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Abstract. In this article, we study and construct Fourier sine and Fourier
cosine generalized convolutions on time scale, the existence of these con-
volutions on some specific function spaces, obtain some properties and
application in solving some discrete integral equations of Toeplitz–Hankel
type.

1. Introduction

Time scale was first mentioned in S.Hilger’s thesis in 1988, which is a non-
empty closed subset of R. Until now, many beautiful results related to time scale
are known. But the Fourier convolution on time scale is really new. In 1999, in
[1], S. Hilger studied the Fourier transform on the time scales R and hZ, h > 0.
According to [1], the Fourier transform of a given function f : hZ −→ C is

F (ω) = h

∞∑
n=−∞

e−iωnhf(nh), ω ∈
[
−π

h
,
π

h

]
and the inverse Fourier transform is

f(t) =
1

2π

π
h∫

−π
h

eiωtF (ω)dω.

Key words and phrases: Convolution; h-Fouriersine, h-Fouriercosine; integral transform; dis-
crete integral equations.
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The convolution of Fourier transform on time scales was mentioned in [5]. As
a result in [5], on time scale hZ, we obtain the Fourier convolution of two
functions f, g : hZ −→ C, which is defined as

(1.1) (f ∗ g)(t) = h

∞∑
m=−∞

f(mh)g(t−mh),

for t ∈ hZ and the right-hand side is convergent. Throughout the article, we
denote N0 = N ∪ {0} = {0, 1, 2, . . .} and some function spaces
�p(hN

0) =
{
x : hN0 → C, such that |x(0)|p + 2

∞∑
n=1

|x(nh)|p < ∞
}
,

||x||�p(hN0) = h

(
|x(0)|p + 2

∞∑
n=1

|x(nh)|p
) 1
p

, p ∈ {1, 2}.

�∞(hN0) =
{
x : hN0 −→ C, such that sup

n≥0
|x(nh)| < ∞

}
, ||x||�∞(hN0) =

= h sup
n≥0

|x(nh)|.

L2(0,
π
h ) =

{
x : [0, πh ] −→ C, such that

π
h∫
0

|x(t)|2dt < ∞
}
, ||x||L2(0,πh ) =

= h

( π
h∫
0

|x(t)|2dt
)
, where h is a given real positive number.

In this article, we study some generalized convolutions related to Fourier
sine and Fourier cosine integral transforms on time scale hN0, h > 0 which is
defined by the formulas (3.1) and (4.1). We show the existence, factorization
identity, and estimation of these convolutions (Theorem 3.1, Theorem 4.1), and
Parseval’s identity ( Theorem 3.2, Theorem 4.2). With the help of convolutions,
we solve the equations of Toeplitz–Hankel type on time scale (5.3), (5.4) in a
closed form and show the boundedness of the solutions.

2. h-Fourier cosine and h-Fourier sine transforms on time scale hN0

Definition 2.1. The h-Fourier sine transform of a function f : hN0 → C is of
the form

Fs(ω) = Fs{f}(ω) = 2h

∞∑
n=1

f(nh) sin(ωnh), ω ∈
[
0,

π

h

]

and its inverse transform is f(t) =
1

π

π
h∫
0

Fs(ω) sin(ωt)dω.
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The h-Fourier cosine transform of a function f : hN0 → C is of the form

Fc(ω) = Fc{f}(ω) = 2h

∞∑
n=1

f(nh) cos(ωnh) + hf(0), ω ∈
[
0,

π

h

]

and its inverse transform is f(t) =
1

π

π
h∫
0

Fc(ω) cos(ωt)dω.

3. h-Fourier sine generalized convolutions on time scale hN0

Definition 3.1. The h−Fourier sine generalized convolution of two functions
f, g : hN0 → C is defined by

(3.1) (f ∗ g)(t) = h
∞∑
m=1

f(mh)
(
g(|t−mh|)− g(t+mh)

)
, t ∈ hN0,

where the right-hand side is convergent.

Theorem 3.1. Suppose that f, g ∈ �1(hN
0), f(0) = 0 then the convolution

(f ∗ g) belongs to �1(hN
0), and satisfies the following factorization identity

(3.2) Fs{f ∗ g}(ω) = Fs{f}(ω)Fc{g}(ω), ω ∈
[
0,

π

h

]
.

