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Abstract. In this work, we introduce hyperbolic convolution operators
using a subgroup of the Blaschke group. The subgroup in question can be
interpreted as the group of direction preserving translations on the complex
unit disk. We introduce a group norm and the Haar integral which are
invariant with respect to this hyperbolic translation. Using these tools, we
propose the notions of hyperbolic convolution and approximate identity.
Finally, we extend the investigated group of direction preserving hyperbolic
translations with a dilation operation and investigate some properties of
the resulting field.

1. Introduction

Neural networks employing convolution layers have revolutionized 2D and
3D image processing applications in recent years (see [14]). One of the main
contributions of this paper is the introduction of a new convolution concept
which remains inside a certain region (such as the complex unit disk). This
property could be beneficial especially for applications. Starting from the class
of Blaschke functions B we identify a (transformation) group, in which the
group operation is the function composition operation ◦ [18, 20]. In this way we
can also construct the concept of hyperbolic wavelets which have applications in
for example control theory [4, 17, 18]. Other important function systems, such
as the Zernike system commonly used in optics, or the discrete Laguerre sys-
tem used in control theory can also be derived from the representations of the
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Blaschke group [2, 3, 7, 12, 19, 20]. Blaschke introduced the functions named
after him in [1], where he used them to describe so-called inner functions of the
space Hp (0 < p ≤ ∞). Functions belonging to Hardy spaces, whose values on
the unit circle are 1 a.e. are referred to as inner functions. It turned out, that
such functions can be written as products of Blaschke functions. In addition
to contributing greatly to the theory of analytic functions, such factorization
theorems also help to mathematically formalize important concepts in control
theory [12]. The Blaschke group also has important geometrical interpreta-
tions. Namely, Blaschke functions describe the congruence transformations of
the Bólyai–Lobachevsky (hyperbolic) geometry in the Poincaré disk model [5].
Hyperbolic translation operators can also be introduced easily with Blaschke
functions, for example the translation of the trigonometric system leads to
the discrete Laguerre system. In this paper, we use this notion of transla-
tion to introduce hyperbolic convolution operators. Using Blaschke products,
Malmquist and Takenaka have independently introduced the rational orthonor-
mal Malmquist–Takenaka (MT) systems [15, 21]. The MT systems contain as
a special case, several other important orthogonal systems (such as the discrete
Laguerre and Kautz systems). Today, MT expansions have become an impor-
tant tool for the identification of dynamic systems. In the last decade, MT
expansions were successfully applied for the identification, compression and
classification of signals [4, 9, 13, 14, 15]. Functions belonging to the Blaschke
group can be parameterized by B := {Bb = εBb : b := (ε, b) ∈ B := D × T},
where Bb(z) := (z−b)/(1−bz). The Blaschke group is isomorphic to the group
SU(1, 1) used in representation theory [23]. Describing this group by Blaschke
functions has several benefits. Fundamental concepts in harmonic analysis (i.e.
representation, convolution etc.) can be directly related to MT expansions
in this model. Unger et. al. [8, 22] introduced the so-called gyro-operation
and in connection to this, a complicated algebraic structure to describe rela-
tive velocity. Using operations of the Blaschke group introduced here, these
structures can be significantly simplified. Another advantage of the above men-
tioned parameterezation of the Blaschke functions is that using the group B we
can describe the congruence transformations in the Poincaré disk model of the
Bólyai-Lobachevsky geometry [5]. This connection makes it possible to geo-
metrically describe the introduced concepts and algorithms as well as allowing
us to introduce a new hyperbolic wavelet concept [18] akin to the classical affine
wavelets [6, 10, 11, 16]. In this work, instead of the group B we consider its
subgroup, which maps the point 1 ∈ T onto itself: B∗ := {B ∈ B : B(1) = 1}.
This subgroup allows us to parameterize B∗ using only the points of D and in-
troduce a structure on the disk that is isomorphic to the group (B∗, ◦). We will
refer to members of this subgroup as direction preserving hyperbolic motions.
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The rest of this paper is organized as follows. In section 2 we discuss the
geometric interpretation of the group (B∗, ◦) and introduce a group norm as
well as a translation invariant integral. In section 3, we consider convolution
operator on the D disk and prove the analogue of the theorem about the con-
vergence of integral means. In section 4, we prove an analogous theorem to the
theorem on approximate identity. This section can be interpreted as a special
case of the following. Classical wavelets and related transformations are based
on affine mappings of the real line. Taking the Blaschke group instead of the
affine group a new, hyperbolic wavelet concept can be introduced, for which
we previously proved some fundamental formulas. In this paper, we provide
the tools to introduce a new type of hyperbolic wavelet concept, which uses
the analogues of classical translation and dilation operators in the hyperbolic
case. Section 4 can be interpreted as an example on how to use this approach
to represent signals and images on the disk.p g g

Direction preserving motions on the hyperbolic and Euclidean planes.

