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Abstract. The arithmetical functions with rational argument are inter-
preted as sums of weighted divisors:

fr) =Y w(d).

d|r

The logarithmic density of subsets of rational numbers is introduced. It is
proved, that if w(d) > 0, then asymptotic logarithmic density of the set
{r: f(r) > 2z} exists.

1. The classes of functions

The set of natural numbers will be denoted by N. If the integers m,n € N
are coprime, we write m L n.

Let Q4 be the set of positive rational numbers represented always as reduced
fractions 7, m, n € N, m L n. The notation 7|t for the reduced fractions
r =r1/ro,t = t1/ts means that r|ty, ro|ts.

Consider the set .# of all functions f : Q+ — R. The sum of functions
f,g € Z is defined as usual

(f+9)r) = f(r)+9(r), reQy.
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We define the second operation in % (the Dirichlet convolution) denoted by o:

rea(7)= 2 1(5)e(5)

b1 b2 =n

Note, that the function e : Q4 — R defined by e(1) = 1,e(r) = 0,7 # 1, is the
unity element corresponding to this operation:

foe=f, [feZ.

Theorem 1.1. The set of functions F with the operations +,0 is a commu-
tative ring.

Proof. The commutativity and distributivity properties are obvious. The
associativity follows from identity valid for all fi, fo, f3 € Z:

(fro(f2o ) (2) = (o fo) o fi) () =
= > fl(%)fQ(%)f3(%§)' [ |

a1a2a3=m
b1b2b3:n

Let

F°={feF:fQ1)#0},

o ={f €T flm/n) = f(m)+ f(1/n)},
o ={fedt: f(m),g(n) = f(1/n) are additive functions in N},

M ={feF°: f(m/n) = f(m)f(1/n)},

M={feM°: f(m),g(n) = f(1/n) are multiplicative functions in N},
PB={fe€F: ifrlt,then f(r) < f(t)}.

Note, that if f € &7, then for my/nq1, ma/ny € Q4,miny L maong, we have
My may omiy o me
ey )
Correspondingly for f € M,
my may _omiyoma
P (M) (1)
We call the functions f € & additive and f € M multiplicative.

Theorem 1.2. The sets of functions M C M® C .F° are groups in respect to
operation o.
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Proof. Recall, that the unity element in respect to o is the functione : Q1 — R
defined by e(1) = 1,e(r) =0 if r # 1. Let

Qasy ={m/ne Q4 :Q(mn) <N}, N =1,

where (k) stands for the total number of primes dividing an integer k.

For f € Z° we have to define a function g € .%#°, such that fog = e.
Note, that for (f o g)(r) = e(r) as r € Qa<n, we have to define g(r) only for
r € Qo< Hence, if we take g(1) = 1/f(1), then (fog)(r) = e(r) as r € Qqago-

Suppose ¢(r) is already defined for r € Qq<n in such a way that (fog)(r) =
= e(r) holds as r € Qag<n. We show that the definition of g can be extended
to r € Qa1 still preserving the condition (f o g)(r) = e(r).

Indeed, we have to define g for the rationals pm/n, m/(qn), where p, q are
primes p L n,q L m and m/n € Qqcn.

Because of
o) = T a(2)o(2) ()
blbgz’n
a1by>1

and g(az/bz) is already defined, we will get (f o g)(pm/n) = 0 taking

pm 1 a1 as
() =7, 2 1(5)a(5):
n f(l) alazzzpm bl bg
b1b2='fl
arb;>1
Hence, by induction there is a function g € .%#° such that fog=e, and .F° is
a group.

Let f,g € M°. It is straighforward to show that

(Fon)(Z) = X sanga) Y £(5)o(5):

ajaz2=mn bibo=m

It follows then, that if h = f o g, then h(m/n) = h(m)h(1/n), i. e., h € M°.
Note, that arithmetical function h(n),n € N, is the Dirichlet convolution of
arithmetical functions f(n), g(n),n € N. Hence, if f(n), g(n) are multiplicative,
then h(n) is multiplicative, too. This claim is true for f(1/n),g(1/n),h(1/n)
interpreted as arithmetical functions with natural argument. It follows from
this, that M is closed in respect to operation o. This completes the proof of
proposition. |

Let us extend the Mébius function p: N — {—1,0,1} to Q4 taking

(™) = m)un).

n
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Then p € M. We denote by I the function I(r) = 1,7 € Q4. As the functions
of natural argument p and I are inverses to each other in respect to Dirichlet
convolution. This is true also in the domain of rational numbers, i. e.,

(pol)(r)=ce(r), reQy.
Let f € % be an arbitrary function. Then
fr)=(foe)r)=(To(fom)r) = wd), w=fop,
d|r

here for d = dy/da,r = r1/r2, as agreed, we write d|r if dq|r1, da|ra.

