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Abstract. The random inhomogeneous binary recurrence (Gn)
∞
n=0 is de-

fined by the initial values G0 = 0, G1 = 1, and by the recurrence rule
Gn = AGn−1 + BGn−2 + wn−2, where A,B are given real numbers, and
(wn)

∞
n=0 is a random sequence with s ≥ 2 possible real values. In this

work, we investigate the properties of the sequence (Gn).

1. Introduction

In this paper, we investigate inhomogeneous binary recurrences where the
inhomogeneous term is a random value from the basic set A = {a1, . . . , as} ⊂
⊂ R. Our main purpose is to describe the tree induced by the recursive se-
quence.

We extend the antecedent paper [6] in two directions. Firstly, general binary
recurrences are considered instead of the Fibonacci sequence. Secondly, the
cardinality s of the set A is an arbitrary positive integer, not only s = 2.
There have been articles which deal with random sequences. For example,
Embree and Trefethen [2] examined the behaviour of the random sequence
xn = xn−1 ± βxn−2, where 0 < β < 1 is fixed in advance. They asked how
|xn| depends on β. In fact, [2] is an extension of the paper of Viswanath [8],
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who considered the random Fibonacci sequence given by x0 = x1 = 1 and
xn = ±xn−1 ± xn−2, where the signs are chosen independently and with equal
probabilities.

In the forthcoming part, we introduce the terminology we will use through-
out the paper. Let s ≥ 2 be a positive integer, and let a1 < a2 < · · · < as
denote distinct arbitrary real numbers related to the probabilities p1, p2, . . . , ps,
respectively, with the property

∑
i pi = 1. Assume that each term wn =

= wn(a1, . . . , as) of a random sequence (wn)
∞
n=0 is provided by a random trial,

and takes value ai with probability pi. Define an inhomogeneous binary recur-
rence by

(1.1) Gn = AGn−1 +BGn−2 + wn−2(a1, . . . , as), (n ≥ 2)

with initial values G0 = 0, G1 = 1. Here A and B 
= 0 are arbitrary real
numbers. PutD = A2+4B. We also introduce a sequence fn = Afn−1+Bfn−2
backstage with initial values f0 = 0 and f1 = 1.

Suppose for the moment that a ∈ R is fixed and consider the specific se-
quence

Gn = AGn−1 +BGn−2 + a.

Applying Corollary 2 of [1] for the current sequence (Gn) we find that Gn =

= fn + a
∑n−1

j=0 fj . Then Lemma 1 of [5] provides a closed formula for the sum∑n−1
j=0 fj . In order to eliminate the term Gn we obtain here from the random

case (1.1) we introduce ma(n) = Gn exclusively for this constant a generated
case. The previous arguments lead to

ma(n) = fn +

⎧⎪⎪⎨⎪⎪⎩
fn+Bfn−1−1
A+B−1 a, if A+B 
= 1;

fn−n
A−2 a, if A+B = 1, D 
= 0;

nfn−1

A a, if A+B = 1, D = 0.

We anticipate that later we will use the term ma1(n). Observe that the last
branch (A+B = 1, D = 0) appears only when A = 2, B = −1, so the sequence
(fn) is the sequence of natural numbers 0, 1, 2, . . . , i.e. fn = n.

Returning to (1.1), for n ≥ 2 the term Gn may take s possible values given
by Gn = Gn−1 + Gn−2 + aj (j = 1, . . . , s). This situation can be precisely
figured with a tree. The values of the vertices of the tree are denoted by Tn,k,
where n ≥ 0 means the row number (or level) and k ≥ 0 does the entry position
in row n. If i < j, then Gn = Gn−1+Gn−2+ai is left of Gn = Gn−1+Gn−2+aj
in the nth row of the tree. For instance, Figure 1 illustrates the first few levels
of the tree for s = 3, using locally the notation a = a1, b = a2, and c = a3.
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Figure 1. Row 0, 1, 2, 3, 4 of the tree induced by (1.1) with s = 3.

Now we recall a useful lemma (for its proof, see [4, Lemma 2.1]), and one
of its outgrowth.

Lemma 1.1. Assume that N and t are positive integers. Moreover let c1, . . . , ct
be non-negative integers. The number of solutions to the diophantine equation
x1 + x2 + · · ·+ xt = N with xi ≥ ci is(

N −
∑t

i=1 ci + (t− 1)

t− 1

)
.

Lastly, we present a consequence of Lemma 1.1.

Lemma 1.2. Suppose that N , t and d are positive integers. The number of
solutions to the diophantine equation x1+x2+ · · ·+xt = N with 0 ≤ xi ≤ d is(

td−N + (t− 1)

t− 1

)
.

