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Abstract. Let p be a fixed prime. We estimate the number of elements
of a set A C IF,, for which

s1s2 =a (mod p) forsome a€[-X,X] forall si,s2 € A.

We also consider variations and generalizations.

Introduction and notation

Let p be a fixed prime number. For any member « of an equivalence class
of Z/pZ, we write

;= mi k
Jaly += min o+ kp)

and for any finite set A we write |A| := #A which should not be confused with
the norm of a complex number. Inspired by the paper [2], we are interested by
the cardinality of a set A C F, that satisfies a particular property. Precisely,

for each X > 1 we let S(X) be the set of all subsets A C IE‘; that satisfy

%2 < X for each (s1,s2) € A%

(1.1) ’8—1 < X and/or
So Ip S1lp

We thus define

S(X):= max |A|
AES(X)
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Similarly, for each integer n > 2 and X > 1 we let R,,(X) be the set of all
subsets A C 7 that satisfy

(1.2) [s1---splp <X for all pairwise distinct sq,...,s, € A.
Then, we consider the quantity

R,(X):= max |A|
AR, (X)

For any n € N and m € Z*, we write
Tn(m) = #{(dlaadn) eN': dy---dp, = m}

We will often use the well known fact that 7,,(m) <, m® for each integer
2miz

n > 2 and real € > 0. We also write e,(z) := exp(T) for any z € C.

2. Statement of theorems

Theorem 2.1. Let t > 0 be a small fized real number. For each 1 < X <
< (% — t)p, we have

X2+e
S(X) <, min (X <+ ,p"/ 2)
p

for each fized € > 0.

Theorem 2.2. Lett > 0 be a small fixed real number. For each integer n > 2
and 1 < X < (% — t)p, we have

—1)+e
Rn(X) et min X1/nte 4 M pl/nte
mn et.,n pl/(nfl) 9

for each fized € > 0.

3. Preliminary lemmas

There are a number of interesting results in the literature concerning mul-
tilinear exponential sums; see [1], [4], [5] and [6] for example. We will need the
following two.

Lemma 3.1. Let Ay,..., A, CF, (n > 2) be subsets. Then

(3.1) ST eplarean)| < pMA(1AL AT

a1 €AL,...,an€A,
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Proof. We assume that |A;| > |As| > -+ > |A,|. The inequality follows from
the well known result

max | Y0 ep(mara)| < (plAil|Az)'%,
=T a1€A,a2E€ A,

see [5, (1.2)]. |

Lemma 3.2. Let 0 < § < 1/4 and n € Z4. There is and effectively com-
putable constant &' = 6'(§) > 0 such that if p is a sufficiently large prime and
Ay, ..., A, CF, satisfy

(1) Al >p° for1 <i<my

(i) TTi [Ail > p'*s
then there is the exponential sum bound

S eplaran)| <p7Ag] A

a1€A1L,...,an€A,

Proof. Tt follows from Theorem A of the paper [1]. |

The purpose of the following lemma is very similar to Lemma 4.1 of [3].

Lemma 3.3. Let € > 0 be a real number. Let also 0 < A < 1 — 2¢ be a real

number. Consider the 1-periodic function defined on [—%, %) by
0 —% §x<—%—e,
4841 ~f-e<o<-f,
fla):=q 1 -3 <z<y,
—Z+&+1 S<z<S+e
0 %+e§x< %

The function

g@)=A+e+ > (cos(mkA) — cos(mk(A +2¢)))
0<|k[<T1/€?]

satisfies

for each xz € R.

Proof. The function g(x) is simply the Fourier series of the function f(x) that
has been truncated to keep only the terms with |k| < [1/€2]. [ |
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4. Proof of Theorem 2.1

We assume throughout the proof that A € S(X) and satisfies S(X) = |AJ.
We begin with the first inequality. We choose s; € A that satisfies (1.1) with
every element of A by being at least “Qil times at the denominator. We denote
by A; the set of values that are thereby at the numerator. Restricting our
attention to Aj, we choose so € A; that satisfies (1.1) with every element of
Ay by being at least IAll times at the numerator and we denote by As the set
of values that are thereby at the denominator.

Now, for each value s € As we have two representations. Indeed,

S S92

—=a (modp) and —==b (modp) with 0<|al,|b <X.
S1 S
We deduce that
s1a = %2 (mod p) = ab= 2_a (mod p) with 0 < |al,]b], |a] < X.
S1

We thus have ab = o + Kp with 0 < |K| < L%J For each fixed value of

K, the number of solutions (a,b) is at most 275(a + Kp) < X€. Indeed, we
either have X so small that K is only 0 and thus the inequality follows from
the inequality for the divisors function for an a < X, otherwise, we have X
large and the inequality remains true. We deduce that

X2
|A] < 4|4y < X© (1 + p) .

We now turn to the second inequality. We can assume that |A| and p are
large enough. We will apply Lemma 3.3 with A := % and € < 13—0 small
enough. We get

AR s (et

51,52€A
518
— Y () s o@ap) <
51,82€A p

IN

A|A? 4 Clog(1/e)

Z ep(ksisy )|+ O(e|AP?)

