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Abstract. Performance testing is a practice, a technique, a process used
for testing the speed, stability, scalability and responsiveness of applica-
tions. In contrast to the usual approaches – that apply performance testing
after functional testing and concentrate only on system-level tests – the au-
thors discuss from a new perspective why and how performance testing can
be integrated with other testing challenges (like functionality, security and
usability), why and how it can be applied at all test levels in the life-cycle.
The aim of the authors is twofold: (1) to revisit the evolution of perfor-
mance testing and to clarify the sometimes contradictory glossaries, (2)
to add a guideline on how performance testing can be embedded into the
software testing life-cycle in all test levels and how they interact with var-
ious testing goals in order to provide faster feedback, which is crucial in
methodologies that apply frequent deliveries (like Agile, Continuous De-
livery, DevOps). The findings are illustrated with practical examples from
telecommunications, web-related applications and other problem domains.

1. Introduction

Performance testing plays a vital role in software quality assurance. Large-
scale software systems should serve thousands or millions of parallel requests
and performance testing is used to determine how a system performs in terms
of responsiveness and stability under a given workload.

Key words and phrases: Performance test, load test, load generation, performance measure-
ment, continuous integration gating, test level.
2010 Mathematics Subject Classification: 68M15
The first and second authors were supported by the project “Software and Data-Intensive
Services” Nr. 2019-1.3.1-KK-2019-00011 financed by the Hungarian National Institute of
Science and Innovation.
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In the last few decades, the increasing demand for performance forced en-
gineers to develop new methodologies, processes and tools. However, most of
the approaches handle the testing of performance separately from other testing
goals and advise scheduling performance tests at the end, only at the system
level, after other tests succeeded; see for example the highly cited load test sur-
vey article [24] that overviews around 200 papers of this topic. This approach
results in two important drawbacks: (1) one may get late feedback on system
performance, (2) the resources allocated for testing may be used inefficiently.
As current software development trends (like Agile, Continuous Delivery, De-
vOps) indicate more and more frequent deliveries, these are serious issues. To
cope with these problems, in our viewpoint performance testing is not a sepa-
rate testing entity: it has strong connections to other testing challenges, such
as functional, security and usability testing. In this paper, we investigate how
these different goals can be integrated, for example, which assumptions need
to be fulfilled to create tests that are able to scale between functional and per-
formance testing properties. We also think that performance tests should be
started as early as possible in the STLC (Software Testing Life Cycle). We
think that performance tests are applicable not only at the system level, but
one should also consider introducing smaller performance tests at lower levels
as well. Although these tests may not discover as many performance issues
as larger performance tests, they can be executed more frequently providing
faster feedback loops, which is crucial in the case of frequent deliveries.

The body of the paper is organized as follows. Section 2 gives an overview of
performance testing by summarising consistent terminologies for different per-
formance testing types, collecting relevant performance metrics and discussing
the different approaches used in load generation, performance monitoring, re-
porting and log analyses. Section 3 investigates how performance testing should
take part in the STLC: we discuss the connection with other testing challenges,
overview the scheduling of different performance test types, add a guideline
about at which testing levels performance tests should be applied and investi-
gate performance tests at given levels with different metrics. Section 4 gives
a list of possible future trends in performance testing extrapolated from our
findings and most recent state-of-the-art research papers. The main messages
of the paper are summarized in Section 5.

2. An overview

In this subsection, we overview the main ingredients of performance test-
ing. Before we start, for the sake of completeness, we list some widely accepted
notions. A use case is associated with one or more services; it defines interac-
tion models between one or more actors (users, other machines) and the SUT
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(System Under Test). Multiple test scenarios can be associated with each use
case. Workload models can be considered as a matrix of scenarios (transac-
tions) versus frequency of execution spread across the number of concurrent
users accessing the SUT simultaneously. The workload is sometimes called
operational profile.

The process of performance testing should be applied iteratively using re-
views at each well-defined engineering step. The main steps are the following:
(1) high-level analysis – setting up the objectives, the main characteristics and
the architecture of the SUT, eliciting the technical, business and operational
risks; (2) technical analysis and planning by unfolding the key scenarios, envi-
ronments, tools, configurations, the scheduling and monitoring methods with
relevant metrics, determining the exit criteria; (3) design the variability and
distribution of the load based on workload analysis, design and collect the test
data and the performance metrics; (4) implementation and configuration of the
load generator, the monitoring and analysis tools, the environment; (5) run-
ning and monitoring the tests, validating the results; (6) analysing the logs
and results, reporting the recommendations, risks, costs and limitations.

