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Abstract. In this paper we describe how convolution arithmetic is be used
for the investigation of the asymptotic mean behaviour of multiplicative
functions.

1. Introduction

The average values

M(f, x) := x−1
∑
n≤x

f(n)

of multiplicative functions f : N → C have long been an object of study in
the theory of numbers. The problem of establishing the existence of the mean
values

M(f) := lim
x→∞M(f, x)

was considered by Wintner [8] in his book on Eratosthenian Averages where
he, in particular, asserted that limit M(f) always exists if f assumes only the
values ±1. The sketch of his proof, however, could not be substantiated, and,
thus, the problem remained for a considerable time as a conjecture, variously
ascribed to Erdős and Wintner (see [2]). In his paper [9], of 1967, Wirsing
proved his celebrated mean-value theorem which asserts, in particular, that
any real-valued multiplicative function f of modulus ≤ 1 has a mean value
(see Proposition 1.2). This solved the aforementioned conjecture of Erdős and
Wintner. Two typical results are as follows.
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Proposition 1.1. Let g be a multiplicative function which assumes real non-
negative values only. Let∑

p≤x

g(p) log p

p
∼ α log x, x → ∞,

hold with a constant α > 0. Furthermore, let g(p) = O(1) for all primes p, and
let ∑

p,k≥2
p−kg(pk) < ∞.

Besides this, if α ≤ 1, then let∑
pk≤x,k≥2

g(pk) = O(x(log x)−1).

Then ∑
n≤x

g(n) ∼ e−γαx
Γ(α) log x

∏
p≤x

(
1 +

g(p)

p
+

g(p2)

p2
+ · · ·

)
as x → ∞. Here γ denotes Euler’s constant.

Furthermore Wirsing proved in [9]

Proposition 1.2. Let g satisfy the conditions of Proposition 1.1, and let f
be a real-valued multiplicative function which satisfies |f(n)| ≤ g(n) for every
positive integer n. Then

lim
x→∞

∑
n≤x

f(n)∑
n≤x

g(n)
=
∏
p

(
1 +

∞∑
k=1

p−kf(pk)

)(
1 +

∞∑
k=1

p−kg(pk)

)−1
,

where the product either converges properly to a nonzero limit, or improperly
to zero.

These results are generalizations of the case where |g(n)| ≡ 1, so that α = 1.
In these circumstances, the general case (f complex-valued and |f | ≤ 1) was
handled by Halász [3], and his main result is given by the following

Proposition 1.3. Let f : N → C be multiplicative, |f | ≤ 1. If there exists a
real number a0 such that the series

(1.1)
∑
p

p−1(1−Ref(p)p−ia)
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converges for a = a0, then, as x → ∞,

x−1
∑
n≤x

f(n) =
xia0

1 + ia0

∏
p≤x

(1− p−1)

(
1 +

∞∑
m=1

p−m(1+ia0)f(pm)

)
+ o(1).

If the series (1.1) diverges for all a ∈ R, then

x−1
∑
n≤x

f(n) = o(1), x → ∞.

In both cases, there are constants c, a0 and a slowly oscillating function L̃(u)
with |L̃(u)| = 1 such that, as x → ∞,

x−1
∑
n≤x

f(n) = cxia0L̃(log x) + o(1).

Proposition 1.3 includes Wirsing’s result (for |f | ≤ 1), and essentially the
case where (1.1) diverges for all a ∈ R (and f is complex-valued) is not covered
by Proposition 1.2.

Wirsing’s proof was elementary, but quite complicated, whereas Halász’s
proof was based upon analytic methods.

In [1], Daboussi and Indlekofer succeeded in finding an elementary proof of
Halász’s theorem (see also Indlekofer [4] for a simplified and shorter proof).

Indlekofer, Kátai andWagner [5] used the methods of [4] to compare
∑
n≤x

f(n)

with
∑
n≤x

g(n) where g ≥ 0 is multiplicative and |f | ≤ g. They showed

Proposition 1.4. Let g be a multiplicative function which assumes real non-
negative values only. Let∑

p≤x

log p

p
g(p) ∼ τ log x, x → ∞,

hold with a constant τ > 0. Furthermore, let g(p) = O(1) for all primes p, and
let ∑

p,k≥2
p−kg(pk) < ∞.