Proof. If x1 + x2 + · · ·+ xt = N , then

(d− x1) + (d− x2) + · · ·+ (d− xt) = td−N

holds with the conditions d − xi ≥ 0. Now apply Lemma 1.1 to this equation
with ci = 0 to obtain the binomial coefficient above. �

In this paper, we examine the values what the term Gn can take, and we
study some properties of the tree. We disregard the probability questions, and



256 K. Liptai and L. Szalay

concentrate only on the features of the tree. In the next section, we deal with
the general sequence (1.1) and provide Theorem 1, while in Section 3 we restrict
ourselves for fn = Fn (the Fibonacci case). Here the most important result is
Theorem 2.

2. Main theorem

First we formulate the principal observation what describes the entries of
the tree we have introduced earlier. Obviously, level n contains sn−1 vertices.

Theorem 1. Let n ≥ 2 and 0 ≤ k ≤ sn−1 − 1. Assume that the base-s
representation of k is k = εn−2εn−3 . . . ε1ε0 s , where εi ∈ {0, . . . , s − 1}. The
entry Tn,k of the kth element of row n is given by

(2.1) Tn,k = ma1(n) +

n−2∑
j=0

(
aεj+1 − a1

)
fj+1.

Before the proof we remark that the left winger element of row n of the tree
is ma1(n), the smallest one in the row. Thus (2.1) gives an explicit formula for
Tn,k relative to ma1(n).

Proof. Clearly, by the definition of sequence (fn) we have f2 = A and
f3 = A2+B, moreover f−1 = 1/B. Put k1 = �k/s and k2 = �k1/s . The first
observation is that

(2.2) Tn,k = ATn−1,k1 +BTn−2,k2 + aε0+1

holds. It is a consequence of the base-s representation of k.

We split the proof into three parts according to the possible values of
ma1(n).

Case A+B 
= 1.

Let first n = 2. Hence k = ε0 s , 0 ≤ k = ε0 ≤ s− 1. We have

ma1(2) = A+
A+B − 1

A+B − 1
a1 = A+ a1,

and
0∑
j=0

(
aεj+1 − a1

)
fj+1 = aε0+1 − a1,

consequently T2,k = A+ aε0+1 as we know.
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Suppose n = 3. Thus k = ε1ε0 s , 0 ≤ k = ε1s+ ε0 ≤ s2 − 1. Since

ma1(3) = (A2 +B) +
(A2 +B) +AB − 1

A+B − 1
a1 = (A2 +B) + (A+ 1)a1,

and
1∑
j=0

(
aεj+1 − a1

)
fj+1 = (aε0+1 − a1) + (aε1+1 − a1)A,

then T3,k = A2 + B + Aaε1+1 + aε0+1. This value can be easily checked by
considering the sequence (Gn) via the initial values and via (1.1) for n = 2, 3.
Hence the first values of (Gn) are

G0 = 0, G1 = 1, G2 = A+ aε1+1, G3 = A(A+ aε1+1) +B + aε0+1.

Assume now that the statement is true for 2, 3, . . . , n− 1. We will justify it for
n. Now we apply the construction rule (2.2) of the tree, and then the induction
hypothesis, which will be followed by straightforward manipulations. These
admit

Tn,k = ATn−1,k1 +BTn−2,k2 + aε0+1 =

= Ama1(n− 1) +A

n−2∑
j=1

(
aεj+1 − a1

)
fj +

+Bma1(n− 2) +B

n−2∑
j=2

(
aεj+1 − a1

)
fj−1 + aε0+1 =

= A

(
fn−1 +

fn−1 +Bfn−2 − 1

A+B − 1
a1

)
+

+A

⎛⎝n−2∑
j=0

(
aεj+1 − a1

)
fj − (aε0+1 − a1)f0

⎞⎠+

+B

(
fn−2 +

fn−2 +Bfn−3 − 1

A+B − 1
a1

)
+

+B

⎛⎝n−2∑
j=0

(
aεj+1 − a1

)
fj−1 − ((aε0+1 − a1)f−1 + (aε1+1 − a1)f0)

⎞⎠+

+aε0+1 =

= fn +
fn +Bfn−1 − 1

A+B − 1
a1 − a1 +

n−2∑
j=0

(
aεj+1 − a1

)
fj+1 −

−B(aε0+1 − a1)
1

B
+ aε0+1 =

= ma1(n) +

n−2∑
j=0

(
aεj+1 − a1

)
fj+1.
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Case A+B = 1, D 
= 0.

Clearly, A 
= 2 otherwise D = 0 would fulfil. First we check the statement
again for n = 2 and for n = 3.