In the following, we shortly summarize the types, metrics, and characteris-
tics of the performance testing development frameworks.

2.1. Types

Performance testing is an umbrella term that consists of different testing
types. In general, it focuses on the responsiveness, efficiency and stability of
the SUT, but it also deals with resource consumption and hardware sizing
problems (memory, CPU and disk usage, network bandwidth, etc.). The basic
types of performance testing are (see Figure 1):

� Load testing : Used to understand the behaviour of the SUT under a
specific expected load. It is usually applied in a controlled (laboratory)
environment and its main role is to test the sustainability of the SUT.

� Endurance testing : It focuses on the stability of the system over a large
predefined time frame. Endurance testing is used to verify whether the
system is capable of handling the extended load or results in memory
leaks, thread problems, database problems, etc. of the SUT. Other terms
for endurance testing are soak or stability testing1.

� Stress testing : Used to understand the upper limits of the capacity of the
SUT. The tests are performed altering around the maximum designed
capacity to investigate how the system works near this maximum (i.e. it
checks if a relatively small overload on the short scale can be handled by
scheduling, buffering, etc.).

1Note that it is sometimes also referred to as “reliability testing”, but it is not identical
to the reliability term of ISO 25000.
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Figure 1. Different types of performance testing

� Capacity testing : Its role is to determine whether the SUT can manage
the amount of workload it was designed for. In many cases it supports
measuring the boundaries when they are not known in advance, it bench-
marks the number of users or transactions that the system is able to han-
dle in case of a given set of preconditions hold. The number of handled
users or transitions found by capacity testing can be used as a baseline for
later testing, i.e. to investigate how a given change affects the capacity
of the SUT. Note that this baseline should be reconsidered periodically
due to changes in the environments and preconditions. Capacity testing
is also referred to as volume or flood testing as the volume of data is
increased step-by-step (flooding) in order to analyse the actual capacity.

� Spike testing : Used to understand the functioning of the system if the
load significantly exceeds the maximum designed capacity for a short time
period. It investigates whether the SUT survives the sudden bursts of the
requests, and if yes, then how it returns to its normal state (i.e. checks
whether the system crashes, terminates gracefully or dismisses/delays the
processing).

� Scalability testing : It shows how the SUT is capable of scaling up/out/
/down considering resources, like CPU, GPU, memory or network usage.
Two different approaches are present in this investigation:

(1) Gradually increase the load over a period of time to monitor the
number of different types of resources used in the SUT,

(2) Scaling up/out the resources of the SUT with the same level of load.

Both techniques can be used to find possible bottlenecks in the system.
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2.2. Metrics

In the following we briefly discuss the most important general performance-
related metrics that can be applied virtually for all problem domains (and can
be over-defined or refined if necessary):

1. Related to hardware utilization:

� CPU utilization

� Memory utilization

� Disk utilization

� Network utilization

2. Related to the characteristics of the tested system:

� Response time: It can be investigated at different levels of the pro-
tocol stack. For example, in a telecommunication network, both
neighbour participants and end-to-end participants can be consid-
ered; in a web application one may focus on the load of the requested
page or if a requested transaction is done. It can further be subdi-
vided into the worst, the best, the average, or the 90% percentile
response time.

� Throughput rate: It defines the number of requests processed per
time unit. Network throughput is the rate of successful data delivery
over a communication channel while system throughput is the rate
of data delivery to all terminal nodes.

� Rate of successfully handled requests: It is important to define what
we consider under “successfully handled”. This can be a given re-
quest handled successfully at first or xth trying attempt or within a
predefined time.

� Number of active sessions: It defines the number of requests that
the system can handle simultaneously.

2.3. Development frameworks

The functionality of the tools used in performance testing can be categorized
into three main groups:

1. Load generation: Generate a given workload to the SUT using some
preset or customized conditions or models.
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2. Performance monitoring and reporting : During test execution, investi-
gate some performance-related aspects of the SUT and may give an alert
in case of suspicious or lower performance scenarios. In the end, a report
is created based on monitored performance metrics.

3. Log analysis : After test execution, analyse and convert the existing logs
into the desired format and may add an additional level of warnings and
alerts to log data.