2. Group of direction preserving motions

In this section we study subgroups of the Blaschke group which map a point
of the torus onto itself. Henceforth, we assume that this special point is 1 ∈ T.
Blaschke functions are defined as

(2.1) Bb(z) :=
z − b

1− bz
(b ∈ D, z ∈ D).

From the identity

(2.2) 1− |Bb(z)|2 =
(1− |b|2)(1− |z|2)

|1− bz|2
(b ∈ D, z ∈ D),
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we get that Blaschke functions map the torus and the disk onto themselves.
Since by

(2.3) Ba(Bb(z)) = εBc(z), c = B−b(a), ε = B−ab(1) (z ∈ D, a, b ∈ D),

the composition of two Blaschke functions is not necessarily of form (2.1), it is
useful to generalize the class of Blaschke functions by introducing the set

(2.4) B := {Bb := εBb : b = (b, ε) ∈ B := T× D}.

The class of functions (2.4) also includes the inverse mapping B−1b = Bb− of
any element Bb, where

(2.5) b− := (b−, ε−), b− := −εb, ε− := ε (b = (b, ε) ∈ B).

The composition of two functions from B also belongs to B:

Ba ◦Bb = Bc, c = (Bb−(a), εc), εc = εaB−ab(εb)

a = (a, εa), b = (b, εb) ∈ B).
(2.6)

By the above, the ordered pair (B, ◦) defines a transformation group on D,
whose identity element is the Be (e = (0, 1)) identity map. We call the group
(B, ◦) Blaschke group. By (2.6), the bijection B ' b → Bb ∈ B induces a
group structure on the set B. We denote this group by (B, ◦) and note that it
is isomorphic to the Blaschke group.

The class of Blaschke functions which leave in place 1 ∈ T is given as

(2.7) B∗ := {B ∈ B : B(1) = 1}.

Elements of (2.7) form a subgroup of the Blaschke group. Obviously, for any
(b = (b, εb)) ∈ B, Bb ∈ B∗ if and only if εb = Bb(1). We also introduce the
index set B∗ := {b := (b, Bb(1)) : b ∈ D} corresponding to B∗. Then, the map
(b, Bb(1))→ b is a bijection between B∗ and D. This bijection induces a group
operation on the disk. We also denote this operation with the symbol ◦, and
note that it can be easily expressed using Blaschke functions:

(2.8) a ◦ b− := Bb(a) = Bb(1)Bb(a), b− = −Bb(1)b (a, b ∈ D).

The number 0 is the identity element of the group (B∗, ◦), furthermore one can
prove based on the definition that the above mentioned structure fulfills the
criteria for groups.

The mapping

(2.9) ρ(a, b) := |Ba(b)| (a, b ∈ D)
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is referred to as pseudo hyperbolic metric on D, for which

(2.10) ρ(a, b) ≤ |a|+ |b|
1 + |a||b| ≤ |a|+ |b| (a, b ∈ D)

holds. Indeed, using the polar coordinates a = rae
iα, b = rbe

iβ , θ := α − β
the property (2.10) can be written as

f(θ) :=
r2a + r2b − 2rarbcos(θ)

1 + r2ar
2
b − 2rarbcos(θ)

≤ (ra + rb)
2

(1 + rarb)2
(0 ≤ θ ≤ π).

Since

f ′(θ) =
2rarb(1− r2a)(1− r2b )sin(θ)

(1 + r2ar
2
b − 2rarbcos(θ))2

≥ 0 (0 ≤ θ ≤ π),

therefore f(θ) ≤ f(π) end so (2.10) holds. From the above it also follows that
equality only occurs when θ = π, or in other words a and b point in opposite
directions. The second part of (2.10) is obvious. Now we proceed to show, that
the absolute value function | · | is a group norm on the (D, ◦) group. Indeed,

i) |a| = 0 ⇐⇒ a = 0, ii) |a−| = |a| (a ∈ D),

furthermore by (2.8) and (2.10)

iii) |a ◦ b−| = |Bb(a)| = ρ(a, b) ≤ |a|+ |b| (a, b ∈ D).