Moreover, the following estimation holds

(3.3) ||f ∗ g||�1(hN0) ≤ ||f ||�1(hN0)||g||�1(hN0).

Proof. Firstly, we prove that (f ∗ g) ∈ �1(hN
0). Indeed, we have

h

(
|(f ∗ g)(0)|+ 2

∞∑
n=1

|(f ∗ g)(nh)|
)
=

= h2|(f ∗ g)(0)|+ 2h2
∞∑
n=1

∞∑
m=1

∣∣∣∣f(mh)
(
g(|nh−mh|)− g(nh+mh)

)∣∣∣∣ =
= 2h2

∞∑
n=1

∞∑
m=1

∣∣∣∣f(mh)
(
g(|nh−mh|)− g(nh+mh)

)∣∣∣∣ ≤
≤ 2h2

( ∞∑
n=1

∞∑
m=1

|f(mh)|
(
|g(|nh−mh|)|+ |g(nh+mh)|

))
≤

≤ 2h2
( ∞∑
m=1

|f(mh)g(mh)|+
∞∑
m=1

∞∑
τ=m+1

|f(mh)g(τh)|
)
+

+2h2
( ∞∑
m=1

∞∑
τ=1

|f(mh)g(τh)|+ 2h2
∞∑
m=1

m−1∑
τ=0

|f(mh)g(τh)|
)
=

= 2h2
∞∑
n=1

|f(nh)|
(
|g(0)|+ 2

∞∑
r=1

|g(nh)|
)
= ||f ||�1(hN0)||g||�1(hN0) < ∞.
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Therefore, we get the estimation (3.3) and (f ∗ g) ∈ �1(hN
0).

Next, we prove the factorization identity (3.2). According to Definition 2.1, we
rewrite the right-hand side of (3.2) as follows

Fs{f}(ω)Fc{g}(ω) =

= 2h2
∞∑
n=1

f(nh) sin(ωnh)
(
g(0) + 2

∞∑
m=1

g(mh) sin(ωmh)
)
=

= 2h2
(
g(0)

∞∑
n=1

f(nh) sin(ωnh)+

+2
∞∑
n=1

f(nh) sin(nhω)

∞∑
n=1

g(mh) cos(mhω)

)
.

We set A = 2
∞∑
n=1

f(nh) sin(nhω)

∞∑
n=1

g(mh) cos(mhω) then

A =
∞∑
n=1

f(nh)

{ ∞∑
m=1

g(mh)
(
sin(ωh(n+m)) + sin(ωh(n−m))

)}
=

=
∞∑
n=1

f(nh)

∞∑
m=1

g(mh) sin(ωh(n+m))+

+
∞∑
n=1

f(nh)

∞∑
m=1

g(mh) sin(ωh(n−m)) =

=
∞∑
n=1

f(nh)

∞∑
τ=n+1

g(τh− nh) sin(ωτh)+

+
∞∑
n=1

f(nh)

n−1∑
τ=−∞

g(nh− τh) sin(ωτh) =

=

∞∑
n=1

f(nh)

( ∞∑
τ=1

g(τh− nh) sin(ωτh)−
n−1∑
τ=1

g(τh− nh) sin(ωτh)−

−g(0) sin(ωnh)

)
+

∞∑
n=1

f(nh)

−1∑
τ=−∞

g(nh− τh) sin(ωτh)+

+
∞∑
n=1

f(nh)

m−1∑
τ=1

g(nh− τh) sin(ωτh).

Then, we have

Fs{f}(ω)Fc{g}(ω) = 2h2(g(0)

∞∑
n=1

f(nh) sin(ωnh) +A) =

= 2h2
∞∑
n=1

f(nh)

∞∑
m=1

g(|nh−mh|) sin(ωnh)−

−2h2
∞∑
n=1

f(nh)
∞∑
m=1

g(mh+ nh) sin(ωnh) = Fs{f ∗ g}(ω). �
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Theorem 3.2. (Identity of Parseval’s type) Let f, g be functions belonging to
�2(hN

0), then

(3.4) (f ∗ g)(t) = 1

π

π
h∫
0

Fs{f}(ω)Fc{g}(ω) sin(ωt)dω, t ∈ hN0.

