# ON SOME RESULTS OF INDLEKOFER FOR MULTIPLICATIVE FUNCTIONS II. 

Erdener Kaya (Cologne, Germany)

Communicated by Imre Kátai
(Received April 20, 2023; accepted May 10, 2023)


#### Abstract

In this paper we describe how convolution arithmetic is be used for the investigation of the asymptotic mean behaviour of multiplicative functions.


## 1. Introduction

The average values

$$
M(f, x):=x^{-1} \sum_{n \leq x} f(n)
$$

of multiplicative functions $f: \mathbb{N} \rightarrow \mathbb{C}$ have long been an object of study in the theory of numbers. The problem of establishing the existence of the mean values

$$
M(f):=\lim _{x \rightarrow \infty} M(f, x)
$$

was considered by Wintner [8] in his book on Eratosthenian Averages where he, in particular, asserted that limit $M(f)$ always exists if $f$ assumes only the values $\pm 1$. The sketch of his proof, however, could not be substantiated, and, thus, the problem remained for a considerable time as a conjecture, variously ascribed to Erdős and Wintner (see [2]). In his paper [9], of 1967, Wirsing proved his celebrated mean-value theorem which asserts, in particular, that any real-valued multiplicative function $f$ of modulus $\leq 1$ has a mean value (see Proposition 1.2). This solved the aforementioned conjecture of Erdős and Wintner. Two typical results are as follows.

[^0]Proposition 1.1. Let $g$ be a multiplicative function which assumes real nonnegative values only. Let

$$
\sum_{p \leq x} \frac{g(p) \log p}{p} \sim \alpha \log x, \quad x \rightarrow \infty
$$

hold with a constant $\alpha>0$. Furthermore, let $g(p)=O(1)$ for all primes $p$, and let

$$
\sum_{p, k \geq 2} p^{-k} g\left(p^{k}\right)<\infty
$$

Besides this, if $\alpha \leq 1$, then let

$$
\sum_{p^{k} \leq x, k \geq 2} g\left(p^{k}\right)=O\left(x(\log x)^{-1}\right)
$$

Then

$$
\sum_{n \leq x} g(n) \sim \frac{e^{-\gamma \alpha} x}{\Gamma(\alpha) \log x} \prod_{p \leq x}\left(1+\frac{g(p)}{p}+\frac{g\left(p^{2}\right)}{p^{2}}+\cdots\right)
$$

as $x \rightarrow \infty$. Here $\gamma$ denotes Euler's constant.

Furthermore Wirsing proved in [9]
Proposition 1.2. Let $g$ satisfy the conditions of Proposition 1.1, and let $f$ be a real-valued multiplicative function which satisfies $|f(n)| \leq g(n)$ for every positive integer $n$. Then

$$
\lim _{x \rightarrow \infty} \frac{\sum_{n \leq x} f(n)}{\sum_{n \leq x} g(n)}=\prod_{p}\left(1+\sum_{k=1}^{\infty} p^{-k} f\left(p^{k}\right)\right)\left(1+\sum_{k=1}^{\infty} p^{-k} g\left(p^{k}\right)\right)^{-1}
$$

where the product either converges properly to a nonzero limit, or improperly to zero.

These results are generalizations of the case where $|g(n)| \equiv 1$, so that $\alpha=1$. In these circumstances, the general case ( $f$ complex-valued and $|f| \leq 1$ ) was handled by Halász [3], and his main result is given by the following

Proposition 1.3. Let $f: \mathbb{N} \rightarrow \mathbb{C}$ be multiplicative, $|f| \leq 1$. If there exists a real number $a_{0}$ such that the series

$$
\begin{equation*}
\sum_{p} p^{-1}\left(1-\operatorname{Re} f(p) p^{-i a}\right) \tag{1.1}
\end{equation*}
$$

converges for $a=a_{0}$, then, as $x \rightarrow \infty$,

$$
x^{-1} \sum_{n \leq x} f(n)=\frac{x^{i a_{0}}}{1+i a_{0}} \prod_{p \leq x}\left(1-p^{-1}\right)\left(1+\sum_{m=1}^{\infty} p^{-m\left(1+i a_{0}\right)} f\left(p^{m}\right)\right)+o(1) .
$$

If the series (1.1) diverges for all $a \in \mathbb{R}$, then

$$
x^{-1} \sum_{n \leq x} f(n)=o(1), \quad x \rightarrow \infty
$$

In both cases, there are constants $c, a_{0}$ and a slowly oscillating function $\tilde{L}(u)$ with $|\tilde{L}(u)|=1$ such that, as $x \rightarrow \infty$,

$$
x^{-1} \sum_{n \leq x} f(n)=c x^{i a_{0}} \tilde{L}(\log x)+o(1)
$$

Proposition 1.3 includes Wirsing's result (for $|f| \leq 1$ ), and essentially the case where (1.1) diverges for all $a \in \mathbb{R}$ (and $f$ is complex-valued) is not covered by Proposition 1.2.