The tools used in practice may include the above-mentioned functionalities
to different extents. Sometimes a single tool includes all the functionalities
above, sometimes distinct tools are used. In the following, we mention some
freely available tools from each category. We note that there exist numerous
proprietary tools for each.

2.3.1. Load generation

Load generators create workloads for the SUT under various input condi-
tions (such as the number of concurrent users, the frequency and distribution
of requests, the type of requests, the different behaviours of users, etc.). The
simulation or emulation of the load is achieved by creating virtual users (simu-
lating or emulating the behaviour of the actors) that are distributed into load
generators (see Figure 2). Note that besides virtual users, in some areas “real
users” are used to generate a given load to the SUT. Also, note that the answers
of the SUT may be looped back to the load generators themselves.

Figure 2. The general structure of load generation

Different solutions exist to describe the behaviour of these virtual users
scaling from more simple solutions to more complex approaches:
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(1) Simple packet generators: These tools create a discrete chunk of com-
munication in a predefined format. Some data fields in the generated
packages can be changed, but the same setting is used for the entire load.
Due to their simplicity, they are easy to learn for the test engineer and
they also provide the highest possible performance. The drawback of this
approach is its inflexibility; only a few parameters can be fine-tuned and
it is unable to handle alternative behaviours. For example, the Netstress
[8] and MikroTik [7] tools are packet generators.

(2) Traffic playback tools: They are capable to play a given call flow back
many times to generate the desired load. The call flow can either be
edited manually or can be recorded. The drawback of this approach is
the disability to handle alternative behaviours. Apache JMeter [1] is
a traffic playback tool, but a small code that plays back a previously
recorded Wireshark [9] trace with the given number of parallel threads
can be also a suitable option.

(3) Model-based generators: They use formal models to describe the possible
behaviour of the virtual users. Besides the normal call flow, alternate
flows and exception flows are also considered. Various models can be
used to emulate virtual users: EFSM (Extended Finite State Machines)
[30, 35], Markov chains [15], Petri nets [16, 17, 42] PTAs (Probabilistic
Timed Automata) [10, 32] and ETAs (Extended Timed Automata) [29]
can be also considered. In [18] a TCFMM (Timed Communicating Fi-
nite Multistate Machine) model is proposed that is an extension of the
EFSM model with tokens. Due to the complexity of the models used the
generated load may be less than in the case of the previous approaches.

(4) Generators with low level descriptions: In this case, the given load gener-
ator is implemented directly. This approach can also handle alternative
behaviours, but it requires programming skills both to develop and read
tests. Maintainability could also be a problem, thus, this approach may
be suitable only for the short term in the life-cycle. The lack of an ab-
stract, high-level view can be a problem in the test design phase as well.

2.3.2. Performance monitoring and reporting

Performance monitoring and reporting functionalities show the test engineer
the performance metrics that (s)he is interested in. Monitoring tools may also
give an alert on lower performance conditions or suspicious behaviour. Please
note that the results of performance testing usually can not be categorized
simply as pass or fail. Multiple criteria need to be thoroughly investigated
and evaluated. It is also important to emphasize that one measurement is not
enough. Multiple performance tests are required to ensure consistent findings
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due to problems related to hardware and frameworks used below the measured
SUT. A baseline is also required for which the measured parameters can be
compared. The reason for this is that the SUT is not completely independent
from its environment (for example it can be connected to a real network, etc.).

2.3.3. Log analyses

One has to pay attention to collecting the measured data (e.g. various levels
of logs) for further processing. As the number of tested transactions is high and
the on-the-fly conversion of statistics would require too many resources that
would decrease load generation performance, this conversion should be either
done on a dedicated server or after the execution of tests. Note that depending
on the testing purpose, the test engineer should set the appropriate level of
logging. For example, in a capacity test of a real environment, the logging level
should be turned into a minimum level to minimize its overhead, but if one
investigates a root cause of a functional problem then the logging level should
be raised. It is also important to emphasize that the detailed logging should
be able to switch on or off for each system component independently providing
the testability of the SUT without a significant drop in performance. Without
this, one would not be able to reproduce problems that occur only with high
load.

For the analyses of logs, different approaches can be used:

� Search for regular expressions and create statistics based on them: This
approach can easily be adapted to the existing testing infrastructure and
it requires low learning effort from the testing team. For example, one
can parse the entire console log and collect the filtered parts by using a
log parser plugin [6] in Jenkins [5] after job execution.

