SUBSETS OF \mathbb{F}_{p}^{*} WITH ONLY SMALL PRODUCTS OR RATIOS

Patrick Letendre (Lévis, Canada)

Communicated by Jean-Marie De Koninck
(Received May 1, 2023; accepted July 2, 2023)

Abstract. Let p be a fixed prime. We estimate the number of elements of a set $A \subseteq \mathbb{F}_{p}^{*}$ for which

$$
s_{1} s_{2} \equiv a \quad(\bmod p) \quad \text { for some } \quad a \in[-X, X] \quad \text { for all } \quad s_{1}, s_{2} \in A .
$$

We also consider variations and generalizations.

1. Introduction and notation

Let p be a fixed prime number. For any member α of an equivalence class of $\mathbb{Z} / p \mathbb{Z}$, we write

$$
|\alpha|_{p}:=\min _{k \in \mathbb{Z}}|\alpha+k p|
$$

and for any finite set A we write $|A|:=\# A$ which should not be confused with the norm of a complex number. Inspired by the paper [2], we are interested by the cardinality of a set $A \subseteq \mathbb{F}_{p}^{*}$ that satisfies a particular property. Precisely, for each $X \geq 1$ we let $\mathcal{S}(X)$ be the set of all subsets $A \subseteq \mathbb{F}_{p}^{*}$ that satisfy

$$
\begin{equation*}
\left|\frac{s_{1}}{s_{2}}\right|_{p} \leq X \text { and/or }\left|\frac{s_{2}}{s_{1}}\right|_{p} \leq X \text { for each }\left(s_{1}, s_{2}\right) \in A^{2} \tag{1.1}
\end{equation*}
$$

We thus define

$$
S(X):=\max _{A \in \mathcal{S}(X)}|A| .
$$

Similarly, for each integer $n \geq 2$ and $X \geq 1$ we let $\mathcal{R}_{n}(X)$ be the set of all subsets $A \subseteq \mathbb{F}_{p}^{*}$ that satisfy

$$
\begin{equation*}
\left|s_{1} \cdots s_{n}\right|_{p} \leq X \text { for all pairwise distinct } s_{1}, \ldots, s_{n} \in A \tag{1.2}
\end{equation*}
$$

Then, we consider the quantity

$$
R_{n}(X):=\max _{A \in \mathcal{R}_{n}(X)}|A| .
$$

For any $n \in \mathbb{N}$ and $m \in \mathbb{Z}^{*}$, we write

$$
\tau_{n}(m):=\#\left\{\left(d_{1}, \ldots, d_{n}\right) \in \mathbb{N}^{n}: d_{1} \cdots d_{n}=m\right\}
$$

We will often use the well known fact that $\tau_{n}(m)<_{n, \epsilon} m^{\epsilon}$ for each integer $n \geq 2$ and real $\epsilon>0$. We also write $e_{p}(z):=\exp \left(\frac{2 \pi i z}{p}\right)$ for any $z \in \mathbb{C}$.

2. Statement of theorems

Theorem 2.1. Let $t>0$ be a small fixed real number. For each $1 \leq X \leq$ $\leq\left(\frac{1}{4}-t\right) p$, we have

$$
S(X) \ll_{\epsilon, t} \min \left(X^{\epsilon}+\frac{X^{2+\epsilon}}{p}, p^{1 / 2}\right)
$$

for each fixed $\epsilon>0$.
Theorem 2.2. Let $t>0$ be a small fixed real number. For each integer $n \geq 2$ and $1 \leq X \leq\left(\frac{1}{2}-t\right) p$, we have

$$
R_{n}(X)<_{\epsilon, t, n} \min \left(X^{1 / n+\epsilon}+\frac{X^{n /(n-1)+\epsilon}}{p^{1 /(n-1)}}, p^{1 / n+\epsilon}\right)
$$

for each fixed $\epsilon>0$.