From the above, it follows that the triangle inequality holds for the metric
ρ(a, b):

ρ(a, b) = |a ◦ b−| = |(a ◦ c−) ◦ (c ◦ b−)| ≤ |a ◦ c−|+ |c− ◦ b−| = ρ(a, c) + ρ(c, b).

We will refer to the mapping

(2.11) a → τb(a) := a ◦ b− = Bb(1)Bb(a) (a, b ∈ D)

as (right side) translation. The identity

τb1(τb2(a)) = (a ◦ b−2 ) ◦ b−1 = a ◦ (b−2 ◦ b−1 ) = a ◦ (b1 ◦ b2)− = τb1◦b2(a)

can be interpreted by noting that b → τ rb is a homomorphism (automorphism).

The metric ρ is invariant with respect to the right sided translation:

(2.12) ρ(a, b) = |a ◦ b| = |(a ◦ c−) ◦ (b ◦ c−)−| = ρ(τc(a), τc(b)) (a, b, c ∈ D).

We note, that the metric ρ is usually not inverse invariant ρ(a, b) 
= ρ(a−, b−).
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By (2.8), using the metric ρE(a, b) = |a− b| (a, b ∈ D) the mapping (a, b)→
a◦b is obviously continuous on the disk D, therefore (D, ◦) is a topological group.
We note that the metrics ρ and ρE are not equivalent on D. By definition we
have

|a− z|
2

≤ ρ(a, z) ≤ |a− z|
1− r2

(|a|, |z| ≤ r < 1),

ρ(z ◦ a, a) = |z|, |z ◦ a− a| ≤ 2|z| (a, z,∈ D).
(2.13)

From (2.13) it follows that the metrics ρ and ρE are equivalent on the closed
disc Dr := {z ∈ D : |z| ≤ r} (r < 1), furthermore the sets of continuous function
defined using ρ and ρE are the same. Denote by C(D) the set of bounded and
continuous functions on D. Furthermore, denote the set of continuous functions
which disappear on the torus by

(2.14) C0(D) := {f ∈ C(D) : lim
|z|→1

f(z) = 0}

and the set of compactly supported functions by

(2.15) C00(D) := {f ∈ C(D) : ∃0 < r < 1 : f(z) = 0 |z| > r}.

Now we can construct a translation invariant integral (i.e. Haar-integral)
belonging to the group (D, ◦). Consider the weight functions

σs(z) :=
1

(1− |z|2)s , σ := σ2 (z ∈ D).

Denote by Lpσ the set of (more precisely the equivalence classes of) Borel-
measurable functions on D, for which

‖f‖p,σ :=

⎛⎝ ∫
D

|f(z)|pσ(z) dz

⎞⎠1/p < ∞ (dz = dx dy, z = x+ iy).

We prove that the below translation invariant integral formula holds:

(2.16)

∫
D

f(z ◦ b−)σ(z) dz =
∫
D

f(z)σ(z) dz (f ∈ L1σ, b ∈ D).

This statement, using (2.8) is a direct consequence of the two integral for-
mulas below:

∫
D

f(εz)σ(z) dz =

∫
D

f(z)σ(z) dz,

∫
D

f(Bb(z))σ(z) dz =

∫
D

f(z)σ(z) dz

(f ∈ L1σ, b ∈ D, ε ∈ T).

(2.17)
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The first formula can be easily seen, if we apply integral transformation to
z → εz.

The second statement is also a consequence of the integral transformation
formula. By the Cauchy–Riemann equations, the absolute value of the deter-
minant belonging to the Jacobi matrix of z → Bb(z) is given by |B′b(z)|2. Using
the identity (2.2), we get

(2.18) |B′b(z)| =
1− |b|2

|1− bz|2
=

σ1(z)

σ1(Bb(z))
(b, z ∈ D).

Applying the formula of integral transformation to the mapping z → Bb(z) we
get the statement∫

D

f(z)σ2(z) dz =

∫
D

f(Bb(z))σ2(Bb(z))|B′b(z)|2 dz =

∫
D

f(Bb(z))σ2(z) dz

which concludes the proof.

From definition (2.8) and formula (2.16) we get that the proposed integral
is invariant with respect to inversion:∫

D

f(z−)σ(z) dz =
∫
D

f(z)σ(z) dz (f ∈ L1σ).