Let us consider this relation as injective mapping Fr : % — % :

f=Fr(w)=TITow.

The injectivity property remains, if we consider restrictions of Fj to .%#°, M°,
M.

For r = m/n we write w(r) = w(mn), where w(k) stands for the number of
distinct prime divisors of k.
Theorem 1.3. The function f = Fr(w) is in &/, if and only if w(1) =0 and
w(d) =0 for all d € Q, such that d,1/d & N.

The function f = Fr(w) is in 7, if and only if w(d) = 0 for all d € Q4,
such that w(d) # 1.

The function [ = Fr(w) is in B, if and only if w(d) > 0 for all d,d # 1.

Proof. If w(1) = 0 and w(dy/d2) = 0 for all fractions with d; > 1,ds > 1,
then Fr(w) € &/, because

F(2) = 37 wid) + > witfdz) = f(m) + F(1/n).

d1|m d2|n

Let f € &T. Obviously, w(1) = 0. We prove w(dy/ds) = 0 as dy,ds > 1 by
induction on N = Q(dydz). If N =2, i.e., dy,ds are prime , we have

f(;l—;) F(dy) + F(1/d2) = w(dy) + w(dt) + w(%)

and w(dy /dz) = 0 follows because of w(dy) = f(dy),w(d2) = f(1/d2). Suppose
w(by/ba) = 0 as by, by > 1 and Q(b1by) < N. Let Q(d1da) = N + 1, where
dy,dy > 1 and dy L ds. Then either dy/dy = pci/ea,p L ¢y or di/dy =
= c¢1/(pe2),p L 1, where ¢; L co and Q(c1c2) = N. Let us consider the first

) = 3w+ Y w (o )+ (izl)=f<pc1>+f(é),

b1|per balea
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hence w(%) = 0. The equality w(chlz) = 0 follows in the same way.

Introducing some minor changes we can provide the proof of the assertion
on Fr(w) € &.

The same simple reasoning by induction on Q(r) gives the proof of the claim
on Fy (w) c A. |

2. The densities and multiples

For a subset A of natural numbers N and natural number x > 1 denote

WA =1 3 1, u;(A):% S

T T n
neAN[l;x] neAN[l;x]

The lower and upper limits as @ — oo will be denoted by v"(A),7"(A) the
value of the limit, if it exists, by v"(A), respectively, r = 0, 1.

It follows from the chain of inequalities
VO(4) < v (4) < 7(A) < 7(A),

that the existence of v°(A) implies the existence of v1(A). If v9(A) exists, we say
that A possesses asymptotic density, and if v (A) exists, A possesses asymptotic
logarithmic density. Even the subsets A of apparently simple structure may
not possess asymptotic density.

For A C N the set of natural numbers divisible by some a € A will be
denoted by M(A), i.e., M(A) is the set of multiples of a € A.

A.S. Besicovitch gave an example of A such that M(A) does not possess
asymptotic density, see [1]. In 1937 H. Davenport and P. Erdés proved that
every set of multiples have logarithmic density. Their original proof in [2]
is based on Tauberian theorems, see also [6], Theorem 02. The direct and
elementary proof of this theorem was provided by the authors in [3], it can be
found also in the monograph of H. Halberstam and K.F. Roth, [5]. We will use
the Erdés—Davenport theorem in the form, which results from the arguments
in [5].

Lemma 2.1 (Erdés-Davenport). Let A C N and Ay = AN[1;N] for N € N.