Proof. Notation Fo(ω) and Ge(ω) are respectively the odd component of
F{f}(ω) and the even component of F{g}(ω) on

[
−π
h ,

π
h

]
. Using the Fourier

transform on hZ, we have

Fo(ω) =F{fo(t)}(ω) = h

∞∑
n=−∞

fo(nh)e
−iωnh,

Ge(ω) =F{ge(t)}(ω) = h

∞∑
n=−∞

ge(nh)e
−iωnh,

where fo(nh) = sign(n)f(|nh|), f(0) = 0, ge(nh) = g(|nh|), for all n ∈ Z. On
the other hand, the Parseval’s identity for the Fourier transform on time scale
hZ for Fo and Ge is

(3.5)

h
∞∑

n=−∞
fo(nh)ge(t− nh) =

1

2π

π
h∫

−π
h

F{f}(ω)F{g}(ω)eiωtdω =

=
1

π

π
h∫
0

Fo(ω)Ge(ω) sin(ωt)dω.

Since f, g ∈ �2(hZ), the left-hand side series of (3.5) is absolutely convergent,
and it can be rewritten as

h
∞∑

n=−∞
fo(nh)ge(t− nh) =h

−1∑
n=−∞

fo(nh)ge(t− nh)+

+ h

∞∑
n=1

fo(nh)ge(t− nh) =

=h
∞∑
n=1

f(nh)
(
g(|t− nh|)− g(t+ nh)

)
.

The proof is complete. �
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Remark 3.1. If f, g ∈ �2(hN
0) then we have

||f ∗ g||�∞(hN0) ≤ ||f ||�2(hN0)||g||�2(hN0).

Proof. From (3.5) we get

∣∣(f ∗ g)(t)
∣∣ = 1

π

∣∣∣∣
π
h∫
0

Fs{f}(ω)Fc{g}(ω) sin(ωt)dω
∣∣∣∣ ≤

≤ 1

π

π
h∫
0

∣∣Fs{f}(ω)Fc{g}(ω)∣∣dω ≤

≤ 1

π
||Fs{f}||L2(0,πh )||Fc{g}||L2(0,πh ) = ||f ||�2(hN0)||g||�2(hN0).

4. The generalized convolution with a weight function

Definition 4.1. The generalized convolution with a weight function γ =
= cos(ωh) for the h−Fourier cosine and h−Fourier sine transforms of two
functions f and g is defined by
(4.1)

(f ∗
γ
g)(t) = h

∞∑
m=1

f(mh)
(
g(mh+ h+ t) + g(|mh− h+ t|)sign(mh− h+ t)+

+g(|t−mh+ h|)sign(t−mh+ h) + g(|t−mh− h|)sign(t−mh− h)
)
,

where t ∈ hN0, f, g : hN0 → C and the right hand side is convergent.

Theorem 4.1. Let f, g ∈ �1(hN
0) and g(0) = 0 then f ∗

γ
g belongs to �1(hN

0)

and the following factorization equality holds

(4.2) Fs(f ∗
γ
g)(ω) = cos(ωh)Fc{f}(ω)Fs{g}(ω), ω ∈

[
0,

π

h

]
.

Proof. Firstly, we show that (f ∗
γ
g) ∈ �1(hN

0). We have

(f ∗
γ
g)(0) = h

∞∑
m=1

f(mh)
(
g(mh+ h) + g(mh− h)+

+g(|h−mh|)sign(1−m) + g(| −mh− h|)sign(−mh− h)
)
= 0.
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Moreover,

||f ∗
γ
g||�1(hN0) ≤ h2

∞∑
m=1

|f(mh)|
∞∑
n=1

(
|g(mh+ nh+ h)|+ |g((m+ n− 1)h)|+

+ |g(|n+ 1−m|)h)|+ |g(|n−m− 1|h)|
)
≤

≤ h2
( ∞∑
m=1

|f(mh)|
∞∑

τ=m+1

|g(τh)|+
∞∑
m=1

|f(mh)|
∞∑

τ=m−1
|g(τh)|+

+

∞∑
m=1

|f(mh)|
∞∑

τ=1−m
|g(τh)|+

∞∑
m=1

|f(mh)|
∞∑

τ=−m−1
|g(τh)|

)
≤

≤ 2h2
(
f(0) + 2

∞∑
m=1

|f(mh)|
) ∞∑
τ=1

|g(τh)| = ||f ||�1(hN0)||g||�1(hN0) < ∞.