<[1/€?
o<ikl=r/enl 2

for some constant C' large enough. We deduce that there is a value of k, with
0 < |k| < [1/€%] < p, such that

t|A? —1 1/2
7<<‘ ep(ksys )’gp/ |Al.
log(1/¢) 81§€A P 2

The second inequality follows from Lemma 3.1. The proof is complete. |
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5. Proof of Theorem 2.2

We assume throughout the proof that A € R, (X) and satisfies R, (X) =
= |A|. Also, for any k > 1, we say that (s1,...,sx) is an admissible k-tuple
if the s; are pairwise distinct (j = 1,...,k). There are exactly |A| - (JA] —
—1)---(JA] = k + 1) admissible k-tuples. We can assume that |A| is large
enough since otherwise there is nothing to prove.

We begin with the second inequality. Proceeding as previously, we write

A" < > () rouarh =

S1,...,8n €A
(81,..-,8n) admissible

> o) oA+ A <

S1,...,8n, €A

AJA]" + Clog(1/e)

IN

Z ep(ksy- - sp)| +

max )
0<|k|<[1
<[kl<[1/€] S1,..0,8n EA

+O(e] A" +[A["7H).

Now, assuming that |A| > p'/"*+ for some fixed 0 < § < 1/4n, we get to
LA

log(1/e) < | X ki)

S§14.0y8n EA

<p A"

for some 0’ > 0, from Lemma 3.2. This is a contradiction for p large enough
and we deduce that |A| < p'/"*t¢ for each € > 0. Also, in the case n = 2, we
can take e = 0 by using Lemma 3.1 instead.

For the first inequality, we define o by
ta:= max 1 rlps

71, €A
(r1,...,rn) admissible

and we assume that o = s1 -+ s, (mod p) (with (s1,...,s,) admissible). We
now define a change of variables according to this choice. In the set A’ :=
= A\ {s1,...,5,}, we can write an element r as r = a;> (mod p) for some

0<|aj|§X(j:1,...,n).

Any of the |A’| - (JA/| = 1)--- (JA']| — n+ 1) admissible n-tuples (rq,...,r,)
gives rise to

S1 Sn

(5.1) ri-rp=c¢ (modp) = a—--a,— =c¢ (mod p)
« o)
= a;--a,=ca"! (mod p)
(5.2) = ay---a,=ca" '+ Kp
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where 0 < |c|,|a1],...,]an] < X and 0 < |K| < L%J From there, we
distinguish two cases.

Case 1: K = 0 for more than half of the admissible n-tuples. In this case,
we have

A" < {(a1,...,a,) €EZ™: ay---a, =ca™ 1 0<al,|c] < X} =

= 27" 3 ) < X
0<|e|<X

for each fixed € > 0.

Case 2: K # 0 for at least half of the admissible n-tuples. In this case,
we fix a value of 7 = 71 = a® (£ 0) (mod p) that is in > |A’["~! admissible
n-tuples (1,72, ...,7,) in (5.1) that lead to (5.2) with K # 0. Then, we consider
the congruence

1

rro---rp=c¢ (mod p) = aay---a, =ca” " (mod p)

= aag---a, =ca" '+ Kp

with 0 < |¢|,|az],...,|an] < X and 0 < |K| < L%j Now, we write d :=

n—1

= ged(a,a" ') and @/ == %, B:=2— and K’ := & We find that

aas---a, =ca" '+ Kp = day---a, = K'p (mod j)

so that a fixed value of K’ gives at most d values of as---a, (mod o™ 1).

There are < )C% possible values for K’ and since 0 < |ag -+ a,| < |a|" !, we

have in fact at most 2d values of as---a,. That is, we have at most < XTH
possible values of (¢, K). We get

n—1 K Xn+e
AT Y Tn1<ca i p) <

a
(eK) b
ca™ T Kp#£0

for each fixed € > 0. For n = 2 we have in fact ¢ = 0 in this last inequality.
The result follows.

Remark 5.1. There are various inequalities more effective for some medium
size of the parameter X in Theorem 2.2. Using the same notation as previously,
we write

re(a) == [{(r1,...,7%) € A’* admissible : 71---7, =a (mod p)}|

for each k = 1,...,n — 1. For a fixed value of £ we can split each admissible
n-tuple (rq,...,7,) € A™ into ry-- 7, = be = a (mod p), i.e. respectively
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r1- Tp—r =b (mod p) and ry_gy1 -7, = ¢ (mod p). This leads to

A (A =41 < > Y T k(B)rk(abh) <

0<|a|<X b=1

Trrlllea};gm(m) ST rakb) =

0<|al|<X b=1
= 2X|A" - (|4 —n+k+1) max ri(m).
me ;‘,

IN

Now, for any fixed m € F, we use the change of variables from the proof of the
first inequality to write

ri-org=m (modp) = ai---ap=¢ (modp) (for some ¢ ==£|(|,)

. 2Xk

As previously, we deduce that

Xk
K

Overall, we get to

Al < A < X”’“+X1H/k Xe
1/k
p

forany k=1,...,n— 1.

6. Concluding remarks

The set
A= {i2k ck=0,...,|log(X)/log(2)]}

shows that S(X) > log(2X). Also, the set
A= {%1,...,£[ X"}

shows that R,(X) > X'/". We conjecture that both S(X) <.; X¢ and
R, (X) <etm X 1/nte hold for each € > 0 when X < (% - t) p for a fixed t > 0
as p — oo.
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