3. Preliminary lemmas

There are a number of interesting results in the literature concerning multilinear exponential sums; see [1], [4], [5] and [6] for example. We will need the following two.

Lemma 3.1. Let $A_{1}, \ldots, A_{n} \subseteq \mathbb{F}_{p}^{*}(n \geq 2)$ be subsets. Then

$$
\begin{equation*}
\left|\sum_{a_{1} \in A_{1}, \ldots, a_{n} \in A_{n}} e_{p}\left(a_{1} \cdots a_{n}\right)\right| \leq p^{1 / 2}\left(\left|A_{1}\right| \cdots\left|A_{n}\right|\right)^{\frac{n-1}{n}} \tag{3.1}
\end{equation*}
$$

Proof. We assume that $\left|A_{1}\right| \geq\left|A_{2}\right| \geq \cdots \geq\left|A_{n}\right|$. The inequality follows from the well known result

$$
\max _{m \in \mathbb{F}_{p}^{*}}\left|\sum_{a_{1} \in A_{1}, a_{2} \in A_{2}} e_{p}\left(m a_{1} a_{2}\right)\right| \leq\left(p\left|A_{1}\right|\left|A_{2}\right|\right)^{1 / 2}
$$

see $[5,(1.2)]$.
Lemma 3.2. Let $0<\delta<1 / 4$ and $n \in \mathbb{Z}_{+}$. There is and effectively computable constant $\delta^{\prime}=\delta^{\prime}(\delta)>0$ such that if p is a sufficiently large prime and $A_{1}, \ldots, A_{n} \subset \mathbb{F}_{p}$ satisfy
(i) $\left|A_{i}\right|>p^{\delta}$ for $1 \leq i \leq n$;
(ii) $\prod_{i=1}^{n}\left|A_{i}\right|>p^{1+\delta}$;
then there is the exponential sum bound

$$
\left|\sum_{a_{1} \in A_{1}, \ldots, a_{n} \in A_{n}} e_{p}\left(a_{1} \cdots a_{n}\right)\right|<p^{-\delta^{\prime}}\left|A_{1}\right| \cdots\left|A_{n}\right| .
$$

Proof. It follows from Theorem A of the paper [1].
The purpose of the following lemma is very similar to Lemma 4.1 of [3].
Lemma 3.3. Let $\epsilon>0$ be a real number. Let also $0 \leq \Delta \leq 1-2 \epsilon$ be a real number. Consider the 1-periodic function defined on $\left[-\frac{1}{2}, \frac{1}{2}\right)$ by

$$
f(x):= \begin{cases}0 & -\frac{1}{2} \leq x<-\frac{\Delta}{2}-\epsilon, \\ \frac{x}{\epsilon}+\frac{\Delta}{2 \epsilon}+1 & -\frac{\Delta}{2}-\epsilon \leq x<-\frac{\Delta}{2} \\ 1 & -\frac{\Delta}{2} \leq x<\frac{\Delta}{2}, \\ -\frac{x}{\epsilon}+\frac{\Delta}{2 \epsilon}+1 & \frac{\Delta}{2} \leq x<\frac{\Delta}{2}+\epsilon, \\ 0 & \frac{\Delta}{2}+\epsilon \leq x<\frac{1}{2} .\end{cases}
$$

The function

$$
g(x):=\Delta+\epsilon+\sum_{0<|k| \leq\left\lceil 1 / \epsilon^{2}\right\rceil}(\cos (\pi k \Delta)-\cos (\pi k(\Delta+2 \epsilon))) \frac{e(k x)}{2 \epsilon(\pi k)^{2}}
$$

satisfies

$$
|f(x)-g(x)| \leq \frac{2 \epsilon}{\pi^{2}}
$$

for each $x \in \mathbb{R}$.
Proof. The function $g(x)$ is simply the Fourier series of the function $f(x)$ that has been truncated to keep only the terms with $|k| \leq\left\lceil 1 / \epsilon^{2}\right\rceil$.