This implies that (f ∗
γ
g) ∈ �1(hN

0).

Next, we prove the factorization equality (4.2). We have

cos(ωh)Fc{f}(ω)Fs{g}(ω) =

4h2 cos(ωh)

∞∑
n=1

f(nh) cos(ωnh)

∞∑
m=1

g(mh) sin(ωmh).

Using trigonometric transforms, one can easily see that

4 cos(ωh) cos(ωnh) sin(ωnh) = sin(ωh(m+ n+ 1)) + sin((ωh(m+ n− 1))+

+ sin(ωh(m− n+ 1)) + sin(ωh(m− n− 1)),

the right-hand side of (4.2) is

cos(ωh)Fc{f}(ω)Fs{g}(ω) =

=
∞∑
m=1

f(mh)

∞∑
n=1

g(nh) sin(ωh(m+ n+ 1))+

+
∞∑
m=1

f(mh)

∞∑
n=1

g(nh) sin((ωh(m+ n− 1))+

+
∞∑
m=1

f(mh)

∞∑
n=1

g(nh) sin(ωh(m− n+ 1))+

+
∞∑
m=1

f(mh)

∞∑
n=1

g(nh) sin(ωh(m− n− 1)).
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We see that

(4.3)

Fs{f ∗
γ
g}(ω) = 2h2

∞∑
n=1

{ ∞∑
m=1

f(mh)
(
g((m+ n+ 1)h)+

+g((m+ n− 1)h)sign(m+ n− 1) + g(|n+ 1−m|h)sign(n+ 1−m)+

+g(|n−m− 1|h)sign(n−m− 1)
)}

sin(ωnh).

Setting A =

∞∑
m=1

f(mh)

∞∑
n=1

g((m+n+1)h)sin(ωnh). Substituting τ = m+n+1

into A, we get

(4.4) A =

∞∑
m=1

f(mh)

∞∑
τ=m+2

g(τh) sin(ω(τ −m− 1)h) =

=

∞∑
m=1

f(mh)

( ∞∑
τ=1

g(τh) sin(ω(τ −m− 1)h)−
m+1∑
τ=1

g(τh) sin(ω(τ −m− 1)h)

)
.

Setting B =

∞∑
m=1

f(mh)

∞∑
n=1

g((m+n−1)h)sin(ωnh). Substituting τ = m+n−1

into B, we get

(4.5) B =

∞∑
m=1

f(mh)

∞∑
τ=m

g(τh) sin(ω(τ + 1−m)) =

=

∞∑
m=1

f(mh)

∞∑
t=1

g(τh) sin(ω(τ + 1−m))−
m−1∑
τ=1

g(τh) sin(ω(τ + 1−m)h).

Similarly, letting C =

∞∑
m=1

f(mh)

∞∑
n=1

g((m− n+1)h)sign(m− n+1) sin(ωnh)

and replacing τ by m− n+ 1, we have

C =

∞∑
m=1

f(mh)
∞∑
n=1

g(|nh−mh+ h|)sign(n−m+ 1) sin(ωnh) =

=
∞∑
m=1

f(mh)

∞∑
τ=2−m

g(|τ |h) sin(ω(m− 1 + τ)h) =

=

∞∑
m=1

f(mh)

∞∑
τ=0

g(τh) sin(ω(m− 1 + τ)h)+

+

∞∑
m=1

f(mh)

0∑
τ=2−m

g(|τ |h)sign(τ) sin(ω(m− 1 + τ)h).

(4.6)
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And D =

∞∑
m=1

f(mh)

∞∑
n=1

g(|n−m− 1|h)sign(n−m− 1) sin(ωnh).

