), n \in \mathbb{N}$. Hence, if f(n), g(n) are multiplicative, then h(n) is multiplicative, too. This claim is true for f(1/n), g(1/n), h(1/n) interpreted as arithmetical functions with natural argument. It follows from this, that \mathcal{M} is closed in respect to operation \circ . This completes the proof of proposition.

Let us extend the Möbius function $\mu: \mathbb{N} \to \{-1, 0, 1\}$ to \mathbb{Q}_+ taking

$$\mu\left(\frac{m}{n}\right) = \mu(m)\mu(n).$$

Then $\mu \in \mathcal{M}$. We denote by I the function $I(r) = 1, r \in \mathbb{Q}_+$. As the functions of natural argument μ and I are inverses to each other in respect to Dirichlet convolution. This is true also in the domain of rational numbers, i. e.,

$$(\mu \circ I)(r) = e(r), \quad r \in \mathbb{Q}_+.$$

Let $f \in \mathscr{F}$ be an arbitrary function. Then

$$f(r) = (f \circ e)(r) = (I \circ (f \circ \mu))(r) = \sum_{d \mid r} w(d), \quad w = f \circ \mu,$$

here for $d = d_1/d_2$, $r = r_1/r_2$, as agreed, we write d|r if $d_1|r_1, d_2|r_2$.

Let us consider this relation as injective mapping $F_I: \mathscr{F} \to \mathscr{F}$:

$$f = F_I(w) = I \circ w.$$

The injectivity property remains, if we consider restrictions of F_I to \mathscr{F}° , \mathcal{M}° , \mathcal{M} .

For r = m/n we write $\omega(r) = \omega(mn)$, where $\omega(k)$ stands for the number of distinct prime divisors of k.

Theorem 1.3. The function $f = F_I(w)$ is in \mathscr{A}^+ , if and only if w(1) = 0 and w(d) = 0 for all $d \in \mathbb{Q}_+$, such that $d, 1/d \notin \mathbb{N}$.

The function $f = F_I(w)$ is in \mathscr{A} , if and only if w(d) = 0 for all $d \in \mathbb{Q}_+$, such that $\omega(d) \neq 1$.

The function $f = F_I(w)$ is in \mathscr{B} , if and only if $w(d) \ge 0$ for all $d, d \ne 1$.

Proof. If w(1) = 0 and $w(d_1/d_2) = 0$ for all fractions with $d_1 > 1, d_2 > 1$, then $F_I(w) \in \mathscr{A}^+$, because

$$f\left(\frac{m}{n}\right) = \sum_{d_1|m} w(d_1) + \sum_{d_2|n} w(1/d_2) = f(m) + f(1/n).$$

Let $f \in \mathscr{A}^+$. Obviously, w(1) = 0. We prove $w(d_1/d_2) = 0$ as $d_1, d_2 > 1$ by induction on $N = \Omega(d_1d_2)$. If N = 2, i.e., d_1, d_2 are prime, we have

$$f\left(\frac{d_1}{d_2}\right) = f(d_1) + f(1/d_2) = w(d_1) + w\left(\frac{1}{d_2}\right) + w\left(\frac{d_1}{d_2}\right),$$

and $w(d_1/d_2)=0$ follows because of $w(d_1)=f(d_1), w(d_2)=f(1/d_2)$. Suppose $w(b_1/b_2)=0$ as $b_1,b_2>1$ and $\Omega(b_1b_2)\leqslant N$. Let $\Omega(d_1d_2)=N+1$, where $d_1,d_2>1$ and $d_1\perp d_2$. Then either $d_1/d_2=pc_1/c_2, p\perp c_2$ or $d_1/d_2=c_1/(pc_2), p\perp c_1$, where $c_1\perp c_2$ and $\Omega(c_1c_2)=N$. Let us consider the first case:

$$f\Big(\frac{pc_1}{c_2}\Big) = \sum_{b_1|pc_1} w(b_1) + \sum_{b_2|c_2} w\Big(\frac{1}{b_2}\Big) + w\Big(\frac{pc_1}{c_2}\Big) = f(pc_1) + f\Big(\frac{1}{c_2}\Big),$$

hence $w(\frac{pc_1}{c_2}) = 0$. The equality $w(\frac{c_1}{pc_2}) = 0$ follows in the same way.