� Create a custom solution for log conversions or data highlighting : With
proper classification, the afterlife of unsuccessful request attempts can
also be tracked. However, this approach may be hard to adapt to the
existing environment and it requires high learning effort from the test-
ing team. The log collection can be done either during or after the test
execution, the latter is proposed if no dedicated server exists for conver-
sion. An example of this approach is Ericsson-JCAT [3] which contains
logging-related extensions and several internal protocols used in telecom-
munication.

� Using log manipulator applications: The adaptation and learning costs
are medium. The report is created on a dedicated server, thus the log
collection can be done at any time. Kibana [4] is an example of a log
manipulator application.
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� Mixed solutions : Use some of the approaches above and add an extension
for special needs. For example, a log manipulator application can be used
when it is suitable for general log analyses, but one would also like to use
some domain-specific analyses that require specific implementation.

3. Performance testing embedded into the STLC

3.1. Connection with other testing attributes

The performance of the system may have effects on some non-functional
requirements, and thus, should be integrated organically into these other testing
attributes:

Connection with functionality: Functional testing and performance testing
can be applied together to show how the tested product handles different func-
tionalities related to performance. In many cases, it makes sense to talk about
the functionality of a product without investigating its performance. For exam-
ple, if a webshop is unable to handle the given number of users simultaneously
or a given node of a telecommunication network is unable to handle the given
number of calls then they can be considered practically unusable. The inte-
gration of functional and performance tests is also important if one would like
to see the root causes behind a given performance bottleneck. For example,
if a given message was not handled successfully, it was lost, rejected for some
reason (if yes, what was the root cause?) or just delayed? The key point in
these cases is the capability of the system for parallel execution. If the func-
tional tests are well-written then one can run several functional tests parallel
with different data. Well-written means here that the parameters can be set
independently, i.e. it is able to handle multiple transactions (the generated id
should be present for each transaction). Note that this approach does not only
have a benefit in performance testing, but it also makes functional testing more
effective. A viable solution for harmonizing functional and performance tests
was discussed in Section 2.3.1/(3), where various models were suggested for
load generation. In this case, besides testing the performance of the SUT, the
test engineer is also able to investigate its functionality with normal, alternate
and exception flows. Note that the test engineer can balance and fine-tune
between functional and performance testing: with more complex models (s)he
can test more functionalities with less performance, while simpler models are
able to test fewer functionalities with more generated load. Another advantage
of this approach is that for a given model, systematic automatic test genera-
tion and test case selection algorithms can be used to find a proper balance
between the tested functionalities and the complexity of the workload. Con-
sider for example paper [28] where string edit distance-based test selection is
used to reduce the size of the test set if the test cases of a telecommunication
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software are given as different traversals of FSM (finite state machine) models.
Later, this approach is extended for test case generation as well [27]. Note that
this balance should also be set properly when logging is used: more detailed
logging may help to identify the root cause of a functional problem but may
cause a performance drop due to its overhead.

Connection with reliability: In safety-critical systems, the appropriate re-
sponse time should be crucial. For example, if a given safety-critical message
(related to brakes, steering, etc.) in the vehicle bus was not received in time,
it may result in a serious accident. Hence, soft real-time and hard real-time
systems may differ in how their performance is tested.

Connection with usability, availability and security: System performance
has also effects on usability, availability and security which are key points in
many application domains. For example, in a net-bank application, availabil-
ity, usability and security are important conditions for the user, however, pos-
sibly with different risk levels. Network performance criteria can be also set
in case of telecommunication traffic driven by QoE (Quality of Experience)
[37]. All these aspects must have a clear focus on testing. Patch management
and performance-related cyber threats, such as DoS (Denial of Service) attack,
ransomware and crypto mining are parts of the IT operations that must be
managed. For example, DoS attacks try to flood the target system with high
traffic to make it inaccessible to its intended users, or even worse, to achieve a
state of the system where the attacker can bypass the authentication method or
can do transactions that would otherwise be prohibited. DoS attacks can also
flood the server with valid service requests (SYN flood [36] for example), that
may not be handled efficiently at the hardware level. In order to identify vul-
nerable points for DoS attacks one can apply e.g. spike tests. From an operation
point of view, there is no distinction whether performance or security-related
problem has occurred, both must be solved as soon as possible. This require-
ment projects the convergence of security and performance monitoring (and
testing) in the near future. Performance metric parameters like response time
may also have an effect on usability.