4. Proof of Theorem 2.1

We assume throughout the proof that $A \in \mathcal{S}(X)$ and satisfies $S(X)=|A|$. We begin with the first inequality. We choose $s_{1} \in A$ that satisfies (1.1) with every element of A by being at least $\frac{|A|}{2}$ times at the denominator. We denote by A_{1} the set of values that are thereby at the numerator. Restricting our attention to A_{1}, we choose $s_{2} \in A_{1}$ that satisfies (1.1) with every element of A_{1} by being at least $\frac{\left|A_{1}\right|}{2}$ times at the numerator and we denote by A_{2} the set of values that are thereby at the denominator.

Now, for each value $s \in A_{2}$ we have two representations. Indeed,

$$
\frac{s}{s_{1}} \equiv a \quad(\bmod p) \quad \text { and } \quad \frac{s_{2}}{s} \equiv b \quad(\bmod p) \quad \text { with } \quad 0<|a|,|b| \leq X
$$

We deduce that

$$
s_{1} a \equiv \frac{s_{2}}{b} \quad(\bmod p) \Rightarrow a b \equiv \frac{s_{2}}{s_{1}} \equiv: \alpha \quad(\bmod p) \quad \text { with } \quad 0<|a|,|b|,|\alpha| \leq X
$$

We thus have $a b=\alpha+K p$ with $0 \leq|K| \leq\left\lfloor\frac{2 X^{2}}{p}\right\rfloor$. For each fixed value of K, the number of solutions (a, b) is at most $2 \tau_{2}(\alpha+K p) \ll X^{\epsilon}$. Indeed, we either have X so small that K is only 0 and thus the inequality follows from the inequality for the divisors function for an $\alpha \leq X$, otherwise, we have X large and the inequality remains true. We deduce that

$$
|A| \leq 4\left|A_{2}\right| \ll X^{\epsilon}\left(1+\frac{X^{2}}{p}\right)
$$

We now turn to the second inequality. We can assume that $|A|$ and p are large enough. We will apply Lemma 3.3 with $\Delta:=\frac{2 X}{p}$ and $\epsilon<\frac{t}{100}$ small enough. We get

$$
\begin{aligned}
\frac{|A|^{2}+|A|}{2} & \leq \sum_{s_{1}, s_{2} \in A} f\left(\frac{s_{1} s_{2}^{-1}}{p}\right)= \\
& =\sum_{s_{1}, s_{2} \in A} g\left(\frac{s_{1} s_{2}^{-1}}{p}\right)+O\left(\epsilon|A|^{2}\right) \leq \\
& \leq \Delta|A|^{2}+C \log (1 / \epsilon) \max _{0<|k| \leq\left\lceil 1 / \epsilon^{2}\right\rceil}\left|\sum_{s_{1}, s_{2} \in A} e_{p}\left(k s_{1} s_{2}^{-1}\right)\right|+O\left(\epsilon|A|^{2}\right)
\end{aligned}
$$

for some constant C large enough. We deduce that there is a value of k, with $0<|k| \leq\left\lceil 1 / \epsilon^{2}\right\rceil<p$, such that

$$
\frac{t|A|^{2}}{\log (1 / \epsilon)} \ll\left|\sum_{s_{1}, s_{2} \in A} e_{p}\left(k s_{1} s_{2}^{-1}\right)\right| \leq p^{1 / 2}|A| .
$$

The second inequality follows from Lemma 3.1. The proof is complete.

5. Proof of Theorem 2.2

We assume throughout the proof that $A \in \mathcal{R}_{n}(X)$ and satisfies $R_{n}(X)=$ $=|A|$. Also, for any $k \geq 1$, we say that $\left(s_{1}, \ldots, s_{k}\right)$ is an admissible k-tuple if the s_{j} are pairwise distinct $(j=1, \ldots, k)$. There are exactly $|A| \cdot(|A|-$ $-1) \cdots(|A|-k+1)$ admissible k-tuples. We can assume that $|A|$ is large enough since otherwise there is nothing to prove.