Besides this, if τ ≤ 1, then let∑
pk≤x,k≥2

g(pk) = O
(
x(logx)−1

)
.
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Let f be a complex-valued function, which satisfies |f(n)| ≤ g(n) for every
positive integer n. If there exists a real number a0 such that the series

(1.2)
∑
p

p−1(g(p)−Ref(p)p−ia)

converges for a = a0, then

∑
n≤x

f(n) =
xia0

1 + ia0

∏
p≤x

(
1 +

∞∑
m=1

f(pm)

pm(1+ia0)

)(
1 +

∞∑
m=1

g(pm)

pm

)−1∑
n≤x

g(n)+

+o

⎛⎝∑
n≤x

g(n)

⎞⎠
as x → ∞. If the series (1.2) diverges for all a ∈ R, then

∑
n≤x

f(n) = o

⎛⎝∑
n≤x

g(n)

⎞⎠ , x → ∞.

In both cases, there are constants c, a0 and a slowly oscillating function L̃ with
|L̃(u)| = 1 such that, as x → ∞,∑

n≤x
f(n) =

(
cxia0L̃(log x) + o(1)

)∑
n≤x

g(n).

In [7] Indlekofer gave a new proof of Proposition 1.1. For this he used the
convolution arithmetic desribed, for example, in [6]. The idea of the proof is
as follows.

Let g as in the Proposition 1.1. Define an exponentially multiplicative func-
tion g0 by

g0(p
k) =

g(p)

k!
(p prime, k ∈ N).

Then g = h ∗ g0 where
∞∑
n=1

|h(n)|
n

< ∞.

Further, define the multiplicative function τα by

∞∑
n=1

τα(n)

ns
= ζα(s),
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where ζ(s) is Riemann’s zeta-function. Then put

A(x) := H(1)eαc exp

⎛⎝∑
p≤x

g(p)− α

p

⎞⎠ ,

where H(1) =
∞∑
n=1

h(n)
n and

c =
∑
p

(
1

p
+ log(1− 1

p
)

)
.

Define, for 1 ≤ u ≤ x,

M(u) := 1 ∗ (g −A(x)τα)(u) =

=
∑
n≤u

(g(n)−A(x)τα(n)) .

Then by convolution arithmetic, Indlekofer shows

L2M =M ∗ (Λg0 ∗ Λg0 + L0Λg0) + (R1 +R2 +R3) ∗ Λg0 + L(R1 +R2 +R3),

where

R1 = L ∗ (g −A(x)τα),

R2 = 1 ∗ (L0h ∗ g0),
R3 = −1 ∗A(x)τα ∗ (Λτα − Λg0).

In the first step this leads to

|M(x)| � x

log x

x∫
1

|M(u)|
u2

du+ o

⎛⎝ x

log x
exp

⎛⎝∑
p≤x

g(p)

p

⎞⎠⎞⎠ as x → ∞.

Next, define an exponentially multiplicative function g0 by

g0(p
k) =

{
g0(p

k) for p ≤ x, k ≥ 1

α/k! for p > x, k ≥ 1

and put g = h ∗ g0. Choosing

K0(u) = 1 ∗ Λg0 ∗ (g −A(x)τα)(u)

he obtains, for 2 ≤ u ≤ x,

(1.3) M(u) =
K0(u)

log u
+ o

⎛⎝ u

log u
exp

⎛⎝∑
p≤u

g(p)

p

⎞⎠⎞⎠ .
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Now

x∫
1

|M(u)|
u2

du ≤
xε∫
1

|M(u)|
u2

du+

x∫
xε

|M(u)|
u2

du =:

=: I1 + I2.

Then
(1.4)

I1 ≤
∑
n≤xε

|g(n)−A(x)τα(n)|
n

� ε exp

⎛⎝∑
p≤x

g(p)

p

⎞⎠+ εα exp

⎛⎝∑
p≤x

g(p)

p

⎞⎠
and

I2 ≤ 1

ε

⎛⎝ 1

log x

x∫
2

|K0(u)|2
u3

du

⎞⎠ 1
2

+ o

⎛⎝exp
⎛⎝∑
p≤x

g(p)

p

⎞⎠⎞⎠ .

