ON SOME RESULTS OF INDLEKOFER FOR MULTIPLICATIVE FUNCTIONS II.

Erdener Kaya (Cologne, Germany)

Communicated by Imre Kátai

(Received April 20, 2023; accepted May 10, 2023)

Abstract. In this paper we describe how convolution arithmetic is be used for the investigation of the asymptotic mean behaviour of multiplicative functions.

1. Introduction

The average values

$$M(f,x):=x^{-1}\sum_{n\leq x}f(n)$$

of multiplicative functions $f : \mathbb{N} \to \mathbb{C}$ have long been an object of study in the theory of numbers. The problem of establishing the existence of the *mean values*

$$M(f):=\lim_{x\to\infty}M(f,x)$$

was considered by Wintner [8] in his book on Eratosthenian Averages where he, in particular, asserted that limit M(f) always exists if f assumes only the values ± 1 . The sketch of his proof, however, could not be substantiated, and, thus, the problem remained for a considerable time as a conjecture, variously ascribed to Erdős and Wintner (see [2]). In his paper [9], of 1967, Wirsing proved his celebrated mean-value theorem which asserts, in particular, that any real-valued multiplicative function f of modulus ≤ 1 has a mean value (see Proposition 1.2). This solved the aforementioned conjecture of Erdős and Wintner. Two typical results are as follows.

Key words and phrases: Convolution of arithmetical functions, multiplicative functions. 2010 Mathematics Subject Classification: 11A25, 11K65.

Proposition 1.1. Let g be a multiplicative function which assumes real nonnegative values only. Let

$$\sum_{p \le x} \frac{g(p) \log p}{p} \sim \alpha \log x, \ x \to \infty,$$

hold with a constant $\alpha > 0$. Furthermore, let g(p) = O(1) for all primes p, and let

$$\sum_{p,k\geq 2} p^{-k}g(p^k) < \infty.$$

Besides this, if $\alpha \leq 1$, then let

$$\sum_{p^k \le x, k \ge 2} g(p^k) = O(x(\log x)^{-1}).$$

Then

$$\sum_{n \le x} g(n) \sim \frac{e^{-\gamma \alpha} x}{\Gamma(\alpha) \log x} \prod_{p \le x} \left(1 + \frac{g(p)}{p} + \frac{g(p^2)}{p^2} + \cdots \right)$$

as $x \to \infty$. Here γ denotes Euler's constant.

Furthermore Wirsing proved in [9]

Proposition 1.2. Let g satisfy the conditions of Proposition 1.1, and let f be a real-valued multiplicative function which satisfies $|f(n)| \leq g(n)$ for every positive integer n. Then

$$\lim_{x \to \infty} \frac{\sum\limits_{n \le x} f(n)}{\sum\limits_{n \le x} g(n)} = \prod_{p} \left(1 + \sum_{k=1}^{\infty} p^{-k} f(p^{k}) \right) \left(1 + \sum_{k=1}^{\infty} p^{-k} g(p^{k}) \right)^{-1},$$

where the product either converges properly to a nonzero limit, or improperly to zero.

These results are generalizations of the case where $|g(n)| \equiv 1$, so that $\alpha = 1$. In these circumstances, the general case (f complex-valued and $|f| \leq 1$) was handled by Halász [3], and his main result is given by the following

Proposition 1.3. Let $f : \mathbb{N} \to \mathbb{C}$ be multiplicative, $|f| \leq 1$. If there exists a real number a_0 such that the series

(1.1)
$$\sum_{p} p^{-1} (1 - Ref(p)p^{-ia})$$

converges for $a = a_0$, then, as $x \to \infty$,

$$x^{-1}\sum_{n\leq x}f(n) = \frac{x^{ia_0}}{1+ia_0}\prod_{p\leq x}(1-p^{-1})\left(1+\sum_{m=1}^{\infty}p^{-m(1+ia_0)}f(p^m)\right) + o(1).$$

If the series (1.1) diverges for all $a \in \mathbb{R}$, then

$$x^{-1}\sum_{n\leq x}f(n)=o(1), \ x\to\infty.$$

In both cases, there are constants c, a_0 and a slowly oscillating function $\tilde{L}(u)$ with $|\tilde{L}(u)| = 1$ such that, as $x \to \infty$,

$$x^{-1} \sum_{n \le x} f(n) = c x^{ia_0} \tilde{L}(\log x) + o(1).$$

Proposition 1.3 includes Wirsing's result (for $|f| \leq 1$), and essentially the case where (1.1) diverges for all $a \in \mathbb{R}$ (and f is complex-valued) is not covered by Proposition 1.2.