Then v (M(AN)), v1(M(A)) exist, and

(2.1) VI M(A)) = lim v (M(Ap)).
N—o0
Let 0 < A1 < Ay some fixed numbers, J = (A1; A2) and > 1. We introduce

the sets m
Q.’C,J:{EGQ-}—:ngz}mJ.
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Let R C Q4 and ry,7r3 € {0,1}. Then if Q, s # 0, we denote
S (R)
S (R) = m-"nT"2, UIT2(R) =
= 2 W 5r@

m/neQ,, jNR

Let g1, g2 be some coprime natural numbers and
m
(2.2) QM2 = {— €Q4 :mqgr L nqg}.
n

Note, that taking ¢1 = g2 = 1, we get Q792 = Q. We use the asymptotics for
S (Q192) established in [7].

Lemma 2.2. Let for the coprime integers qi1, g
e = 11 (1- )
q1,92) = p+1 .
plg1gz

Then the following asymptotics hold

e RS RO

The constants in O-signs depend on q1,qa and A1, Aa.

As a Corrollary we have, that for all ¢; L ¢

lim V;N”z (QQL‘D) — H(Ch, Q2)-

T—r00
Let t = t1/t2 € Q4; we define the set of multiples of ¢ by
M(t) = {T cm L n,tl\m,tg\n}.
n
Note, that

SIUE(MU(L) = 1R SR Q) 2t = fty,  JT = (i [t tade/t).
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It follows now from the Lemma 2.2, that

1 1
li Az t) = — 1——).
pltits
For the subset 7" C Q4 define
M(T) = | M(1).
teT

Remark 2.1. If t = t1/ts, s = s1/52, then either M(¢) N M(s) = 0, or
M(t) N M(s) = M([t1, s1]/[t2, $2]),

where [a, b] stands for the smallest common multiple. Hence, if T is finite, then
due to the sieving procedure the densities

VI MT)) = Tim VJH(M(T)), .m € {0,1).

exist and are equal.

Theorem 2.1. For arbitrary subset T C Q4 the logarithmic density
v (M(T)) = lim v, (M(T))

exists.

Proof. Let N > 1 be an integer. We define
131
Yw:{—eTJhmgN}
ta
Note, that M(T) is the finite union of the sets having the asymptotic densities;
moreover, the itersection of these sets also have the asymptotic densities. We

conclude, that ™72 (M(Ty)) exists due to the inclusion-exclusion identity for
the measure of finite union of sets. Hence, it is sufficient to show, that

THM(T)\M(Tn)) < e
for an arbitrary € > 0 as N > N(¢). Let us define
1 : 21 1 1
T = {tl : there exists to, o € T}, Ty =T N[N, +00),
2

t
™ = {tg : there exists 1, t—l € T}, T% =T? N[N, +oo).
2
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Let us agree, that if A C N, then M(A) stands for the subset of N, i.e.

M(A) = | J{ak : k=1,2,...}.

a€cA

From the Erdés-Davenport theorem we have, that v'(M(T?)),i = 1,2, exist.
Moreover, v (M(T%)) < ey , where ey — 0 as N — oo. We shall use this is
the form

1
(2.3) Z — < ey-logz, x— oo
neM(Ti)N[L;z]

Start with the observation
M(TY\M(Tyn) C M1 (Ty) UM (Tn),

where
My(Tyn) ={m/n € Qy :m e M(Ty)}NJ,
MQ(TN) = {m/n €Qy:ne M(T]%/)} n.J.

It is sufficient to show, that 7' (M;(Tx)) — 0 as i = 1,2 and N — oco. Using
(2.3) we get

CRTVEHCS) D DRI DI

n
neM(TF)N[Lz]  Ain<m<Azn

< Y %{bg (i—j)jthin} <

neM(TZ)N[1;z]

< log (%) tog  (ex + " 1igx>'

Hence, 7' (My(Tx)) — 0 as N — oo follows because of asymptotics

6 A
Si,lJ(QH ~ 3 log (/\—j) logz as x — oo.

For S}, (M1 (Tn)) we proceed as follows:

CRNCATVHGS) R DD DR DI DI

m n
m< Az n<m/Ai Ao<m< Az m/Aa<n<m/A
meM(Ty) meM(Ty)
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Because Ag is fixed, then the first sum in (2.4) is zero for N sufficiently
large. For the second sum in (2.4) we obtain

1 1 1 A A

> oLox e ¥ Hw()e2)e
m n m A1 m

Aa<m<Aax m/Aa<n<m/\ Ao<m< AT

meM(TY) meM(Ty)

< eN(log (i—j) + 1) log(Agx).