Wirsing's proof was elementary, but quite complicated, whereas Halász's proof was based upon analytic methods.

In [1], Daboussi and Indlekofer succeeded in finding an elementary proof of Halász's theorem (see also Indlekofer [4] for a simplified and shorter proof).

Indlekofer, Kátai and Wagner [5] used the methods of [4] to compare $\sum_{n \leq x} f(n)$ with $\sum_{n \leq x} g(n)$ where $g \geq 0$ is multiplicative and $|f| \leq g$. They showed

Proposition 1.4. Let $g$ be a multiplicative function which assumes real nonnegative values only. Let

$$
\sum_{p \leq x} \frac{\log p}{p} g(p) \sim \tau \log x, \quad x \rightarrow \infty
$$

hold with a constant $\tau>0$. Furthermore, let $g(p)=O(1)$ for all primes $p$, and let

$$
\sum_{p, k \geq 2} p^{-k} g\left(p^{k}\right)<\infty
$$

Besides this, if $\tau \leq 1$, then let

$$
\sum_{p^{k} \leq x, k \geq 2} g\left(p^{k}\right)=O\left(x(\log x)^{-1}\right)
$$

Let $f$ be a complex-valued function, which satisfies $|f(n)| \leq g(n)$ for every positive integer $n$. If there exists a real number $a_{0}$ such that the series

$$
\begin{equation*}
\sum_{p} p^{-1}\left(g(p)-\operatorname{Ref}(p) p^{-i a}\right) \tag{1.2}
\end{equation*}
$$

converges for $a=a_{0}$, then

$$
\begin{gathered}
\sum_{n \leq x} f(n)=\frac{x^{i a_{0}}}{1+i a_{0}} \prod_{p \leq x}\left(1+\sum_{m=1}^{\infty} \frac{f\left(p^{m}\right)}{p^{m\left(1+i a_{0}\right)}}\right)\left(1+\sum_{m=1}^{\infty} \frac{g\left(p^{m}\right)}{p^{m}}\right)^{-1} \sum_{n \leq x} g(n)+ \\
\quad+o\left(\sum_{n \leq x} g(n)\right)
\end{gathered}
$$

as $x \rightarrow \infty$. If the series (1.2) diverges for all $a \in \mathbb{R}$, then

$$
\sum_{n \leq x} f(n)=o\left(\sum_{n \leq x} g(n)\right), x \rightarrow \infty
$$

In both cases, there are constants $c, a_{0}$ and a slowly oscillating function $\tilde{L}$ with $|\tilde{L}(u)|=1$ such that, as $x \rightarrow \infty$,

$$
\sum_{n \leq x} f(n)=\left(c x^{i a_{0}} \tilde{L}(\log x)+o(1)\right) \sum_{n \leq x} g(n)
$$

In [7] Indlekofer gave a new proof of Proposition 1.1. For this he used the convolution arithmetic desribed, for example, in [6]. The idea of the proof is as follows.

Let $g$ as in the Proposition 1.1. Define an exponentially multiplicative function $g_{0}$ by

$$
g_{0}\left(p^{k}\right)=\frac{g(p)}{k!} \quad(p \text { prime }, \quad k \in \mathbb{N})
$$

Then $g=h * g_{0}$ where

$$
\sum_{n=1}^{\infty} \frac{|h(n)|}{n}<\infty
$$

Further, define the multiplicative function $\tau_{\alpha}$ by

$$
\sum_{n=1}^{\infty} \frac{\tau_{\alpha}(n)}{n^{s}}=\zeta^{\alpha}(s)
$$

where $\zeta(s)$ is Riemann's zeta-function. Then put

$$
A(x):=H(1) e^{\alpha c} \exp \left(\sum_{p \leq x} \frac{g(p)-\alpha}{p}\right)
$$

where $H(1)=\sum_{n=1}^{\infty} \frac{h(n)}{n}$ and

$$
c=\sum_{p}\left(\frac{1}{p}+\log \left(1-\frac{1}{p}\right)\right) .
$$

Define, for $1 \leq u \leq x$,

$$
\begin{aligned}
M(u) & :=1 *\left(g-A(x) \tau_{\alpha}\right)(u)= \\
& =\sum_{n \leq u}\left(g(n)-A(x) \tau_{\alpha}(n)\right)
\end{aligned}
$$