Wirsing's proof was elementary, but quite complicated, whereas Halász's proof was based upon analytic methods.

In [1], Daboussi and Indlekofer succeeded in finding an elementary proof of Halász's theorem (see also Indlekofer [4] for a simplified and shorter proof).

Indlek
ofer, Kátai and Wagner [5] used the methods of [4] to compare
 $\sum_{n \leq x} f(n)$ with $\sum_{n \leq x} g(n)$ where $g \geq 0$ is multiplicative and
 $|f| \leq g$. They showed

Proposition 1.4. Let g be a multiplicative function which assumes real nonnegative values only. Let

$$\sum_{p \le x} \frac{\log p}{p} g(p) \sim \tau \log x, \ x \to \infty,$$

hold with a constant $\tau > 0$. Furthermore, let g(p) = O(1) for all primes p, and let

$$\sum_{p,k\geq 2} p^{-k}g(p^k) < \infty$$

Besides this, if $\tau \leq 1$, then let

$$\sum_{p^k \le x, k \ge 2} g(p^k) = O\left(x(logx)^{-1}\right).$$

Let f be a complex-valued function, which satisfies $|f(n)| \leq g(n)$ for every positive integer n. If there exists a real number a_0 such that the series

(1.2)
$$\sum_{p} p^{-1}(g(p) - Ref(p)p^{-ia})$$

converges for $a = a_0$, then

$$\sum_{n \le x} f(n) = \frac{x^{ia_0}}{1 + ia_0} \prod_{p \le x} \left(1 + \sum_{m=1}^{\infty} \frac{f(p^m)}{p^{m(1+ia_0)}} \right) \left(1 + \sum_{m=1}^{\infty} \frac{g(p^m)}{p^m} \right)^{-1} \sum_{n \le x} g(n) + o\left(\sum_{n \le x} g(n) \right)$$

as $x \to \infty$. If the series (1.2) diverges for all $a \in \mathbb{R}$, then

$$\sum_{n \le x} f(n) = o\left(\sum_{n \le x} g(n)\right), \quad x \to \infty.$$

In both cases, there are constants c, a_0 and a slowly oscillating function \tilde{L} with $|\tilde{L}(u)| = 1$ such that, as $x \to \infty$,

$$\sum_{n \le x} f(n) = \left(c x^{ia_0} \tilde{L}(\log x) + o(1) \right) \sum_{n \le x} g(n)$$

In [7] Indlekofer gave a new proof of Proposition 1.1. For this he used the convolution arithmetic desribed, for example, in [6]. The idea of the proof is as follows.

Let g as in the Proposition 1.1. Define an exponentially multiplicative function g_0 by

$$g_0(p^k) = \frac{g(p)}{k!} \quad (p \ prime, \ k \in \mathbb{N}).$$

Then $g = h * g_0$ where

$$\sum_{n=1}^{\infty} \frac{|h(n)|}{n} < \infty.$$

Further, define the multiplicative function τ_{α} by

$$\sum_{n=1}^{\infty} \frac{\tau_{\alpha}(n)}{n^s} = \zeta^{\alpha}(s),$$

where $\zeta(s)$ is Riemann's zeta-function. Then put

$$A(x) := H(1)e^{\alpha c} \exp\left(\sum_{p \le x} \frac{g(p) - \alpha}{p}\right),$$

where $H(1) = \sum_{n=1}^{\infty} \frac{h(n)}{n}$ and

$$c = \sum_{p} \left(\frac{1}{p} + \log(1 - \frac{1}{p})\right).$$

Define, for $1 \le u \le x$,

$$M(u) := 1 * (g - A(x)\tau_{\alpha})(u) = = \sum_{n \le u} (g(n) - A(x)\tau_{\alpha}(n)).$$

Then by convolution arithmetic, Indlekofer shows

 $L^2M = M*(\Lambda_{g_0}*\Lambda_{g_0}+L_0\Lambda_{g_0}) + (R_1+R_2+R_3)*\Lambda_{g_0} + L(R_1+R_2+R_3),$ where

$$R_{1} = L * (g - A(x)\tau_{\alpha}),$$

$$R_{2} = \mathbf{1} * (L_{0}h * g_{0}),$$

$$R_{3} = -\mathbf{1} * A(x)\tau_{\alpha} * (\Lambda_{\tau_{\alpha}} - \Lambda_{g_{0}}).$$