The integration of performance test with functional and with other non-
functional tests raise some questions regarding process improvement method-
ologies as well. For example, in TMMi2 [40] applying performance testing is
only a supporting test practice within the process area “Non-functional test-
ing”. However, performance testing increasingly moves out of that approach.

3.2. Scheduling of performance tests

When the test engineer would like to determine how performance testing
should be part of the STLC, (s)he must consider applying gating conditions in
CI (Continuous Integration). The role of CI gating is to execute corresponding

2Test Maturity Model integration
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test(s) after a code change, but before the code commit and to use the verdict
of the test(s) to decide if the given code change can be allowed for commit or
not. A precondition for gating tests is that these tests should be able to be
executed within a reasonable time in order to give feedback to the developer
about his/her code commit. For this reason, tests at lower levels are usually
used as gating tests. In the case of performance testing lower level means
mainly integration testing – for further details see Section 3.3.

Another important aspect is the scheduling of different types of performance
tests. Load tests should be performed regularly, while the actual capacity with
capacity test should only be measured once. Then, this capacity should be
retested occasionally and re-calibrated if necessary. As endurance tests take
significant time to be executed, they should be applied only at major mile-
stones or they should be executed continuously in a dedicated server, where
the execution of these tests is only stopped at major milestones for updating.
The frequency of spike tests depends on how critical the actual system is3. For
example, a telecommunication network, a net-bank application or even a web-
shop should take spike testing more seriously than a simple game application.
Scalability tests should be applied at once and should be applied again if we
would like to increase the performance of the SUT or if the environment has
been changed.

Note that theoretically, all types of performance tests are applicable at all
testing levels, but they may not have practical sense. For example, a load test
is applicable at all levels, but there is no point in applying endurance tests at
unit or at integration levels. The reason is that in the case of an endurance
test, the test engineer would like to apply transaction numbers that are close
to a real application, but in the case of unit or integration level tests, one could
apply a load that has a multiple order of magnitude compared to the real case.
Note that even the terminology of different types of performance tests is used
only at the system or at user acceptance levels. At lower levels, we simply use
the terms performance tests or load tests.

In many problem domains, there is a tendency to use methods to deliver
more frequently (such as Agile, Continuous Delivery, DevOps), but the usual
assumption about performance testing is that it takes a long time to be exe-
cuted. But if one would apply shorter performance tests at lower levels, then
they can be used more frequently. For example in a microservice architecture,
performance tests can be adopted at lower levels. Note that many functional
tests prepare the environment for test execution and these parts may be used
for performance tests as well. If functional and performance tests would be
integrated together, one could save a significant amount of time, that would be
applicable for test execution.

3Note that what we consider critical does not necessarily mean that it is life-critical, it
can be even “only” business critical.
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3.3. Performance testing at different test levels

In many cases, it is assumed that performance testing can only take place
after functional testing, at the end, for example in [22, 23] the authors propose
to apply performance tests only at the latest quarter, Q4 stage, after the user
acceptance testing. However, we think performance testing can take part of
the testing process at any time, at any test level – the level of integration may
depend on the application domain:

1) Unit tests: Corresponds to component tests in the ISTQB4 terminology
[21]. Performance tests at this level are not common; they are applied
for performance-critical common components only (if it is known already
at the design phase that these components are performance-critical com-
ponents). Typically they are RestAPI calls that are used by other com-
ponents, such as RestAPI in microservices, API calls used by GUI or
fundamental queries of a database. The load generation at this level
can be achieved either with simple packet generators or with traffic play-
back tools. The advantage of performance tests at this level is that one
can focus on performance-critical components and can get feedback about
performance in a reasonable time. The log analysis at the unit level is also
simple. On the other hand, these performance tests can be too sensitive,
i.e., they can show bottlenecks that are immeasurable and unimportant
on higher levels5. For this reason, they can not be used for gating in CI.
Note that it may not be easier to introduce a performance test at this
level than at the integration or system level (but the implementation of a
given test itself can be easier). The resource requirement of performance
tests at the unit level is low, only one working component is required (for
example a Docker [2] image). Performance testing at the unit level can be
done simultaneously with security investigations, for example, to discover
undesired effects such as memory allocation and deallocation anomalies,
buffer overflow problems, etc. Some functional tests for microservices can
be also executed together with performance investigations.