Introducing some minor changes we can provide the proof of the assertion on $F_I(w) \in \mathscr{A}$.

The same simple reasoning by induction on $\Omega(r)$ gives the proof of the claim on $F_I(w) \in \mathcal{B}$.

2. The densities and multiples

For a subset A of natural numbers \mathbb{N} and natural number x > 1 denote

$$\nu_x^0(A) = \frac{1}{x} \sum_{n \in A \cap [1:x]} 1, \quad \nu_x^1(A) = \frac{1}{\log x} \sum_{n \in A \cap [1:x]} \frac{1}{n}.$$

The lower and upper limits as $x \to \infty$ will be denoted by $\underline{\nu}^r(A), \overline{\nu}^r(A)$ the value of the limit, if it exists, by $\nu^r(A)$, respectively, r = 0, 1.

It follows from the chain of inequalities

$$\underline{\nu}^{0}(A) \leqslant \underline{\nu}^{1}(A) \leqslant \overline{\nu}^{1}(A) \leqslant \overline{\nu}^{0}(A),$$

that the existence of $\nu^0(A)$ implies the existence of $\nu^1(A)$. If $\nu^0(A)$ exists, we say that A possesses asymptotic density, and if $\nu^1(A)$ exists, A possesses asymptotic logarithmic density. Even the subsets A of apparently simple structure may not possess asymptotic density.

For $A \subset \mathbb{N}$ the set of natural numbers divisible by some $a \in A$ will be denoted by $\mathcal{M}(A)$, i.e., $\mathcal{M}(A)$ is the set of multiples of $a \in A$.

A.S. Besicovitch gave an example of A such that $\mathcal{M}(A)$ does not possess asymptotic density, see [1]. In 1937 H. Davenport and P. Erdős proved that every set of multiples have logarithmic density. Their original proof in [2] is based on Tauberian theorems, see also [6], Theorem 02. The direct and elementary proof of this theorem was provided by the authors in [3], it can be found also in the monograph of H. Halberstam and K.F. Roth, [5]. We will use the Erdős–Davenport theorem in the form, which results from the arguments in [5].

Lemma 2.1 (Erdős–Davenport). Let $A \subset \mathbb{N}$ and $A_N = A \cap [1; N]$ for $N \in \mathbb{N}$. Then $\nu^1(\mathcal{M}(A_N))$, $\nu^1(\mathcal{M}(A))$ exist, and

(2.1)
$$\nu^{1}(\mathcal{M}(A)) = \lim_{N \to \infty} \nu^{1}(\mathcal{M}(A_{N})).$$

Let $0 < \lambda_1 < \lambda_2$ some fixed numbers, $J = (\lambda_1; \lambda_2)$ and x > 1. We introduce the sets

 $\mathbb{Q}_{x,J} = \left\{ \frac{m}{n} \in \mathbb{Q}_+ : n \leqslant x \right\} \cap J.$

Let $R \subset \mathbb{Q}_+$ and $r_1, r_2 \in \{0, 1\}$. Then if $\mathbb{Q}_{x,J} \neq \emptyset$, we denote

$$S^{r_1r_2}_{x,J}(R) = \sum_{m/n \in \mathbb{O}_{x-I} \cap R} m^{-r_1} n^{-r_2}, \quad \nu^{r_1r_2}_x(R) = \frac{S^{r_1r_2}_{x,J}(R)}{S^{r_1r_2}_{x,J}(\mathbb{Q}_{x,J})}.$$

Let q_1, q_2 be some coprime natural numbers and

(2.2)
$$\mathbb{Q}^{q_1,q_2} = \left\{ \frac{m}{n} \in \mathbb{Q}_+ : mq_1 \perp nq_2 \right\}.$$

Note, that taking $q_1 = q_2 = 1$, we get $\mathbb{Q}^{q_1,q_2} = \mathbb{Q}_+$. We use the asymptotics for $S_{x.J}^{r_1r_2}(\mathbb{Q}^{q_1,q_2})$ established in [7].