If n = 2, then

ma1(2) = f2 +
f2 − 2

A− 2
a1 = A+

A− 2

A− 2
a1 = A+ a1,

while
∑0

j=0

(
aεj+1 − a1

)
fj+1 = aε0+1−a1 holds again. Thus T2,k = A+aε0+1.

Assume that n = 3. Now

ma1(3) = f3 +
f3 − 3

A− 2
a1 = (A2 +B) +

A2 +B − 3

A− 2
a1 = (A2 +B) + (A+ 1)a1,

where we used the equality B = 1−A. This result and the value ma1(3) of the
previous case coincide. Since there is no change in the sum

1∑
j=0

(
aεj+1 − a1

)
fj+1 = (aε0+1 − a1) + (aε1+1 − a1)A,

then T3,k = A2 +B +Aaε1+1 + aε0+1.

In the induction step we must follow only the distinction in Ama1(n− 1)+
+Bma1(n− 2). Now this leads to

A

(
fn−1 +

fn−1 − (n− 1)

A− 2
a1

)
+B

(
fn−2 +

fn−2 − (n− 2)

A− 2
a1

)
=

= fn +
fn

A− 2
a1 −

A(n− 1) +B(n− 2)

A− 2
a1 =

= fn +
fn

A− 2
a1 −

(
1 +

n

A− 2

)
a1 =

= fn +
fn − n

A− 2
a1 − a1 = ma1(n)− a1,

where we used again B = 1− A. Similarly to the previous case we combine it
with the result for the sum, and it immediately leads to

Tn,k = ma1(n) +
n−2∑
j=0

(
aεj+1 − a1

)
fj+1.

Case A + B = 1, D = 0. Recall that now A = 2, and B = −1. Thus
ma1(2) = 2+a1, and ma1(3) = 3+3a1, which together with the corresponding
sums justify the statement for n = 2 and n = 3.
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Finally, Ama1(n− 1) +Bma1(n− 2) = ma1(n)− a1 follows from

= A

(
fn−1 +

(n− 1)fn−2
A

a1

)
+B

(
fn−2 +

(n− 2)fn−3
A

a1

)
=

= fn +
nfn−1
A

a1 −
Afn−2 + 2Bfn−3

A
a1 = fn +

nfn−1
A

a1 − a1,

where the last term is obvious from A = 2, B = −1, and fn = n. Then the
statement is implied by evaluating again the sum as previously. �

3. Consequences for the Fibonacci case

Suppose that A = B = 1. Thus sequence (fn) is the Fibonacci sequence
(Fn). Note that

ma1(n) = Fn +
Fn + Fn−1 − 1

1
a1 = a1Fn+1 + Fn − a1,

as we found it in [6].

Structural observations related to the tree

First we simplify the result on Tn,k.

Corollary 1. Let n ≥ 2 and 0 ≤ k ≤ sn−1 − 1. Assume that the base-s
representation of k is k = εn−2εn−3 . . . ε1ε0 s , where εi ∈ {0, . . . , s − 1}. The
entry Tn,k of the kth element of row n is given by

Tn,k = Fn +

n−2∑
j=0

aεj+1Fj+1.

Proof. The proof relies on Theorem 1 with ma1(n) = Fn + a1(Fn+1 − 1).
The straightforward calculations

Tn,k = Fn + a1(Fn+1 − 1) +

n−2∑
j=0

aεj+1Fj+1 −
n−2∑
j=0

a1Fj+1

= Fn +

n−2∑
j=0

aεj+1Fj+1

proves the statement. In the last step the identity
∑t

j=1 Fj = Ft+2 − 1 was
used. �
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The next result gives a connection between row (n − 1) and the parts of
row n (of the tree). Figure 2 makes it really spectacular.

Figure 2. Structural connection between rows n− 1 and n.

Corollary 2. If n ≥ 2 and 0 ≤ k ≤ sn−2 − 1 with k = εn−3εn−4 . . . ε1ε0 s ,
furthermore K = εn−2sn−2 + k (where εn−2 ∈ {0, . . . , s − 1}, and K =
= εn−2εn−3εn−4 . . . ε1ε0 s ), then

Tn,K = Tn−1,k + (aεn−2+1Fn−1 + Fn−2).

Proof. Apply Corollary 1 as follows.

Tn,K = Fn +

n−2∑
j=0

aεj+1Fj+1 =

= Fn−1 + Fn−2 +
n−3∑
j=0

aεj+1Fj+1 + aεn−2+1Fn−1 =

= Tn−1,k + Fn−2 + aεn−2+1Fn−1.
�

Bounds on the number of distinct entries of the rows

Assume that n is fixed. In this subsection, we will bound the cardinality
Tn = |{Tn,k}| which gives the number of distinct values of Tn,k as k goes
through the integers 0, 1 . . . , sn−2 − 1.