Then by convolution arithmetic, Indlekofer shows

$$
L^{2} M=M *\left(\Lambda_{g_{0}} * \Lambda_{g_{0}}+L_{0} \Lambda_{g_{0}}\right)+\left(R_{1}+R_{2}+R_{3}\right) * \Lambda_{g_{0}}+L\left(R_{1}+R_{2}+R_{3}\right)
$$

where

$$
\begin{aligned}
& R_{1}=L *\left(g-A(x) \tau_{\alpha}\right) \\
& R_{2}=\mathbf{1} *\left(L_{0} h * g_{0}\right) \\
& R_{3}=-\mathbf{1} * A(x) \tau_{\alpha} *\left(\Lambda_{\tau_{\alpha}}-\Lambda_{g_{0}}\right)
\end{aligned}
$$

In the first step this leads to

$$
|M(x)| \ll \frac{x}{\log x} \int_{1}^{x} \frac{|M(u)|}{u^{2}} d u+o\left(\frac{x}{\log x} \exp \left(\sum_{p \leq x} \frac{g(p)}{p}\right)\right) \quad \text { as } x \rightarrow \infty
$$

Next, define an exponentially multiplicative function $\bar{g}_{0}$ by

$$
\bar{g}_{0}\left(p^{k}\right)=\left\{\begin{array}{cl}
g_{0}\left(p^{k}\right) & \text { for } p \leq x, k \geq 1 \\
\alpha / k! & \text { for } p>x, k \geq 1
\end{array}\right.
$$

and put $\bar{g}=h * \bar{g}_{0}$. Choosing

$$
K_{0}(u)=1 * \Lambda_{\bar{g}_{0}} *\left(\bar{g}-A(x) \tau_{\alpha}\right)(u)
$$

he obtains, for $2 \leq u \leq x$,

$$
\begin{equation*}
M(u)=\frac{K_{0}(u)}{\log u}+o\left(\frac{u}{\log u} \exp \left(\sum_{p \leq u} \frac{g(p)}{p}\right)\right) . \tag{1.3}
\end{equation*}
$$

Now

$$
\begin{aligned}
\int_{1}^{x} \frac{|M(u)|}{u^{2}} d u & \leq \int_{1}^{x^{\varepsilon}} \frac{|M(u)|}{u^{2}} d u+\int_{x^{\varepsilon}}^{x} \frac{|M(u)|}{u^{2}} d u=: \\
& =: \quad I_{1}+I_{2}
\end{aligned}
$$

Then

$$
\begin{equation*}
I_{1} \leq \sum_{n \leq x^{\varepsilon}} \frac{\left|g(n)-A(x) \tau_{\alpha}(n)\right|}{n} \ll \varepsilon \exp \left(\sum_{p \leq x} \frac{g(p)}{p}\right)+\varepsilon^{\alpha} \exp \left(\sum_{p \leq x} \frac{g(p)}{p}\right) \tag{1.4}
\end{equation*}
$$

and

$$
I_{2} \leq \frac{1}{\varepsilon}\left(\frac{1}{\log x} \int_{2}^{x} \frac{\left|K_{0}(u)\right|^{2}}{u^{3}} d u\right)^{\frac{1}{2}}+o\left(\exp \left(\sum_{p \leq x} \frac{g(p)}{p}\right)\right)
$$

Put $\sigma=1+\frac{1}{\log x}$. Then

$$
\int_{2}^{x} \frac{\left|K_{0}(u)\right|^{2}}{u^{3}} d u \leq e^{2} \int_{2}^{x} \frac{\left|K_{0}(u)\right|^{2}}{u^{3+2(\sigma-1)}} d u
$$