Lemma 2.2. Let for the coprime integers q_1, q_2

$$\Pi(q_1, q_2) = \prod_{p|q_1, q_2} \left(1 - \frac{1}{p+1}\right).$$

Then the following asymptotics hold

$$\begin{split} \frac{S_{x,J}^{00}(\mathbb{Q}^{q_1,q_2})}{\Pi(q_1,q_2)} &= \frac{3}{\pi^2} (\lambda_2 - \lambda_1) x^2 \Big\{ 1 + O\Big(\frac{\log x}{x}\Big) \Big\}, \\ \frac{S_{x,J}^{01}(\mathbb{Q}^{q_1,q_2})}{\Pi(q_1,q_2)} &= \frac{6}{\pi^2} (\lambda_2 - \lambda_1) x \Big\{ 1 + O\Big(\frac{\log^2 x}{x}\Big) \Big\}, \\ \frac{S_{x,J}^{10}(\mathbb{Q}^{q_1,q_2})}{\Pi(q_1,q_2)} &= \frac{6}{\pi^2} \log\Big(\frac{\lambda_2}{\lambda_1}\Big) x \Big\{ 1 + O\Big(\frac{\log^2 x}{x}\Big) \Big\}, \\ \frac{S_{x,J}^{11}(\mathbb{Q}^{q_1,q_2})}{\Pi(q_1,q_2)} &= \frac{6}{\pi^2} \log\Big(\frac{\lambda_2}{\lambda_1}\Big) \log x \Big\{ 1 + O\Big(\frac{1}{\log x}\Big) \Big\}. \end{split}$$

The constants in O-signs depend on q_1, q_2 and λ_1, λ_2 .

As a Corrollary we have, that for all $q_1 \perp q_2$

$$\lim_{x \to \infty} \nu_x^{r_1 r_2}(\mathbb{Q}^{q_1, q_2}) = \Pi(q_1, q_2).$$

Let $t = t_1/t_2 \in \mathbb{Q}_+$; we define the set of multiples of t by

$$\mathcal{M}(t) = \left\{ \frac{m}{n} : m \perp n, t_1 | m, t_2 | n \right\}.$$

Note, that

$$S_{x.J}^{r_1r_2}(\mathcal{M}(t)) = t_1^{r_1}t_2^{r_2}S_{x^*.J^*}^{r_1,r_2}(\mathbb{Q}^{t_2,t_1}), \quad x^* = x/t_2, \quad J^* = (t_2\lambda_1/t_1; t_2\lambda_2/t_1).$$

It follows now from the Lemma 2.2, that

$$\lim_{x \to \infty} \nu_x^{r_1 r_2}(\mathcal{M}(t)) = \frac{1}{t_1 t_2} \prod_{p \mid t_1 t_2} \left(1 - \frac{1}{p+1} \right).$$

For the subset $T \subset \mathbb{Q}_+$ define

$$\mathcal{M}(T) = \bigcup_{t \in T} \mathcal{M}(t).$$

Remark 2.1. If $t = t_1/t_2$, $s = s_1/s_2$, then either $\mathcal{M}(t) \cap \mathcal{M}(s) = \emptyset$, or

$$\mathcal{M}(t) \cap \mathcal{M}(s) = \mathcal{M}([t_1, s_1]/[t_2, s_2]),$$

where [a, b] stands for the smallest common multiple. Hence, if T is finite, then due to the sieving procedure the densities

$$\nu^{r_1 r_2}(\mathcal{M}(T)) = \lim_{x \to \infty} \nu_x^{r_1 r_2}(\mathcal{M}(T)), \quad r_1, r_2 \in \{0, 1\}.$$

exist and are equal.

Theorem 2.1. For arbitrary subset $T \subset \mathbb{Q}_+$ the logarithmic density

$$\nu^{11}(\mathcal{M}(T)) = \lim_{x \to \infty} \nu_x^{11}(\mathcal{M}(T))$$

exists.

Proof. Let N > 1 be an integer. We define

$$T_N = \left\{ \frac{t_1}{t_2} \in T : t_1, t_2 \leqslant N \right\}.$$

Note, that $\mathcal{M}(T_N)$ is the finite union of the sets having the asymptotic densities; moreover, the itersection of these sets also have the asymptotic densities. We conclude, that $\nu^{r_1 r_2}(\mathcal{M}(T_N))$ exists due to the inclusion-exclusion identity for the measure of finite union of sets. Hence, it is sufficient to show, that

$$\overline{\nu}^{11}(\mathcal{M}(T)\backslash\mathcal{M}(T_N)) \leqslant \epsilon$$

for an arbitrary $\epsilon > 0$ as $N > N(\epsilon)$. Let us define

$$T^1 = \left\{ t_1 : \text{there exists } t_2, \frac{t_1}{t_2} \in T \right\}, \quad T^1_N = T^1 \cap [N, +\infty),$$

$$T^2 = \left\{ t_2 : \text{there exists } t_1, \frac{t_1}{t_2} \in T \right\}, \quad T^2_N = T^2 \cap [N, +\infty).$$