Letting t = n−m− 1, we have

(4.7)

D =

∞∑
m=1

f(mh)
∞∑

τ=−m
g(|τ |h)sign(τ) sin((τ +m+ 1)ω) =

=−
∞∑
m=1

f(mh)

m∑
τ=0

g(τh) sin((τ +m+ 1)hω)+

+
∞∑
m=1

f(mh)

∞∑
τ=1

g(|mh+ t+ h|) sin(ωnh).

Combining (4.4), (4.5), (4.6) and (4.7), we deduce (4.2). �

Theorem 4.2. (Identity of Parseval’s type) Assume that f, g are functions
belonging to �2(hN

0). Then we have the identity of Parseval’s type

(f ∗
γ
g)(t) =

1

π

π
h∫
0

Fc{f}(ω)Fs{g}(ω) cos(ωh) sin(ωt)dω, t ∈ hN0.

Proof. Let f1 be the even extension of f from hN0 to hZ and g1 be the odd
extension of g from hN0 to hZ. We have the Parseval’s identity for the Fourier
transform on time scale hZ

h
∞∑

n=−∞
f(nh)g(t−nh) =

1

2π

π
h∫

−π
h

F{f}(ω)F{g}(ω)eiωtdω. The left-hand side of

the above identity can be rewritten as follows

h

∞∑
m=0

f1(mh)g1(mh+ nh+ h) + h

∞∑
m=0

f1(mh)g1(mh+ nh− h)+

+ h
∞∑
m=0

f1(mh)g1(−mh+ nh+ h) + h

∞∑
m=0

f1(mh)g1(−mh+ nh− h) =

= h
∞∑

m=−∞
f1(mh)g1(−mh+ nh+ h) + h

∞∑
m=−∞

f1(mh)g1(−mh+ nh− h) =

=
1

2π

2πB∫
−2πB

F{f1}(ω)F{g1}(ω)eiω(nh+h)dω+

+
1

2π

2πB∫
−2πB

F{f1}(ω)F{g1}eiω(nh−h)dω =
(
here B = 1

2h

)



274 N. T. H. Phuong

=
1

2π

2πB∫
−2πB

F{f1}(ω)F{g1}(ω)
(
cos(ωnh+ ωh) + i sin(ωnh+ ωh)

)
dω+

+
1

2π

2πB∫
−2πB

F{f1}(ω)F{g1}(ω)
(
cos(ωnh− ωh) + i sin(ωnh− ωh)

)
dω.

Since F{f1}(ω)F{g1}(ω) cos(ωnh+ωh) and F{f1}(ω)F{g1}(ω) cos(ωnh−ωh)
are odd functions, we have

2πB∫
−2πB

F{f1}(ω)F{g1}(ω) cos(ωnh− ωh) =

=

2πB∫
−2πB

F{f1}(ω)F{g1}(ω) cos(ωnh+ ωh)dω = 0.

Therefore,

2πB∫
−2πB

F{f1}(ω)F{g1}(ω)
(
cos(ωnh+ ωh) + i sin(ωnh+ ωh)

)
dω+

+

2πB∫
−2πB

F{f1}(ω)F{g1}(ω)
(
cos(ωnh− ωh) + i sin(ωnh− ωh)

)
dω =

= i

2πB∫
−2πB

F{f1}(ω)F{g1}(ω)
(
sin(ωnh+ ωh) + sin(ωnh− ωh)

)
dω =

= −2i2
2πB∫
−2πB

Fc{f1}(ω)Fs{g1}(ω) cos(ωh)(ω) sin(ωnh)dω =

= 2

2πB∫
−2πB

Fc{f1}(ω)Fs{g1} cos(ωh) sin(ωnh)dω.

(4.8)

From (4.8), we obtain (3.2). �

Remark 4.1. If f, g belong to �2(hN
0), then we have

||f ∗
γ
g||�∞(hN0) ≤ ||f ||�2(hN0)||g||�2(hN0).
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Proof. According to Theorem 4.2,

(f ∗
γ
g)(t) =

1

π

π
h∫
0

Fc{f}(ω)Fs{g}(ω) cos(ωh) sin(ωt)dω.