We begin with the second inequality. Proceeding as previously, we write

$$
\begin{aligned}
|A|^{n} \leq & \sum_{\substack{s_{1}, \ldots, s_{n} \in A \\
\left(s_{1}, \ldots, s_{n}\right) \text { admissible }}} f\left(\frac{s_{1} \cdots s_{n}}{p}\right)+O\left(|A|^{n-1}\right)= \\
= & \sum_{s_{1}, \ldots, s_{n} \in A} g\left(\frac{s_{1} \cdots s_{n}}{p}\right)+O\left(\epsilon|A|^{n}+|A|^{n-1}\right) \leq \\
\leq & \Delta|A|^{n}+C \log (1 / \epsilon) \max _{0<|k| \leq\left\lceil 1 / \epsilon^{2}\right\rceil}\left|\sum_{s_{1}, \ldots, s_{n} \in A} e_{p}\left(k s_{1} \cdots s_{n}\right)\right|+ \\
& +O\left(\epsilon|A|^{n}+|A|^{n-1}\right) .
\end{aligned}
$$

Now, assuming that $|A|>p^{1 / n+\delta}$ for some fixed $0<\delta<1 / 4 n$, we get to

$$
\frac{t|A|^{n}}{\log (1 / \epsilon)} \ll\left|\sum_{s_{1}, \ldots, s_{n} \in A} e_{p}\left(k s_{1} \cdots s_{n}\right)\right| \leq p^{-\delta^{\prime}}|A|^{n}
$$

for some $\delta^{\prime}>0$, from Lemma 3.2. This is a contradiction for p large enough and we deduce that $|A| \ll p^{1 / n+\epsilon}$ for each $\epsilon>0$. Also, in the case $n=2$, we can take $\epsilon=0$ by using Lemma 3.1 instead.

For the first inequality, we define α by

$$
\pm \alpha:=\underset{\substack{r_{1}, \ldots, r_{n} \in A \\\left(r_{1}, \ldots, r_{n}\right) \text { admissible }}}{\max _{1}\left|r_{n}\right|_{p}, \mid}
$$

and we assume that $\alpha \equiv s_{1} \cdots s_{n}(\bmod p)$ (with $\left(s_{1}, \ldots, s_{n}\right)$ admissible). We now define a change of variables according to this choice. In the set $A^{\prime}:=$ $:=A \backslash\left\{s_{1}, \ldots, s_{n}\right\}$, we can write an element r as $r \equiv a_{j} \frac{s_{j}}{\alpha}(\bmod p)$ for some $0<\left|a_{j}\right| \leq X(j=1, \ldots, n)$.

Any of the $\left|A^{\prime}\right| \cdot\left(\left|A^{\prime}\right|-1\right) \cdots\left(\left|A^{\prime}\right|-n+1\right)$ admissible n-tuples $\left(r_{1}, \ldots, r_{n}\right)$ gives rise to

$$
\begin{align*}
r_{1} \cdots r_{n} \equiv c \quad(\bmod p) & \Rightarrow a_{1} \frac{s_{1}}{\alpha} \cdots a_{n} \frac{s_{n}}{\alpha} \equiv c \quad(\bmod p) \tag{5.1}\\
& \Rightarrow a_{1} \cdots a_{n} \equiv c \alpha^{n-1} \quad(\bmod p) \\
& \Rightarrow a_{1} \cdots a_{n}=c \alpha^{n-1}+K p \tag{5.2}
\end{align*}
$$

where $0<|c|,\left|a_{1}\right|, \ldots,\left|a_{n}\right| \leq X$ and $0 \leq|K| \leq\left\lfloor\frac{2 X^{n}}{p}\right\rfloor$. From there, we distinguish two cases.