This is sufficient to conclude that 7'*(M;(Tx)) — 0 as N — co. The Theorem
is proved. |

3. The class #

Recall the definition of the class % :
B={feF: ifrit,then f(r) < f(t)}.

Note, that an additive function f belongs to 4, if and only if it satisfies the
condition: for all primes p

0<fp) <FP) <, 0<f(/p) < fA/pY) <o

Correspondingly, a multiplicative function g belongs to 4, if and only if it
satisfies the condition: for all primes p

1<g(p) <gp?) <+, 1<g(l/p) <g1/p?) <---.
Theorem 3.1. For every f € % and z € R the density

vMreQy: f(r) = 2)

exists.
Let 0 < § < 1. There exist functions f € B such that
(3.1) 700reQi:f(r)=2)—v0reQy:flr)=2) >0

for all z > zg.

We will use in the proof the following result of Erdos.

Lemma 3.1 (see, [4]). Let [T;2T] denotes the set of integers satisfying the
inequalities T < m < 2T. Then

VO (M(T;2T]) =0, T — .
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Note, that the existence of v9(M([T;2T]) follows from the representation
of M([T;2T)) as finite union of arithmetical progressions.

Proof. Let f € B,z € R and A(f,z) = {r € Qr : f(r) > z}. U r €
€ A(f, z), then M(r) C A(f,z). Hence, M(A(f, z)) = A(f, z) and the existence
of V1Y(A(f, 2)) follows from the Theorem 3.1.

We construct now a function f € £, f = I o w, satisfying (3.1). We have
to define w(d) > 0 for all d € Q4. Let us take w(u/v) =0if u > 1,u L v and
define w(1/v) for v € N.

The construction is based on the result of Erdds given in Lemma 3.1.

Let k£ > 1 be an integer to be specified later. Consider the sequence T}, of
integers and introduce the sets of integers

I, = [T,; 28T, NN, where 2T}, < T}, ;1.

Let € > 0 be an arbitrary number. Due to Lemma 3.1 it is possible to
choose the sequence T;, such that

> OAM(I)) <,

n=1

vo(M( U In) <2 Z VO (M(I,)) <2¢ asx =Ty

m<n m<n

Take an arbitrary sequence 0 < z1 < z9 < --- and define w(1/v) = z, ifv € I,
and w(l/v) =0, if v ¢ I, for all n > 1. Denote for brevity M = M(U,I,,).

Then for the function f = I o w we have
#{r:r=u/v,o<z, f(r) =2} NJ)< (A= A1) x-#{v:v<z,0vE M}
IffL‘:TnJr]

#{v:v<z,ve My =#{v:v<z,ve MUpgnln)} < 2e.

Hence,

#{r:r=u/v,o<a, f(r) = 21}NJT) < e(Ag — M),
and
(3.2) YO eQy i f(r)>2) <e

For z > 2z let z,,_1 < 2 < z,,. Then
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If ¢ > 2+T,,
00 00
T A 1)

ygo(u/v cufv € Qp,v € [Thn; QkTm} = G500
x,J

Taking = = 2¥T),, and using asymptotics from Lemma 2.2 we get

00
(3.3) VOreQy: flr)=2)>1— ;;gm’ =1-272%(1+0(1)).

2k T, J

Obviously due to (3.2) and (3.3) the choice of k and e can be combined to get
the inequality (3.1). The proof is complete. [ |

Remark 3.1. If f € # and the set of d € Q, such that w(d) > 0, is finite,
then {r € Q1 : f(r) = z} = M(T) for some finite set T. Then due to the
Remark 2.1 all densities v™"2(r € Q4 : f(r) = z),7r1,r2 = 0,1, exist and are
equal.

Let @ C Q4. Define w : Q4+ — {0, 1} taking w(r) =1ifr € @ and w(r) =0
otherwise.

Then fg = I ow is the counting function of divisors, i.e.,

fo(r) =#{d: d € Q,d|r},

where the notation d|r for rational numbers has the same meaning as above.
Then it follows from the Theorem 3.1, that for every @ C Q4 and m > 0 the
density

vMireqQy fo(r)=m)

exists.
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