Put σ = 1 + 1
log x . Then

x∫
2

|K0(u)|2
u3

du ≤ e2
x∫
2

|K0(u)|2
u3+2(σ−1)

du.

Since (s = σ + it)

∞∫
0

K0(e
u)e−use−iutdt =

G
′
0(s)

G0(s)
(G(s)−A(x)ζα(s)),

where

G0(s) =

∞∑
n=1

g0(n)

ns
and G(s) =

∞∑
n=1

g(n)

ns
,

he concludes, by Parseval’s equation,

(1.5)

∞∫
1

|K0(u)|2
u3+2(σ−1)

du =
1

2π

∞∫
−∞

∣∣∣G′0(s)
G0(s)

∣∣∣2|G(s)−A(x)ζα(s)|2 dt

|s|2 .

Estimating the last integral in (1.5) by o

(
log x exp

(
2
∑
p≤x

g(p)
p

))
ends the

proof of Proposition 1.1.

In this paper we we give a new proof of the result of Indlekofer–Kátai–
Wagner [5] (see Proposition 1.2) by using the method of Indlekofer [7].
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2. Proof of Proposition 1.2

We first assume that (1.2) diverges for all a ∈ R. Then put f = h1 ∗ f0,
where f0 is exponentially multiplicative,

f0(p
k) =

f(pk)

pk
(p prime, k ∈ N)

and ∞∑
n=1

|h1(n)|
n

< ∞.

Defining (1 ≤ u ≤ x)
K1(u) = (1 ∗ Λf0 ∗ f)(u)

we conclude
1 ∗ L0f = 1 ∗ Λf0 ∗ f + 1 ∗ Λh1 ∗ f

which implies (cf. (1.3)), for 2 ≤ u ≤ x,

M(u) =
K1(u)

log u
+ o

⎛⎝ u

log u
exp

⎛⎝∑
p≤u

g(p)

p

⎞⎠⎞⎠ .

Now we argue as in [5]

x∫
1

|M(u)|
u2

du ≤
xε∫
1

|M(u)|
u2

du+

x∫
xε

|M(u)|
u2

du :=

:= I1 + I2.

Then (cf.(1.4))

I1 � εα exp

⎛⎝∑
p≤x

g(p)

p

⎞⎠
and

I2 � 1

ε

⎛⎝ 1

log x

x∫
2

|K1(u)|2
u3

du

⎞⎠ 1
2

+ o

⎛⎝exp
⎛⎝∑
p≤x

g(p)

p

⎞⎠⎞⎠ .

From this we obtain, by Parseval’s equality,

x∫
2

|K1(u)|2
u3

du �
∞∫
−∞

∣∣∣F ′0(s)2
F0(s)

∣∣∣2|F (s)|2 dt

|s|2 .
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Now, observe (cf. (4.5) of [7])

1
2∫

− 1
2

∣∣∣F ′0
F0
(1 +

1

log x
+ ik + it)

∣∣∣2dt �
1
2∫

− 1
2

∣∣∣ζ ′
ζ
(1 +

1

log x
+ ik + it)

∣∣∣2dt � log x

and
|F (s)| = o(G(σ)) for |t| ≤ K.

Then

(2.1)

∞∫
−∞

∣∣∣F ′0
F0
(1 +

1

log x
+ ik + it)

∣∣∣2|F (1 + 1

log x
+ it)|2 dt

|s|2 ≤

≤
∑
k∈Z
|k|≤K

o(G2(σ))

k2 + 1

1
2∫

− 1
2

∣∣∣F ′0
F0
(1 +

1

log x
+ ik + it)

∣∣∣2|dt+

+
∑
k∈Z
|k|>K

G2(σ)

k2 + 1

1
2∫

− 1
2

∣∣∣F ′0
F0
(1 +

1

log x
+ ik + it)

∣∣∣2|dt ≤
≤ δ log x exp

⎛⎝2∑
p≤x

g(p)

p

⎞⎠ if K ≥ K0(δ) for every δ > 0.