Since $(s=\sigma+i t)$

$$
\int_{0}^{\infty} K_{0}\left(e^{u}\right) e^{-u s} e^{-i u t} d t=\frac{\bar{G}_{0}^{\prime}(s)}{\bar{G}_{0}(s)}\left(\bar{G}(s)-A(x) \zeta^{\alpha}(s)\right)
$$

where

$$
\bar{G}_{0}(s)=\sum_{n=1}^{\infty} \frac{\bar{g}_{0}(n)}{n^{s}} \quad \text { and } \quad \bar{G}(s)=\sum_{n=1}^{\infty} \frac{\bar{g}(n)}{n^{s}}
$$

he concludes, by Parseval's equation,

$$
\begin{equation*}
\int_{1}^{\infty} \frac{\left|K_{0}(u)\right|^{2}}{u^{3+2(\sigma-1)}} d u=\frac{1}{2 \pi} \int_{-\infty}^{\infty}\left|\frac{\bar{G}_{0}^{\prime}(s)}{\bar{G}_{0}(s)}\right|^{2}\left|\bar{G}(s)-A(x) \zeta^{\alpha}(s)\right|^{2} \frac{d t}{|s|^{2}} \tag{1.5}
\end{equation*}
$$

Estimating the last integral in (1.5) by o $\left(\log x \exp \left(2 \sum_{p \leq x} \frac{g(p)}{p}\right)\right)$ ends the proof of Proposition 1.1.

In this paper we we give a new proof of the result of Indlekofer-KátaiWagner [5] (see Proposition 1.2) by using the method of Indlekofer [7].

## 2. Proof of Proposition 1.2

We first assume that (1.2) diverges for all $a \in \mathbb{R}$. Then put $f=h_{1} * f_{0}$, where $f_{0}$ is exponentially multiplicative,

$$
f_{0}\left(p^{k}\right)=\frac{f\left(p^{k}\right)}{p^{k}} \quad(p \text { prime }, \quad k \in \mathbb{N})
$$

and

$$
\sum_{n=1}^{\infty} \frac{\left|h_{1}(n)\right|}{n}<\infty
$$

Defining $(1 \leq u \leq x)$

$$
K_{1}(u)=\left(\mathbf{1} * \Lambda_{f_{0}} * f\right)(u)
$$

we conclude

$$
\mathbf{1} * L_{0} f=\mathbf{1} * \Lambda_{f_{0}} * f+\mathbf{1} * \Lambda_{h_{1}} * f
$$

which implies (cf. (1.3)), for $2 \leq u \leq x$,

$$
M(u)=\frac{K_{1}(u)}{\log u}+o\left(\frac{u}{\log u} \exp \left(\sum_{p \leq u} \frac{g(p)}{p}\right)\right) .
$$

Now we argue as in [5]

$$
\begin{aligned}
\int_{1}^{x} \frac{|M(u)|}{u^{2}} d u & \leq \int_{1}^{x^{\varepsilon}} \frac{|M(u)|}{u^{2}} d u+\int_{x^{\varepsilon}}^{x} \frac{|M(u)|}{u^{2}} d u:= \\
& :=I_{1}+I_{2}
\end{aligned}
$$

Then (cf.(1.4))

$$
I_{1} \ll \varepsilon^{\alpha} \exp \left(\sum_{p \leq x} \frac{g(p)}{p}\right)
$$

and

$$
I_{2} \ll \frac{1}{\varepsilon}\left(\frac{1}{\log x} \int_{2}^{x} \frac{\left|K_{1}(u)\right|^{2}}{u^{3}} d u\right)^{\frac{1}{2}}+o\left(\exp \left(\sum_{p \leq x} \frac{g(p)}{p}\right)\right) .
$$

From this we obtain, by Parseval's equality,

$$
\int_{2}^{x} \frac{\left|K_{1}(u)\right|^{2}}{u^{3}} d u \ll \int_{-\infty}^{\infty}\left|\frac{F_{0}^{\prime}(s)^{2}}{F_{0}(s)}\right|^{2}|F(s)|^{2} \frac{d t}{|s|^{2}}
$$

Now, observe (cf. (4.5) of [7])

$$
\int_{-\frac{1}{2}}^{\frac{1}{2}}\left|\frac{F_{0}^{\prime}}{F_{0}}\left(1+\frac{1}{\log x}+i k+i t\right)\right|^{2} d t \ll \int_{-\frac{1}{2}}^{\frac{1}{2}}\left|\frac{\zeta^{\prime}}{\zeta}\left(1+\frac{1}{\log x}+i k+i t\right)\right|^{2} d t \ll \log x
$$