2) Integration tests6: Performance tests can be applied at this level if perfor-
mance-critical sub-systems exist. Examples of the applicability of these
tests can be multiple database queries due to the cooperation of different
components (such as the connection of GUI and database) or the case
when the OS (operating system) or the compiler of the SUT has been
changed. For load generation traffic playback tools are advised. The ad-

4International Software Testing Qualifications Board
5The reason for this is that the given service can be tested with a higher load compared

to the one that is possible if the real application uses this service.
6Note that in ISTQB foundation level syllabus [21] integration test is discussed as com-

ponent integration testing and system integration testing.



Integrating performance testing into CI 223

vantage of performance tests at the integration level is that one can focus
on performance-critical components, i.e., to identify bottlenecks. They
are also good gating tests in CI and the log analysis is also relatively
simple at this level. However, the tester needs to know before a higher
level (system) test has been executed which parts (s)he needs to concen-
trate on, and at which parts bottlenecks may occur. Thus, one needs to
measure at a higher level first, but after that performance tests at the
integration level can be applied to reproduce the bottlenecks that were
previously found. The resource requirement is higher than on the unit
level because multiple working components are required (for example at
least two Docker [2] images). Sometimes, at this level security aspects
can be also investigated together with performance measurements such as
checking the security of communication and the integration of third-party
tools.

3) System tests: Performance tests at this level are the most common case;
they are only known as “performance tests” for most of the testers. Sys-
tem performance tests test the entire application in an environment that
is close to the real environment. The simulation of the load is achieved
by creating virtual users that are distributed into load generators (see
Section 2.3.1), based on the type of performance test (see Section 2.1).
For load generation model-based generators or traffic playback tools are
advised depending on the complexity of testing goals. Tests at the system
level are used to investigate the capabilities and bottlenecks of the SUT.
System performance tests have a possible connection with functional test-
ing if they investigate the functionalities of the system with a given load.
Examples are performance tests in a net-bank application where one can
try different transaction types or performance tests in a smaller, sample
telecommunication network with a preset traffic mix or traffic mix from
“real” users. As the tester sees the entire system, tests can be designed
based on functionalities known by developers and testers. On the down-
side, the focus can be shifted from the real usage to a theoretical usage
of the system (as the tester/developer may not know the real importance
of different features compared to each other); weights of use cases may
not be the one required by the customer. To use appropriate weights, a
“user acceptance test” level is required. Also, note that system perfor-
mance tests typically require a long execution time, thus, they need to
be shortened to use as gating conditions in CI. The resource requirement
is high, as all working components are required. In addition to perfor-
mance measurements, the entire product can undergo functional testing
and usability investigations before being delivered to the customer. The
testing process can also include reliability, availability, and security test-
ing, which can be conducted simultaneously with performance testing.
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4) User acceptance tests: The performance tests take place in the real envi-
ronment. The tests are derived from a specific list of requirements given
by the customer which describes the required levels of performance for
given functionality mixes. If the product does not meet these require-
ments it can not be delivered. Model-based generators are advised to
be used for load generation. In some cases, this level is used when the
performance (virtualization, clusters with thousands of machines) of the
customer’s hardware environment is higher than the developer’s or the
customer can execute these enormous tests more frequently (that may be
a real usage for him, but a performance test for the developers/testers of
the product). Examples can be performance tests in a real telecommuni-
cation network with real users, or a distributed application used in a real
environment. On the positive side, one can test what (s)he really needs
with acceptance level performance tests, i.e. to test the performance of
given functionalities with proper weights...etc. As the customer takes
part in the testing process, the test engineer may get proper feedback.
On the negative side, performance tests may be applied too late. The
scheduling of testing may longer the delivery process, thus it may not
be acceptable in methodologies that apply frequent deliveries. Applying
performance testing at this level may be too expensive as special hard-
ware may be required with enormous performance (a real environment or
a system that can simulate or emulate the real environment). As the cus-
tomer takes part in the testing process, NDA (non-disclosure agreement)
may be required and if tests fail frequently it may be embarrassing in
front of the customer. At the user acceptance level, performance testing
is closely related to various other testing aspects. Usability testing takes
precedence at this stage. The user environment is utilized to conduct re-
liability, availability, and security testing, with a focus on examining the
product’s installability and upgradeability. While functionality checks
are carried out from the user’s perspective, typically only a limited num-
ber of use cases are tested, and functional testing does not hold as much
prominence as it does at the system level.