This ends the proof, if (1.2) diverges for all a ∈ R.
Assume that (1.4) converges for a = a0. Define ga0 by

ga0 = g(n)nia0 for n ∈ N

and put
M = 1 ∗ (f −Axga0),

where

Ax =
H1(1 + ia0)

H(1)
exp

⎛⎝∑
p≤x

f(p)p−ia0 − g(p)

p

⎞⎠ .

Then
LM = 1 ∗ L0(f −Axga0) +R′1,

where R′1 = L ∗ (f −Axga0) and

R′1(x)�
x

log x
exp

⎛⎝∑
p≤x

g(p)

p

⎞⎠ .
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Further

1 ∗ L0(f −Axga0) = 1 ∗ Λf0 ∗ (f −Axga0) +R′2 +R′3,

where

R′2 = 1 ∗ Λh1 ∗ (f −Axga0),

R′3 = 1 ∗Axga0 ∗ (Λf − Λga0 ).

The convergence of
∑
p
(g(p)−Ref(p)p−ia0)p−1 implies

∑
p

|g(p)−Ref(p)p−ia0 |2
p

< ∞

and

R′3(x) = O

⎛⎝εαx exp

⎛⎝∑
p≤x

g(p)

p

⎞⎠⎞⎠+ o

⎛⎝x exp

⎛⎝∑
p≤x

g(p)

p

⎞⎠⎞⎠ .

In any case

R′2(x) = o

⎛⎝x exp

⎛⎝∑
p≤x

g(p)

p

⎞⎠⎞⎠ .

Now, in the same way as above we obtain

(2.2)

x∫
xε

|M(u)|
u2

du � 1

ε

⎛⎝ 1

log x

∞∫
−∞

∣∣∣F ′0(s)
F0(s)

∣∣∣2|F (s)−AxG(s− ia0)|2
dt

|s|2

⎞⎠ 1
2

+

+o

⎛⎝exp
⎛⎝∑
p≤x

g(p)

p

⎞⎠⎞⎠ .

The integral on the right side of (2.2) can be estimated by

∞∫
−∞

∣∣∣F ′0(s+ ia0)

F0(s+ ia0)

∣∣∣2|F (s+ ia0)−AxG(s)|2
dt

|s|2 .

Observe

|F (s+ ia0)−AxG(s)| = o(G(σ)) = o

⎛⎝exp
⎛⎝∑
p≤x

g(p)

p

⎞⎠⎞⎠ for t ∈ I1(ε)
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and

max{|F (s+ ia0), |G(s)|} � εαβ exp

⎛⎝∑
p≤x

g(p)

p

⎞⎠ for t ∈ I2(ε).

Arguing as in (2.1) shows

(2.3)
∑
n≤x

f(n) = Ax
∑
n≤x

g(n)nia0 + o

⎛⎝∑
n≤x

g(n)

⎞⎠ .

Now the assertion of Proposition 1.1 can be written as ([5], (2.1))

M∗(x) :=
∑
n≤x

g(n) ∼ αx(log x)α−1L∗(log x)

where the function L∗ is slowly oscillating. An integration by parts gives a
representation

∑
n≤x

g(n)nia0 = xia0M∗(x)− ia0

x∫
2

uia0−1M∗(u)du =

= αx1+ia0(log x)α−1L∗(log x)− αia0

x∫
2

uia0(log u)α−1L∗(log u)du

provided x is not integer. Then, within an acceptable error, L∗(log u), for xε ≤
u ≤ x, may be replaced by L∗(log x) and factored out of the representation:

∑
n≤x

g(n)nia0 = αL∗(log x){x1+ia0(log x)α−1 − ia0

x∫
2

uia0(log u)α−1du}

= αL∗(log x)
xia0

1 + ia0
x(log x)α−1 + o(M∗(x))

=
xia0

1 + ia0
M∗(x) + o(M∗(x))

which, by (2.3), ends the proof of Proposition 1.2. �
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