Case 1: $K=0$ for more than half of the admissible n-tuples. In this case, we have

$$
\begin{aligned}
\left|A^{\prime}\right|^{n} & \ll\left|\left\{\left(a_{1}, \ldots, a_{n}\right) \in \mathbb{Z}^{n}: a_{1} \cdots a_{n}=c \alpha^{n-1}, 0<|\alpha|,|c| \leq X\right\}\right|= \\
& =2^{n-1} \sum_{0<|c| \leq X} \tau_{n}\left(c \alpha^{n-1}\right) \ll X^{1+\epsilon}
\end{aligned}
$$

for each fixed $\epsilon>0$.
Case 2: $K \neq 0$ for at least half of the admissible n-tuples. In this case, we fix a value of $r=r_{1} \equiv a \frac{s_{1}}{\alpha}(\not \equiv 0)(\bmod p)$ that is in $\gg\left|A^{\prime}\right|^{n-1}$ admissible n-tuples $\left(r, r_{2}, \ldots, r_{n}\right)$ in (5.1) that lead to (5.2) with $K \neq 0$. Then, we consider the congruence

$$
\begin{aligned}
r r_{2} \cdots r_{n} \equiv c \quad(\bmod p) & \Rightarrow \quad a a_{2} \cdots a_{n} \equiv c \alpha^{n-1} \quad(\bmod p) \\
& \Rightarrow a a_{2} \cdots a_{n}=c \alpha^{n-1}+K p
\end{aligned}
$$

with $0<|c|,\left|a_{2}\right|, \ldots,\left|a_{n}\right| \leq X$ and $0<|K| \leq\left\lfloor\frac{2 X^{n}}{p}\right\rfloor$. Now, we write $d:=$ $:=\operatorname{gcd}\left(a, \alpha^{n-1}\right)$ and $a^{\prime}:=\frac{a}{d}, \beta:=\frac{\alpha^{n-1}}{d}$ and $K^{\prime}:=\frac{K}{d}$. We find that

$$
a a_{2} \cdots a_{n}=c \alpha^{n-1}+K p \Rightarrow a^{\prime} a_{2} \cdots a_{n} \equiv K^{\prime} p \quad(\bmod \beta)
$$

so that a fixed value of K^{\prime} gives at most d values of $a_{2} \cdots a_{n}\left(\bmod \alpha^{n-1}\right)$. There are $\ll \frac{X^{n}}{d p}$ possible values for K^{\prime} and since $0<\left|a_{2} \cdots a_{n}\right| \leq|\alpha|^{n-1}$, we have in fact at most $2 d$ values of $a_{2} \cdots a_{n}$. That is, we have at most $\ll \frac{X^{n}}{p}$ possible values of (c, K). We get

$$
\left|A^{\prime}\right|^{n-1} \ll \sum_{\substack{(c, K) \\ c \alpha^{n-1}+K p \neq 0}} \tau_{n-1}\left(\frac{c \alpha^{n-1}+K p}{a}\right) \ll \frac{X^{n+\epsilon}}{p}
$$

for each fixed $\epsilon>0$. For $n=2$ we have in fact $\epsilon=0$ in this last inequality. The result follows.

Remark 5.1. There are various inequalities more effective for some medium size of the parameter X in Theorem 2.2. Using the same notation as previously, we write

$$
r_{k}(a):=\mid\left\{\left(r_{1}, \ldots, r_{k}\right) \in A^{\prime k} \text { admissible }: r_{1} \cdots r_{k} \equiv a \quad(\bmod p)\right\} \mid
$$

for each $k=1, \ldots, n-1$. For a fixed value of k we can split each admissible n-tuple $\left(r_{1}, \ldots, r_{n}\right) \in A^{\prime n}$ into $r_{1} \cdots r_{n} \equiv b c \equiv a(\bmod p)$, i.e. respectively
$r_{1} \cdots r_{n-k} \equiv b(\bmod p)$ and $r_{n-k+1} \cdots r_{n} \equiv c(\bmod p)$. This leads to