We have

∣∣(f ∗
γ
g)(t)

∣∣ = ∣∣∣∣ 1π
π
h∫
0

Fc{f}(ω)Fs{g}(ω) cos(ωh) sin(ωt)dω
∣∣∣∣ ≤

≤ 1

π

π
h∫
0

∣∣Fc{f}(ω)Fs{g}(ω)∣∣dω ≤

≤ 1

π
||Fc{f}||L2(0,πh )||Fs{g}||L2(0,πh ) = ||f ||�2(hN0)||g||�2(hN0). �

5. Applications

According to [8, 10], we consider the Toeplitz–Hankel integral equations as of
the forms

(5.1)

∞∫
0

(
k1(x− y) + k2(x+ y)

)
f(y)dy = g(x), x > 0

and

(5.2) f(x) +

∞∫
0

(
k1(x− y) + k2(x+ y)

)
f(y)dy = g(x), x > 0,

where g is the given function, k1 is the Toeplitz kernel, k2 is the Hankel kernel,
and f is an unknown function. Until now, solving the Toeplitz–Hankel integral
equations in general cases of k1, k2 as arbitrary kernels is an open problem.
However, by various ways, some types of Toeplitz–Hankel were solved. For
example, in [7], authors H. M. Srivastava and R. G Buschman obtained the
solution in case k1(x− y) = (x− y)α; e−α(x−y); sinh(a(x− y)); aJ1(a(x− y)),
where J1 is the Bessel function. Recently, there has been some results of solving
a class of equation (5.1) in a closed form, by the technique of using generalized
convolutions related to Fourier, Kontorovich–Lebedev, Hartly integral trans-
forms (see [9, 10, 11]). In this paper, we solve the classes of equations (5.3)
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and (5.4) in a closed form on time scale hN0, which are the discretization from
the equations (5.1) and (5.2) for kernels k1 = k2 = k.

(5.3) h

∞∑
m=0

x(mh)
(
k(|nh−mh|)− k(nh+mh)

)
= z(nh), n ∈ N0

and

(5.4) x(nh) + h

∞∑
m=1

x(mh)
(
k(|nh−mh|)− k(nh+mh)

)
= z(nh), n ∈ N0,

here h > 0 is a constant, z is the given function, x is an unknown function.

Based on the obtained results, we find the solutions of equations (5.3), (5.4)
in a closed form and study the boundedness of the solutions.

First of all, we recall the Wiener–Levy’s theorem for the Fourier transform
[6]: “Assume that f is the Fourier transform of a function in L1(R) and Φ is
an analytic function in a neighbourhood of origin, which contains the range of
f, i.e. {f(y), ∀y ∈ R} and Φ(0) = 0. Then Φ(f)(y) is a Fourier transform of a
function in �1(R), for all y ∈ R. In particular, if f(y) 
= 0, ∀y ∈ R then there

exists a function u ∈ �1(R) such that F{u}(y) = 1

f(y)
, ∀y ∈ R.” This result

still holds true for the Fourier cosine transform on time scale hN0, h > 0.

Theorem 5.1. Suppose that k and z are the given functions in �1(hN
0) and

satisfy the condition Fc{k} 
= 0, ∀ω ∈
[
0, πh
]
. Then, the equation (5.3) has a

unique solution in �1(hN
0) and has the form x(t) = (z∗u)(t), t ∈ hN0. More-

over, we have the following estimation

||x||�1(hN0) ≤ ||u||�1(hN0)||z||�1(hN0),

where u ∈ �1(hN
0) and u is determined by u(t) =

1

π

π
h∫
0

1

Fc{k}(ω)
cos(ωt)dω,

generalized convolution (.∗.) is defined by (3.1).

Proof. To solve the equation (5.3), we’ll apply the h-Fourier sine transform
to both sides of (5.3), and use the factorization identity (3.2), we have

Fs{x}(ω)Fc{k}(ω) = Fs{z}(ω), ω ∈
[
0,

π

h

]
.

Under the condition Fs{k}(ω) 
= 0, by the Theorem of Wiener–Levy’s type,

there exists a unique function u ∈ �1(hN
0) that Fc{u}(ω) =

1

Fc{k}(ω)
,
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∀ω ∈
[
0, πh
]
. Function u can be found by the inverse of h-Fourier cosine trans-

form on hN0

u(t) =
1

π

π
h∫
0

1

Fc{k}(ω)
cos(ωt)dω.