and

$$
|F(s)|=o(G(\sigma)) \quad \text { for } \quad|t| \leq K .
$$

Then

$$
\begin{gather*}
\int_{-\infty}^{\infty}\left|\frac{F_{0}^{\prime}}{F_{0}}\left(1+\frac{1}{\log x}+i k+i t\right)\right|^{2}\left|F\left(1+\frac{1}{\log x}+i t\right)\right|^{2} \frac{d t}{|s|^{2}} \leq \\
\left.\leq \sum_{\substack{k \in \mathbb{Z} \\
|k| \leq K}} \frac{o\left(G^{2}(\sigma)\right)}{k^{2}+1} \int_{-\frac{1}{2}}^{\frac{1}{2}}\left|\frac{F_{0}^{\prime}}{F_{0}}\left(1+\frac{1}{\log x}+i k+i t\right)\right|^{2} \right\rvert\, d t+ \\
\left.\quad+\sum_{\substack{k \in \mathbb{Z} \\
|k|>K}} \frac{G^{2}(\sigma)}{k^{2}+1} \int_{-\frac{1}{2}}^{\frac{1}{2}}\left|\frac{F_{0}^{\prime}}{F_{0}}\left(1+\frac{1}{\log x}+i k+i t\right)\right|^{2} \right\rvert\, d t \leq  \tag{2.1}\\
\leq \delta \log x \exp \left(2 \sum_{p \leq x} \frac{g(p)}{p}\right) \text { if } K \geq K_{0}(\delta) \text { for every } \delta>0
\end{gather*}
$$

This ends the proof, if (1.2) diverges for all $a \in \mathbb{R}$.
Assume that (1.4) converges for $a=a_{0}$. Define $g_{a_{0}}$ by

$$
g_{a_{0}}=g(n) n^{i a_{0}} \quad \text { for } n \in \mathbb{N}
$$

and put

$$
M=\mathbf{1} *\left(f-A_{x} g_{a_{0}}\right),
$$

where

$$
A_{x}=\frac{H_{1}\left(1+i a_{0}\right)}{H(1)} \exp \left(\sum_{p \leq x} \frac{f(p) p^{-i a_{0}}-g(p)}{p}\right)
$$

Then

$$
L M=\mathbf{1} * L_{0}\left(f-A_{x} g_{a_{0}}\right)+R_{1}^{\prime},
$$

where $R_{1}^{\prime}=L *\left(f-A_{x} g_{a_{0}}\right)$ and

$$
R_{1}^{\prime}(x) \ll \frac{x}{\log x} \exp \left(\sum_{p \leq x} \frac{g(p)}{p}\right) .
$$

Further

$$
\mathbf{1} * L_{0}\left(f-A_{x} g_{a_{0}}\right)=\mathbf{1} * \Lambda_{f_{0}} *\left(f-A_{x} g_{a_{0}}\right)+R_{2}^{\prime}+R_{3}^{\prime},
$$

where

$$
\begin{aligned}
& R_{2}^{\prime}=1 * \Lambda_{h_{1}} *\left(f-A_{x} g_{a_{0}}\right) \\
& R_{3}^{\prime}=1 * A_{x} g_{a_{0}} *\left(\Lambda_{f}-\Lambda_{g_{a_{0}}}\right) .
\end{aligned}
$$

The convergence of $\sum_{p}\left(g(p)-\operatorname{Re} f(p) p^{-i a_{0}}\right) p^{-1}$ implies

$$
\sum_{p} \frac{\left|g(p)-\operatorname{Ref}(p) p^{-i a_{0}}\right|^{2}}{p}<\infty
$$

and

$$
R_{3}^{\prime}(x)=O\left(\varepsilon^{\alpha} x \exp \left(\sum_{p \leq x} \frac{g(p)}{p}\right)\right)+o\left(x \exp \left(\sum_{p \leq x} \frac{g(p)}{p}\right)\right)
$$

In any case

$$
R_{2}^{\prime}(x)=o\left(x \exp \left(\sum_{p \leq x} \frac{g(p)}{p}\right)\right) .
$$

Now, in the same way as above we obtain

$$
\begin{gather*}
\int_{x^{\varepsilon}}^{x} \frac{|M(u)|}{u^{2}} d u \ll \frac{1}{\varepsilon}\left(\frac{1}{\log x} \int_{-\infty}^{\infty}\left|\frac{F_{0}^{\prime}(s)}{F_{0}(s)}\right|^{2}\left|F(s)-A_{x} G\left(s-i a_{0}\right)\right|^{2} \frac{d t}{|s|^{2}}\right)^{\frac{1}{2}}+  \tag{2.2}\\
+o\left(\exp \left(\sum_{p \leq x} \frac{g(p)}{p}\right)\right) .
\end{gather*}
$$