Let the sequence (Cn)
∞
n=0 be defined as follows. Put C0 = C1 = 0, and for

n ≥ 2 let Cn = Cn−1+Cn−2+1. It is easy to show that Cn = Fn+1− 1 holds.
Clearly, in accordance with Corollary 1 each element of row n has the form

(3.1) Fn + u1a1 + u2a2 + · · ·+ usas,

where u1, u2, . . . , us are non-negative integers. Using the technique of induction
one can immediately prove that

∑s
i=1 ui = Cn. The main step of the induction

depends on (2.2).

Now we record the statement concerning the upper bound on Tn. We
assume s ≥ 3 since the case s = 2 has been clarified in [6]. There we found the
precise value Tn = Fn+1.
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Theorem 2. If s ≥ 3, then the number of distinct entries Tn in row n ≥ 2
satisfies

Tn ≤
(
Fn+1 + s− 2

s− 1

)
−
(
sFn−1 − Fn+1

s− 1

)
.

Remark 1. For s = 2 the second term on the right-hand side would be zero
because it has negative upper index (apart from the case n = 2, when we have(
0
1

)
= 0, too), and we simply obtain Tn ≤

(
Fn+1

1

)
= Fn+1. From [6] we know

that here equality holds.

Proof. The first term of the upper bound comes directly from the number of
solutions to the diophantine equation

∑s
i=1 ui = Fn+1−1 = Cn in non-negative

integers ui. Applying Lemma 1.1 with ci = 0, we obtain
(
Fn+1+s−2

s−1
)
.

But not any solution (u1, u2, . . . , us) is belonging to the entry set of row
n if s ≥ 3. (For s = 2 there is a one to one correspondence between the
solutions and the entries, see [6].) For example, consider the case s = 3,
n = 6. Then F6 + 4a1 + 4a2 + 4a3 is not among the entries of row 6 although
4 + 4 + 4 = 12 = F7 − 1. In general, if

∑s
i=1 ui = Fn+1 − 1 but each ui is

smaller than Fn−1, then (3.1) does not appear in row n. Indeed, by Corollary
2 the term aεn−2+1Fn−1 guarantees that at least one coefficient ui satisfies
ui ≥ Fn−1.

It means that if we calculate those solutions to
∑s

i=1 ui = Fn+1 − 1 for
which each ui < Fn−1, then we can reduce the number of entries in row n.
This is the application of Lemma 1.2 with d = Fn−1 − 1 and N = Fn+1 − 1,
which provides(

s(Fn−1 − 1)− (Fn+1 − 1) + (s− 1)

s− 1

)
=

(
sFn−1 − Fn+1

s− 1

)
.

Then the proof is complete. �

Further ”wrong cases” of the solution to
∑s

i=1 ui = Fn+1−1 can be existed,
when there is at least one ui ≥ Fn−1 but looking at row (n − 1) there each
wj < Fn−2 is valid. The coefficients wj appear in row n − 1 such that each
entry has the form Fn−1 + w1a1 + w2a2 + · · · + wsas. Corollary 2 shows that
wj = uj holds for each j but wi = ui − Fn−1. For instance, let s = 3, n = 7.
Then 13 + 12a1 + 4a2 + 4a3 is not included in row 7 in spite of the facts that
12 ≥ F6 = 8 and 12+4+4 = 20 = F8−1. It is a consequence of the observation
that (13−5)+(12−8)a1+4a2+4a3 is not in row 6, hence 13+12a1+4a2+4a3
has no predecessor.

Finally, we made a computer search to find the factual value of Tn if s = 3
and n is small. It makes possible to compare the upper bound of Theorem 2
and Tn. Table 1 contains the cases n = 2, 3, , . . . , 9. We use the abbreviations



262 K. Liptai and L. Szalay

an =
(
Fn+1+1

2

)
, bn =

(
2Fn−1−Fn+1

2

)
in the table. The upper bound on Tn is

given in the row an − bn, while an − Tn notifies how many of the ”candidates”
an does not appear in row n of the tree. This number is larger than bn if n ≥ 7,
this phenomenon was forecasted in the previous paragraph.

n 2 3 4 5 6 7 8 9

an 3 6 15 36 91 231 595 1540
bn 0 0 0 0 1 3 10 28

an − bn 3 6 15 36 90 228 585 1512

Tn 3 6 15 36 90 225 567 1431
an − Tn 0 0 0 0 1 6 28 109

Table 1: Upper bounds and factual values for Tn with s = 3.

So the upper bound an − bn on Tn = |{Tn,k}| is sharp only for a few small
integers n, and the exact number of Tn is still an open question.

Sequence an =
(
Fn+1+1

2

)
appears in the solution of a representation problem

(see [3]), and registered in [7] as A033192.
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