Therefore, using factorization identity (3.2), we get

Fs{x}(ω) = Fs{z}(ω)Fc{u}(ω) = Fs{z∗u}(ω), ω ∈
[
0,

π

h

]
.

So x(t) = (z∗u)(t), t ∈ hN0. The inequality (3.3) yields that x ∈ �1(hN
0) and

||x||�1(hN0) ≤ ||u||�1(hN0)||z||�1(hN0). �

Theorem 5.2. Assume that y, z are given functions belonging to the space
�1(hN

0), z(0) = 0 and 1 + Fc{y}(ω) 
= 0, ∀ω ∈
[
0, πh
]
, h > 0. Then, the

equation (5.4) has a unique solution in �1(hN
0) and it has the form

x(t) = z(t)− (z ∗ v)(t), t ∈ hN0.

Moreover, the following estimation holds

(5.5) ||x||�1(hN0) ≤ ||z||�1(hN0)(1 + ||v||�1(hN0)),

where v ∈ �1(hN
0) and v is defined by

Fc{v}(ω) =
Fc{y}(ω)

1 + Fc{y}(ω)
, ω ∈

[
0,

π

h

]
,

generalized convolution (. ∗ .) is defined by (3.1).

Proof. Applying the h-Fourier sine transform to both sides of (5.4) and using
the factorization identity (3.2), we get

Fs{x}(ω) + Fc{y}(ω)Fs{x}(ω) = Fs{z}(ω), ω ∈
[
0,

π

h

]
.

It leads to

Fs{x}(ω) = Fs{z}(ω)
(
1− Fc{y}(ω)

1 + Fc{y}(ω)

)
, ω ∈

[
0,

π

h

]
.

By the Theorem of Wiener–Levy’s type, there exists a unique function v ∈
∈ �1(hN

0) such that

Fc{v}(ω) =
Fc{y}(ω)

1 + Fc{y}(ω)
, ω ∈

[
0,

π

h

]
.
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Clearly, v can be found by the inverse of h− Fourier cosine transform on time
scale hN0, as below

v(t) =
1

π

π
h∫
0

Fc{y}(ω)
1 + Fc{y}(ω)

cos(ωt)dω.

Therefore,

Fs{x}(ω) = Fs{z}(ω)− Fs{z}(ω)Fc{v}(ω) = Fs{z − z ∗ v}(ω), ω ∈
[
0,

π

h

]
.

This implies that x(t) = z(t)− (z ∗ v)(t) for all t ∈ hN0.

Using (3.3), we can estimate the solution

||x||�1(hN0) ≤ ||z||�1(hN0)(1 + ||v||�1(hN0)|). �

Now, we give an example to illustrate the Theorem 5.2.

Example 5.3. We consider the equation of Toeplitz plus Hankel 5.4 on time
scale N0 with y, z ∈ �1(N

0), which are determined as

y(0) =
1

π
(1− π − e−π), y(n) =

(−1)ne−π + 1
π(n2 + 1)

, n ≥ 1,

z(0) = 0, z(n) =
4n(1− e−2π(−1)n−1)

π((n− 1)2 + 4))((n+ 1)2 + 4)
, n ≥ 1.

The h-Fourier cosine transform of y and h-Fourier sine transform of z are as
follows

Fc{y}(ω) =
1

π
(1− π − e−π) + 2

∞∑
n=1

(−1)ne−π + 1
π(n2 + 1)

cos(nω) = e−ω − 1,

Fs{z}(ω) = 2

∞∑
n=1

z(n) sin(nω) =

∞∑
n=1

8n(1− (−1)n−1e−π)
π((n− 1)2 + 1)((n+ 1)2 + 1)

sin(nω) =

= e−2ω sinω, ω ∈
[
0,

π

h

]
.

From the proof of Theorem 5.2, we have

Fs{x}(ω) = e−ω sinω, ω ∈ [0, π].

Use the inverse of the Fourier sine transform on time scale hN0, we get the
solution of equation (5.4)

x(n) =
4n(1− (−1)n−1e−π)

π((n− 1)2 + 1)((n+ 1)2 + 1)
, n ≥ 1 and x(0) = 0.

It is clear that x ∈ �1(hN
0).
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