Using the above statements, we say that the dμ(z) = σ(z) dz Haar-measure
which generates the integral is unimodular.

Using polar coordinates we can write the Haar-integral as

∫
D

f(z) dμ(z) =

2π∫
0

1∫
0

f(reiϕ)
r

(1− r2)2
dr dϕ.

From this, using the substitution r = th(s) (0 ≤ s < ∞) and

dr

ds
=

1

ch2(s)
,

r dr

(1− r2)2
=

th(s) ds

ch2(s)
ch4(s) =

1

2
sh(2s) ds

we get the following formula:

(2.19)

∫
D

f(z) dμ(z) =
1

2

2π∫
0

∞∫
0

f(th(s)eiϕ) sh(2s) ds dϕ.
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3. Convolution operators on the disk

In this section we introduce and describe convolution operators on the (D, ◦)
unimodular group. We begin with a short review of theorems and formulas
which hold for every unimodular group [24].

For any f, g ∈ L1μ (dμ(z) = σ2(z) dz) function and any μ a.e. a ∈ D point
the integral

(3.1) (f � g)(a) :=

∫
D

f(z)g(z− ◦ a) dμ(z)

exists and f � g ∈ L1μ. If f ∈ L1μ and g ∈ Lpμ (1 ≤ p ≤ ∞), then f � g ∈ Lpμ and

‖f � g‖p ≤ ‖f‖1‖g‖p.

Since the group is unimodular, convolution can be given in the following equiv-
alent form:

(f � g)(a) =

∫
D

f(a ◦ z−)g(z) dμ(z) =
∫
D

f(a ◦ z)g(z−) dμ(z) =

=

∫
D

f(z−)g(z ◦ a) dμ(z).

We call the mappings

g → Tf (g) := f � g (f ∈ L1μ, g ∈ Lpμ (1 ≤ p ≤ ∞)

convolution operators. By the above equation Tf : L
p
μ → Lpμ is a bounded

linear operator and has the norm ‖Tf‖p ≤ ‖f‖1.
We now prove the analogue of the theorem on approximate identity for the

group (D, ◦).

Theorem 3.1. Suppose that the sequence fn ∈ L1μ (n ∈ N∗) satisfies

i) K := supn∈N∗‖fn‖1 < ∞, ii) ξn :=

∫
D

fn dμ → 1 (n → ∞),

iii) ∀0 < r < 1 : ηn(r) :=

∫
|z|≥r

|fn| dμ → 0 (n → ∞).
(3.2)

Then, in every continuity point a ∈ D of the function g we have

(3.3) lim
n→∞(fn � g)(a) = g(a).



Hyperbolic convolutions 289

Proof. In the continuity points a ∈ D of the function g we have

ωr := sup
|z|≤r

|g(z ◦ a)− g(a)| → 0 (r → 0),

∃r0 < 1 : |g(z ◦ a)− g(a)| ≤ M < ∞ (|z| ≤ r0).
(3.4)

Using this and considering r ≤ r0 we get

|(fn � g)(a)− ξng(a)| =

∣∣∣∣∣∣
∫
D

fn(z
−)(g(z ◦ a)− g(a)) dμ(z)

∣∣∣∣∣∣ ≤
≤

⎛⎜⎝ ∫
|z|≤r

+

∫
|z|≥r

⎞⎟⎠ |fn(z−)||(g(z ◦ a)− g(a))| dμ(z) ≤

≤ sup
|z|≤r

|g(z ◦ a)− g(a)|‖fn‖1 +Mηn(r) ≤ Kωr +Mηn(r)

(3.5)

This proves the theorem. �

For the function χr(z) = 1 (|z| ≤ r), χr(z) = 0 (|z| > r) we have∫
D

χr dμ = π

r∫
0

s

(1− s2)2
ds =

(
1

1− r2
− 1

)
π =

r2π

1− r2
,

which implies that the sequence

fn :=
(n2 − 1)

π
χ1/n (n ∈ N∗)

satisfies the conditions of theorem 3.1:

n2/π

∫
|z|≤1/n

g(z ◦ a) dμ(z)→ g(a) (n → ∞).

4. Dilation, approximate identity

On the L1(R) space, conditions (i) to (iii) of theorem 3.1 are easily satisfied
using dilation. Suppose that the function f ∈ L1(R) satisfies

∫
R

f(x) dx = 1.