The integral on the right side of (2.2) can be estimated by

$$
\int_{-\infty}^{\infty}\left|\frac{F_{0}^{\prime}\left(s+i a_{0}\right)}{F_{0}\left(s+i a_{0}\right)}\right|^{2}\left|F\left(s+i a_{0}\right)-A_{x} G(s)\right|^{2} \frac{d t}{|s|^{2}}
$$

Observe

$$
\left|F\left(s+i a_{0}\right)-A_{x} G(s)\right|=o(G(\sigma))=o\left(\exp \left(\sum_{p \leq x} \frac{g(p)}{p}\right)\right) \quad \text { for } t \in I_{1}(\varepsilon)
$$

and

$$
\max \left\{\left|F\left(s+i a_{0}\right),|G(s)|\right\} \ll \varepsilon^{\alpha \beta} \exp \left(\sum_{p \leq x} \frac{g(p)}{p}\right) \quad \text { for } t \in I_{2}(\varepsilon)\right.
$$

Arguing as in (2.1) shows

$$
\begin{equation*}
\sum_{n \leq x} f(n)=A_{x} \sum_{n \leq x} g(n) n^{i a_{0}}+o\left(\sum_{n \leq x} g(n)\right) \tag{2.3}
\end{equation*}
$$

Now the assertion of Proposition 1.1 can be written as ([5], (2.1))

$$
M^{*}(x):=\sum_{n \leq x} g(n) \sim \alpha x(\log x)^{\alpha-1} L^{*}(\log x)
$$

where the function $L^{*}$ is slowly oscillating. An integration by parts gives a representation

$$
\begin{gathered}
\sum_{n \leq x} g(n) n^{i a_{0}}=x^{i a_{0}} M^{*}(x)-i a_{0} \int_{2}^{x} u^{i a_{0}-1} M^{*}(u) d u= \\
=\alpha x^{1+i a_{0}}(\log x)^{\alpha-1} L^{*}(\log x)-\alpha i a_{0} \int_{2}^{x} u^{i a_{0}}(\log u)^{\alpha-1} L^{*}(\log u) d u
\end{gathered}
$$

provided $x$ is not integer. Then, within an acceptable error, $L^{*}(\log u)$, for $x^{\varepsilon} \leq$ $u \leq x$, may be replaced by $L^{*}(\log x)$ and factored out of the representation:

$$
\begin{aligned}
\sum_{n \leq x} g(n) n^{i a_{0}} & =\alpha L^{*}(\log x)\left\{x^{1+i a_{0}}(\log x)^{\alpha-1}-i a_{0} \int_{2}^{x} u^{i a_{0}}(\log u)^{\alpha-1} d u\right\} \\
& =\alpha L^{*}(\log x) \frac{x^{i a_{0}}}{1+i a_{0}} x(\log x)^{\alpha-1}+o\left(M^{*}(x)\right) \\
& =\frac{x^{i a_{0}}}{1+i a_{0}} M^{*}(x)+o\left(M^{*}(x)\right)
\end{aligned}
$$

which, by (2.3), ends the proof of Proposition 1.2.

## References

[1] Daboussi, H. and Indlekofer, K.-H., Two elemantary proofs of Halász theorem, Math. Z., 209 (1992), 43-52.
[2] Erdős, P., Some unsolved problems, Michigan Math. J., 4 (1957), 291-300.
[3] Halász, G., Über die Mittelwerte multiplikativer zahlentheoretischer Funktionen, Acta. Mat. Sci. Hung., 219 (1986), 365-403.
[4] Indlekofer, K.-H., Remarks on an elementary proof of Halász's theorem, Liet. Matem. Rink., 33 (1993), 417-423.
[5] Indlekofer, K.-H., Kátai, I. and Wagner, R., A comparative result for multiplicative functions, Liet. Matem. Rink., 41 (2) (2001), 183-201.
[6] Indlekofer, K.-H., Identities in the convolution arithmetic of number theoretical functions, Annales Univ. Sci. Budapest., Sect. Comp., 28 (2008), 303-325.
[7] Indlekofer, K.-H., A new proof of a result of Wirsing for multiplicative functions, Manuskript.
[8] Wintner, A., Eratosthenian Averages, Waverly Press, Baltimore, 1943.
[9] Wirsing, E., Das aymptotische Verhalten von Summen über multiplikative Funktionen II, Acta Math. Acad. Sci. Hung., 18 (1967), 411-467.

E. Kaya<br>kayaerdener@mersin.edu.tr


[^0]:    Key words and phrases: Convolution of arithmetical functions, multiplicative functions. 2010 Mathematics Subject Classification: 11A25, 11K65.