Let us agree, that if $A \subset \mathbb{N}$, then $\mathcal{M}(A)$ stands for the subset of \mathbb{N} , i.e.

$$\mathcal{M}(A) = \bigcup_{a \in A} \{ak : k = 1, 2, \ldots\}.$$

From the Erdős–Davenport theorem we have, that $\nu^1(\mathcal{M}(T^i)), i = 1, 2$, exist. Moreover, $\nu^1(\mathcal{M}(T^i_N)) \leqslant \epsilon_N$, where $\epsilon_N \to 0$ as $N \to \infty$. We shall use this is the form

(2.3)
$$\sum_{n \in \mathcal{M}(T_N^i) \cap [1;x]} \frac{1}{n} \ll \epsilon_N \cdot \log x, \quad x \to \infty.$$

Start with the observation

$$\mathcal{M}(T)\backslash \mathcal{M}(T_N) \subset \mathcal{M}_1(T_N) \cup \mathcal{M}_2(T_N),$$

where

$$\mathcal{M}_1(T_N) = \{ m/n \in \mathbb{Q}_+ : m \in \mathcal{M}(T_N^1) \} \cap J,$$

$$\mathcal{M}_2(T_N) = \{ m/n \in \mathbb{Q}_+ : n \in \mathcal{M}(T_N^2) \} \cap J.$$

It is sufficient to show, that $\overline{\nu}^{11}(\mathcal{M}_i(T_N)) \to 0$ as i = 1, 2 and $N \to \infty$. Using (2.3) we get

$$S_{x,J}^{11}(\mathcal{M}_2(T_N)) \leqslant \sum_{n \in \mathcal{M}(T_N^2) \cap [1;x]} \frac{1}{n} \sum_{\lambda_1 n < m < \lambda_2 n} \frac{1}{m} \ll$$

$$\ll \sum_{n \in \mathcal{M}(T_N^2) \cap [1;x]} \frac{1}{n} \Big\{ \log \Big(\frac{\lambda_2}{\lambda_1} \Big) + \frac{1}{\lambda_1 n} \Big\} \ll$$

$$\ll \log \Big(\frac{\lambda_2}{\lambda_1} \Big) \log x \Big(\epsilon_N + \frac{1}{\lambda_1 \log x} \Big).$$

Hence, $\overline{\nu}^{11}(\mathcal{M}_2(T_N)) \to 0$ as $N \to \infty$ follows because of asymptotics

$$S_{x,J}^{11}(\mathbb{Q}_+) \sim \frac{6}{\pi^2} \log\left(\frac{\lambda_2}{\lambda_1}\right) \log x$$
 as $x \to \infty$.

For $S_{x,J}^{11}(\mathcal{M}_1(T_N))$ we proceed as follows:

$$(2.4) S_{x,I}^{11}(\mathcal{M}_1(T_N)) \leqslant \sum_{\substack{m \leqslant \lambda_2 \\ m \in \mathcal{M}(T_N^1)}} \frac{1}{m} \sum_{n < m/\lambda_1} \frac{1}{n} + \sum_{\substack{\lambda_2 < m < \lambda_2 x \\ m \in \mathcal{M}(T_N^1)}} \frac{1}{m} \sum_{m/\lambda_2 < n < m/\lambda_1} \frac{1}{n}.$$

Because λ_2 is fixed, then the first sum in (2.4) is zero for N sufficiently large. For the second sum in (2.4) we obtain

$$\sum_{\substack{\lambda_2 < m < \lambda_2 x \\ m \in \mathcal{M}(T_N^1)}} \frac{1}{m} \sum_{m/\lambda_2 < n < m/\lambda_1} \frac{1}{n} \ll \sum_{\substack{\lambda_2 < m < \lambda_2 x \\ m \in \mathcal{M}(T_N^1)}} \frac{1}{m} \left\{ \log \left(\frac{\lambda_2}{\lambda_1} \right) + \frac{\lambda_2}{m} \right\} \ll$$

$$\ll \epsilon_N \left(\log \left(\frac{\lambda_2}{\lambda_1} \right) + 1 \right) \log(\lambda_2 x).$$

This is sufficient to conclude that $\overline{\nu}^{11}(\mathcal{M}_1(T_N)) \to 0$ as $N \to \infty$. The Theorem is proved.