Then, the function fλ(x) = λf(λx) (x ∈ R, λ > 0) has the following properties∫
R

fλ(x) dx = 1,

∫
|x|>δ

|fλ(x)| dx =
∫

|t|>λδ

|f(t)| dt → 0 (λ → ∞).
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By the above, for λ = n the needed conditions are satisfied, therefore the
classical theorem regarding the approximate identity is applicable.

Based on the above, the question of dilation (multiplication) on the group
(D, ◦) arises naturally. Using the bijection th : R → I we can introduce a field
structure on the (D, ◦) group:
(4.1) s⊕ t = th(ath(s) + ath(t)), s( t = th(ath(s) · ath(t)) (s, t ∈ I).

The additive structure is compatible with the (I, ◦) group structure: s◦t− =
s⊕ t (s, t ∈ I).

We will now investigate how the dilation t → th(λ) ( t effects the Haar
integral. Consider the analogue of the function fλ:

Fλ(z) := λ2f((th(λ)( r)eiϕ)) (z = reiϕ ∈ D, λ > 0).

Now we will prove an analogous statement to the one in the introduction
of section 3.

Lemma 4.1. Suppose f ∈ L1μ. Then, the limit

(4.2) lim
λ→∞

∫
D

Fλ(z) dμ(z) = κ

exists, furthermore for all 0 < δ < 1 number

lim
λ→∞

∫
|z|≥δ

|Fλ(z)| dμ(z) = 0.

Proof. We start with the polar coordinate form of the Haar integral:∫
D

Fλ(z) dμ(z) =

2π∫
0

1∫
0

Fλ(re
iϕ)

r

(1− r2)2
dr dϕ.

In the inner integral, consider the substitution r = th(s), identity (4.1), then
the substitution sλ = t and the notation ε = eiϕ:

1∫
0

Fλ(rε))
r dr

(1− r2)2
= λ2

1∫
0

f((th(λ) ◦ r)ε) r dr

(1− r2)2
=

= λ2
∞∫
0

f((th(λ) ◦ th(s))ε) th(s)

(1− th2(s))2
ds

ch2(s)
=

=
λ2

2

∞∫
0

f((th(λ · s)ε) sh(2s) ds =

=
1

2

∞∫
0

f(th(tε)) sh(2t)
sh(2t/λ)

sh(2t)/λ
dt.

(4.3)
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On the other hand

1∫
0

f(sε)
s ds

(1− s2)2
ds =

∞∫
0

f(th(t)ε) th(t) ch2(t) dt =

=
1

2

∞∫
0

f(th(t)ε) sh(2t) dt

(4.4)

Since

φλ(t) :=
sh(2t/λ)

sh(2t)/λ
(λ > 1, t > 0)

satisfies

0 ≤ φλ(t) ≤ 1, limλ→∞φλ(t) =
2t

sh(2t)
(t > 0).

From here, using the Lebesgue convergence theorem we get the first part of the
statement, furthermore

κ =

∞∫
0

f(eiϕth(t))t dt.

Repeating the above steps we have∫
r≥δ

|Fλ(r)|
r dr

(1− r2)2
=

λ2

2

∫
s≥ ath(δ)

|f(th(λ · s)ε)| sh(2s) ds =

=
1

2

∫
t≥λ·ath(δ)

|f(th(tε))| sh(2t)sh(2t/λ)
sh(2t)/λ

dt

≤ 1

2

∫
t≥λ·ath(δ)

|f(th(tε))| sh(2t) dt.

(4.5)

From here, using the Beppo-Levi theorem the second part of the statement
follows. �

Let us apply theorem 3.1 to the function sequence

fn(z) = Fn(z)/c (n ∈ N∗), c =
2π∫
0

∞∫
0

f(eiϕth(t))t dt dϕ 
= 0.

Then, based on lemma 4.1, the conditions of theorem 3.1 are satisfied.
Therefore, on the group (D, ◦) the analogue the theorem holds.
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Theorem 4.1. Let f ∈ L1μ and

fn(z) =
n2

c
f(th(n) ◦ z) (z ∈ D, n ∈ N∗)

Then, for every g ∈ C0(D) function

sup
a∈D

|(fn � g)(a)− g(a)| → 0 (n → ∞).
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[14] Kovács, P., G. Bognár, C. Huber and M. Huemer, VPNET: Vari-
able projection networks, International Journal of Neural Systems, 32(1)
(2022), 2150054 (19 pages).
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