$$
\begin{aligned}
\left|A^{\prime}\right| \cdots\left(\left|A^{\prime}\right|-n+1\right) & \leq \sum_{0<|a| \leq X} \sum_{b=1}^{p-1} r_{n-k}(b) r_{k}\left(a b^{-1}\right) \leq \\
& \leq \max _{m \in \mathbb{F}_{p}^{*}} r_{k}(m) \sum_{0<|a| \leq X} \sum_{b=1}^{p-1} r_{n-k}(b)= \\
& =2 X\left|A^{\prime}\right| \cdots\left(\left|A^{\prime}\right|-n+k+1\right) \max _{m \in \mathbb{F}_{p}^{*}} r_{k}(m)
\end{aligned}
$$

Now, for any fixed $m \in \mathbb{F}_{p}^{*}$ we use the change of variables from the proof of the first inequality to write

$$
\begin{aligned}
r_{1} \cdots r_{k} \equiv m \quad(\bmod p) & \Rightarrow a_{1} \cdots a_{k} \equiv \ell \quad(\bmod p) \quad\left(\text { for some } \ell= \pm|\ell|_{p}\right) \\
& \Rightarrow a_{1} \cdots a_{k}=\ell+K p \quad\left(\text { with } 0 \leq|K| \leq\left\lfloor\frac{2 X^{k}}{p}\right\rfloor\right)
\end{aligned}
$$

As previously, we deduce that

$$
r_{k}(m) \leq 2^{k-1} \sum_{K} \tau_{k}(\ell+K p) \ll X^{\epsilon}\left(1+\frac{X^{k}}{p}\right)
$$

Overall, we get to

$$
|A| \ll\left|A^{\prime}\right| \ll\left(X^{1 / k}+\frac{X^{1+1 / k}}{p^{1 / k}}\right) X^{\epsilon}
$$

for any $k=1, \ldots, n-1$.

6. Concluding remarks

The set

$$
A:=\left\{ \pm 2^{k}: k=0, \ldots,\lfloor\log (X) / \log (2)\rfloor\right\}
$$

shows that $S(X) \gg \log (2 X)$. Also, the set

$$
A:=\left\{ \pm 1, \ldots, \pm\left\lfloor X^{1 / n}\right\rfloor\right\}
$$

shows that $R_{n}(X) \gg X^{1 / n}$. We conjecture that both $S(X)<_{\epsilon, t} X^{\epsilon}$ and $R_{n}(X) \ll_{\epsilon, t, n} X^{1 / n+\epsilon}$ hold for each $\epsilon>0$ when $X \leq\left(\frac{1}{2}-t\right) p$ for a fixed $t>0$ as $p \rightarrow \infty$.

References

[1] Bourgain, J., Multilinear exponential sums in prime fields under optimal entropy condition on the sources, Geom. Funct. Anal., 18 (2009), no. 5, 1477-1502.
[2] Cilleruelo, J. and M. Z. Garaev, Concentration of points on two and three dimensional modular hyperbolas and applications, Geom. Funct. Anal., 21 (2011), no. 4, 892-904.
[3] Green, B. and A. Harper, Inverse questions for the large sieve, Geom. Funct. Anal., 24 (2014), no. 4, 1167-1203.
[4] Macourt, S., Incidence results and bounds of trilinear and quadrilinear exponential sums, SIAM J. Discrete Math., 32 (2018), no. 2, 815-825.
[5] Petridis, G. and I. E. Shparlinski, Bounds of trilinear and quadrilinear exponential sums, J. Anal. Math., 138 (2019), no. 2, 613-641.
[6] Shkredov, I.D., On asymptotic formulae in some sum-product questions, Trans. Moscow Math. Soc., 79 (2018), 231-281.

P. Letendre

Lévis
Canada
Patrick.Letendre.1@ulaval.ca