The main points are highlighted in Table 1.
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Test level Applicability,
focus

CI gating Resource
requirements

Connection with other
testing attributes

Unit Focus on
performance-
critical
components

Not applicable Low,
one working
component

Security, functionality
(microservices)

Integration Focus on
performance-
critical
sub-systems

Good
gating test

Medium,
multiple
working
components

Security

System Investigate
capabili-
ties and
botlenecks

Long execu-
tion time
need to be
shortened

High, all the
working
components

Functionality,
usability, reliability,
availability, security

Acceptance Check
customer’s
requirements
in a real
environment

Not applicable Enormous,
special
hardware
(real
environment
or emulation)

Usability, reliability,
availability, security,
functionality

Table 1. Performance testing at given test levels

To summarize, we would advise measuring performance as early as possible
as performance testing is not only applicable to finished products. Note that
there is a bigger risk of dependence on the surrounding environment at higher
levels. For example in the automotive area, the measurement can be weather
dependent due to the signal strength of the GPS unit, the quality (sharpness,
brightness, contrast, saturation...etc.) of the video received from the camera
unit ...etc. Note that nowadays demodularization trends – where big monolithic
systems are split into smaller modules that work together – can also help to in-
troduce performance testing at lower levels. The current software development
trends (Agile, Continous Delivery, Devops...etc) clearly highly benefits from
the shorter feedback loops introduced due to lower level performance tests.

3.4. The connection of test levels with different metrics

It is important to emphasize that the desired proportions of tests at different
levels depend highly on the metrics the test engineer is interested in. Besides
the number of tests, many other metrics are present. Figure 3 illustrates how
a single performance test at a given level can be measured by different metrics.
A possible metric is the number of tested lines of codes, where a unit perfor-
mance test only covers a few lines, while a performance test at the system or
acceptance level may cover a significant percentage of the code base. If one
measures the number of covered functions then a simple unit and integration
performance test cover essentially none of them. The reason for this is that a
function is defined over a higher level than an API call (i.e. a function that
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the customer can interact with), thus, function testing at these levels is not a
goal. A system performance test covers one, while an acceptance performance
test covers multiple functions, i.e. functional testing can be integrated with
performance testing at these levels.

Figure 3. The effect of a simple performance test at various levels measured by
different metrics

The number of transactions (i.e., atomic messages) may be the same at all
levels, but in different distribution: on the unit level they are concentrated on
the investigated component, on the integration level they are concentrated on
a component and its surroundings, while at system or acceptance level they
are distributed into the entire system. Thus, when one would like to select the
right ratios of performance tests at different levels, (s)he must know how critical
the entire system and an actual component are to select the desired level for
performance testing. The running time of the unit level is very small, greater
at the integration level and roughly the same at the system or at acceptance
levels.

One can also consider the time that is required to develop tests at given
levels: this is small at the unit level, higher at the integration level, and sig-
nificant at the system level. At acceptance level it may be a little higher due
to the environment, but not necessarily. Note that these are pure development
times to write a given test, it does not include the time that is required to
introduce performance tests at a given level. The different metrics listed above
help the test engineer to focus on different aspects and select the right amount
of tests at different levels considering costs and benefits that highly depend on
the given domain and on the given tasks.

4. Possible future directions

We believe that in the near future, more and more solutions will exist that
integrate performance testing with other testing goals, thus, more complex
solutions – like model-based load generators – will be more dominant. We
think that load generators that provide a dynamic workload to the SUT us-
ing some type of feedback from it will be more and more prominent as this
approach may speed up the performance testing process, which allows us to
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deliver the product more frequently. For example the method presented in
[14, 20] first identifies workload sensitive input transitions, then it set load val-
ues for these identified transitions incrementally with constant monitoring of
key performance indicators in order to find an appropriate load to the SUT
(ie. to exercise as much as possible, but to avoid saturation). Another ap-
proach for speeding up the performance testing process is to simply terminate
the given tests when they provide no further relevant information. The ap-
proach presented in [12] is based on periodically monitoring the combinations
of given performance metrics, and if no new combination of these metrics is
observed within a predefined time, then it stops execution. However, the num-
ber of monitored metrics and their applied combinations may cause a state
explosion problem in the case of bigger systems and the fine-tuning of param-
eters triggering stopping conditions should be further investigated to find the
appropriate trade-off between the length and coverage of test cases. We think
that artificial intelligence will be also applicable in the near future in many
problem domains to achieve at least some well-defined, simple goals connecting
to load generation. For example, the methods presented in [19] and [11, 26]
uses machine learning and reinforcement learning, respectively, to create the
appropriate input conditions for the stress tests of different types of SUTs in
order to find their performance breaking points and bottlenecks. Note that for
similar problems, genetic algorithms can be also applicable [38].