3. The class \mathscr{B}

Recall the definition of the class \mathcal{B} :

$$\mathscr{B} = \{ f \in \mathscr{F} : \text{ if } r | t, \text{ then } f(r) \leqslant f(t) \}.$$

Note, that an additive function f belongs to \mathcal{B} , if and only if it satisfies the condition: for all primes p

$$0 \leqslant f(p) \leqslant f(p^2) \leqslant \cdots, \quad 0 \leqslant f(1/p) \leqslant f(1/p^2) \leqslant \cdots$$

Correspondingly, a multiplicative function g belongs to \mathcal{B} , if and only if it satisfies the condition: for all primes p

$$1 \leqslant g(p) \leqslant g(p^2) \leqslant \cdots, \quad 1 \leqslant g(1/p) \leqslant g(1/p^2) \leqslant \cdots$$

Theorem 3.1. For every $f \in \mathcal{B}$ and $z \in \mathbb{R}$ the density

$$\nu^{11}(r \in \mathbb{O}_+: f(r) \geqslant z)$$

exists.

Let $0 < \delta < 1$. There exist functions $f \in \mathcal{B}$ such that

(3.1)
$$\overline{\nu}^{00}(r \in \mathbb{Q}_+ : f(r) \geqslant z) - \underline{\nu}^{00}(r \in \mathbb{Q}_+ : f(r) \geqslant z) > \delta$$

for all $z \geqslant z_0$.

We will use in the proof the following result of Erdős.

Lemma 3.1 (see, [4]). Let [T;2T] denotes the set of integers satisfying the inequalities $T \leq m \leq 2T$. Then

$$\nu^0(\mathcal{M}([T;2T]) \to 0, \quad T \to \infty.$$

Note, that the existence of $\nu^0(\mathcal{M}([T;2T]))$ follows from the representation of $\mathcal{M}([T;2T])$ as finite union of arithmetical progressions.

Proof. Let $f \in \mathcal{B}, z \in \mathbb{R}$ and $A(f,z) = \{r \in \mathbb{Q}_+ : f(r) \geq z\}$. If $r \in A(f,z)$, then $\mathcal{M}(r) \subset A(f,z)$. Hence, $\mathcal{M}(A(f,z)) = A(f,z)$ and the existence of $\nu^{11}(A(f,z))$ follows from the Theorem 3.1.

We construct now a function $f \in \mathcal{B}$, $f = I \circ w$, satisfying (3.1). We have to define $w(d) \ge 0$ for all $d \in \mathbb{Q}_+$. Let us take w(u/v) = 0 if u > 1, $u \perp v$ and define w(1/v) for $v \in \mathbb{N}$.

The construction is based on the result of Erdős given in Lemma 3.1.

Let $k \ge 1$ be an integer to be specified later. Consider the sequence T_n of integers and introduce the sets of integers

$$I_n = [T_n; 2^k T_n] \cap \mathbb{N}$$
, where $2^k T_n < T_{n+1}$.

Let $\epsilon > 0$ be an arbitrary number. Due to Lemma 3.1 it is possible to choose the sequence T_n such that

$$\sum_{n\geqslant 1} \nu^0(\mathcal{M}(I_n)) < \epsilon,$$

$$\nu_x^0(\mathcal{M}(\bigcup_{m \le n} I_m) < 2 \sum_{m \le n} \nu^0(\mathcal{M}(I_m)) < 2\epsilon \quad \text{as } x \geqslant T_{n+1}.$$

Take an arbitrary sequence $0 < z_1 < z_2 < \cdots$ and define $w(1/v) = z_n$ if $v \in I_n$ and w(1/v) = 0, if $v \notin I_n$ for all $n \ge 1$. Denote for brevity $\mathcal{M} = \mathcal{M}(\cup_n I_n)$.