In a large-scale system, even thousands of monitored performance param-
eters from different subsystems may exist that require significant efforts from
the test engineer to handle. We think that in the future, approaches that
automatically select an appropriate subset from these monitored performance
parameters in order to give alerts about possible performance deviations in
advance [33, 34] will be more and more prevalent. Note that similar solutions
can be applied to logging as well; logs can be mined automatically to identify
dominant behaviours and to flag deviations from these dominant behaviours
[25, 39]. The paper presented in [31] extracts the logs from various workloads,
and builds black-box performance models both to an earlier and to the current
system versions detecting performance regressions automatically. Another in-
teresting area is to determine the appropriate level of logging (i.e. to find the
right balance between high load generation performance and the ability to find
the root cause of the problems). In [41] a method is presented to suggest places
where logging functions should be included. First, the method automatically
inserts logging statements into various places to the source code and conducts
performance tests. Then, using the results of the performance tests, statistical
(linear regression) performance model is built. Finally, the method identifies
the statistically significant performance-influencing logging statements in or-
der to provide suggestions. We believe that in the near future dynamic logging
will be a promising direction in which machine learning approaches change the
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level of logs automatically during execution. In case of suspicious behaviour,
or if a pattern is found that has resulted in problems in past executions, the
level of logging can be raised automatically for the corresponding parts of the
communication.

We also think that embedding performance testing into the cloud and other
virtual testing environments will be more and more prevalent; this approach is
especially suitable for microservice testing. Simple adding additional resources
to bottleneck components is not enough, as the increased workload of these
elements may result in performance degradation of its surroundings and thus
in the entire system [13, 43]. To cope with this problem, the paper presented in
[13] uses a quantitative approach. Based on operational profile data analysis,
performance tests are generated. Then, the baseline requirements are calcu-
lated for each microservices to define pass-fail criteria based on the applied
metrics and the generated performance tests are executed in each deployment
alternative. In the end, the pass-fail verdict for each of the alternatives can be
used to provide appropriate scaling between different microservices.

In virtualization the hardware equipment below the virtual environment are
different; typically more devices – each of them with fewer resources – are used;
thus interoperability between different resources will be even more pronounced:
the entire system should be capable to scale up with smaller equipment. Note
that after virtualization, different results will appear with the already applied
metrics and one should focus on somehow converting between the old and the
new results or one should concentrate to redesign the whole measurement; i.e.
to introduce a new baseline, that should be accepted from the customer side
as well.

5. Conclusion

In this paper, a consistent overview of terms and processes related to perfor-
mance testing was presented. Different approaches and parameters of the tools
used in performance testing were discussed including approaches that are able
to emulate more complex behaviours by applying different models in order to
integrate functional and performance testing. Guidelines have been given that
describe how performance testing can be part of the software design life-cycle.

In our viewpoint performance testing is not a separate testing entity; it
was investigated how performance testing can be connected to other testing
challenges like functionality and security. The scheduling of different types of
performance tests and the appropriate level of performance testing were also
discussed.

The overview of different metrics for different performance test levels has
highlighted the fact that there is no golden rule, just different aspects that
should be considered in different domains with appropriate weights.
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It was advised to run performance tests as early as possible. Although
early testing is important, lower-level tests could be applied based on the re-
sults found at the earlier high-level testing. This feedback can be extremely
useful for fine-tuning. In contrast to the usual assumptions of the industry
claiming that performance testing takes a long time to be executed, it was
advised to apply shorter performance tests at lower levels. The benefit of this
approach is that these tests then can be executed more frequently, which makes
them applicable to current software developing methodologies (such as Agile,
Continuous Delivery, DevOps). As ShiftLeft continues (in which testing is per-
formed earlier in the lifecycle) more and more development activities will be
performed on performance testing. Performance tests at lower levels have also
a benefit in testing microservice architectures. Of course, shorter performance
tests have a benefit at other levels as well, they are more applicable in continu-
ous integration gating. The authors believe that in the near future application
monitoring and performance monitoring will converge: standard application
monitoring tools will integrate more and more of the various metrics already
present in performance monitoring tools.
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