Then for the function $f = I \circ w$ we have

$$\#(\{r: r=u/v, v \leqslant x, f(r) \geqslant z_1\} \cap J) \leqslant (\lambda_2 - \lambda_1) \cdot x \cdot \#\{v: v \leqslant x, v \in \mathcal{M}\}.$$

If $x = T_{n+1}$

$$\#\{v:v\leqslant x,v\in\mathcal{M}\}=\#\{v:v\leqslant x,v\in\mathcal{M}(\cup_{m\leqslant n}I_m)\}\leqslant 2\epsilon x.$$

Hence,

$$\#(\lbrace r: r=u/v, v\leqslant x, f(r)\geqslant z_1\rbrace\cap J)\ll \epsilon(\lambda_2-\lambda_1)x^2,$$

and

(3.2)
$$\underline{\nu}^{00}(r \in \mathbb{Q}_+ : f(r) \geqslant z) \ll \epsilon.$$

For $z \geqslant z_1$ let $z_{m-1} \leqslant z < z_m$. Then

$$\nu_x^{00}(r \in \mathbb{Q}_+ : f(r) \geqslant z) \geqslant \nu_x^{00}(r \in \mathbb{Q}_+ : f(r) \geqslant z_m) \geqslant \nu_x^{00}(u/v : u/v \in \mathbb{Q}_+, v \in [T_m; 2^k T_m]).$$

If $x \ge 2^k T_m$

$$\nu_x^{00}(u/v:u/v\in\mathbb{Q}_+,v\in[T_m;2^kT_m]=\frac{S_{2^kT_m,J}^{00}-S_{T_m,J}^{00}}{S_{x,J}^{00}}.$$

Taking $x = 2^k T_m$ and using asymptotics from Lemma 2.2 we get

(3.3)
$$\nu_x^{00}(r \in \mathbb{Q}_+ : f(r) \geqslant z) \geqslant 1 - \frac{S_{T_m,J}^{00}}{S_{2^k T_m,J}^{00}} = 1 - 2^{-2k} (1 + o(1)).$$

Obviously due to (3.2) and (3.3) the choice of k and ϵ can be combined to get the inequality (3.1). The proof is complete.

Remark 3.1. If $f \in \mathcal{B}$ and the set of $d \in \mathbb{Q}_+$, such that w(d) > 0, is finite, then $\{r \in \mathbb{Q}_+ : f(r) \geq z\} = \mathcal{M}(T)$ for some finite set T. Then due to the Remark 2.1 all densities $\nu^{r_1 r_2}(r \in \mathbb{Q}_+ : f(r) \geq z), r_1, r_2 = 0, 1$, exist and are equal.

Let $Q \subset \mathbb{Q}_+$. Define $w : \mathbb{Q}_+ \to \{0,1\}$ taking w(r) = 1 if $r \in Q$ and w(r) = 0 otherwise.

Then $f_Q = I \circ w$ is the counting function of divisors, i.e.,

$$f_Q(r) = \#\{d : d \in Q, d|r\},\$$

where the notation d|r for rational numbers has the same meaning as above. Then it follows from the Theorem 3.1, that for every $Q \subset \mathbb{Q}_+$ and $m \geqslant 0$ the density

$$\nu^{11}(r \in \mathbb{Q}_+ : f_Q(r) = m)$$

exists.

References

- [1] **Besicovitch**, **A.S**, On the density of certain sequences of integers, *Mathematische Annalen*, **110** (1934), 197–211.
- [2] **Davenport**, **H. and P. Erdős**, On sequences of positive integers, *Acta Arithmetica*, **2** (1937), 147–151.
- [3] Davenport, H. and P. Erdős, On sequences of positive integers, J. Indian Math. Soc.(2), 15 (1951), 19–24

[4] Erdős, P., Note on sequences of integers no one of which is divisible by any other, J. London Math. Soc., 10 (1935), 126–128.

- [5] Halberstam, H. and K.F. Roth, Sequences, Oxford University Press, 1966.
- [6] Hall, R.R., Sets of Multiples, Cambridge University Press, 1996.
- [7] Stakėnas, V., On the densities of rational multiples, Lithuanian Mathematical Journal, 50 (2010), 459–473.

V. Stakėnas

Vilnius University Institute of Computer Science Vilnius Lithuania vilius.stakenas@mif.vu.lt.