In the first step this leads to

$$|M(x)| \ll \frac{x}{\log x} \int_{1}^{x} \frac{|M(u)|}{u^2} du + o\left(\frac{x}{\log x} \exp\left(\sum_{p \le x} \frac{g(p)}{p}\right)\right) \quad as \ x \to \infty.$$

Next, define an exponentially multiplicative function \overline{g}_0 by

$$\overline{g}_0(p^k) = \begin{cases} g_0(p^k) & \text{for } p \le x, \ k \ge 1\\ \alpha/k! & \text{for } p > x, \ k \ge 1 \end{cases}$$

and put $\overline{g} = h * \overline{g}_0$. Choosing

$$K_0(u) = 1 * \Lambda_{\overline{g}_0} * (\overline{g} - A(x)\tau_\alpha)(u)$$

he obtains, for $2 \le u \le x$,

(1.3)
$$M(u) = \frac{K_0(u)}{\log u} + o\left(\frac{u}{\log u} \exp\left(\sum_{p \le u} \frac{g(p)}{p}\right)\right).$$

Now

$$\int_{1}^{x} \frac{|M(u)|}{u^{2}} du \leq \int_{1}^{x^{\varepsilon}} \frac{|M(u)|}{u^{2}} du + \int_{x^{\varepsilon}}^{x} \frac{|M(u)|}{u^{2}} du =:$$
$$=: I_{1} + I_{2}.$$

Then (1, 4)

(1.4)

$$I_1 \le \sum_{n \le x^{\varepsilon}} \frac{|g(n) - A(x)\tau_{\alpha}(n)|}{n} \ll \varepsilon \exp\left(\sum_{p \le x} \frac{g(p)}{p}\right) + \varepsilon^{\alpha} \exp\left(\sum_{p \le x} \frac{g(p)}{p}\right)$$

and

$$I_2 \le \frac{1}{\varepsilon} \left(\frac{1}{\log x} \int_2^x \frac{|K_0(u)|^2}{u^3} du \right)^{\frac{1}{2}} + o\left(\exp\left(\sum_{p \le x} \frac{g(p)}{p} \right) \right).$$

Put $\sigma = 1 + \frac{1}{\log x}$. Then

$$\int_{2}^{x} \frac{|K_{0}(u)|^{2}}{u^{3}} du \leq e^{2} \int_{2}^{x} \frac{|K_{0}(u)|^{2}}{u^{3+2(\sigma-1)}} du.$$

Since $(s = \sigma + it)$

$$\int_{0}^{\infty} K_0(e^u) e^{-us} e^{-iut} dt = \frac{\overline{G}_0'(s)}{\overline{G}_0(s)} (\overline{G}(s) - A(x)\zeta^{\alpha}(s)),$$

where

$$\overline{G}_0(s) = \sum_{n=1}^{\infty} \frac{\overline{g}_0(n)}{n^s}$$
 and $\overline{G}(s) = \sum_{n=1}^{\infty} \frac{\overline{g}(n)}{n^s}$,

he concludes, by Parseval's equation,

(1.5)
$$\int_{1}^{\infty} \frac{|K_0(u)|^2}{u^{3+2(\sigma-1)}} du = \frac{1}{2\pi} \int_{-\infty}^{\infty} \left| \frac{\overline{G}_0'(s)}{\overline{G}_0(s)} \right|^2 |\overline{G}(s) - A(x)\zeta^{\alpha}(s)|^2 \frac{dt}{|s|^2}.$$

Estimating the last integral in (1.5) by $o\left(\log x \exp\left(2\sum_{p\leq x} \frac{g(p)}{p}\right)\right)$ ends the proof of Proposition 1.1.

In this paper we we give a new proof of the result of Indlekofer–Kátai–Wagner [5] (see Proposition 1.2) by using the method of Indlekofer [7].

2. Proof of Proposition 1.2

We first assume that (1.2) diverges for all $a \in \mathbb{R}$. Then put $f = h_1 * f_0$, where f_0 is exponentially multiplicative,

$$f_0(p^k) = \frac{f(p^k)}{p^k} \ (p \ prime, \ k \in \mathbb{N})$$

and

$$\sum_{n=1}^{\infty} \frac{|h_1(n)|}{n} < \infty.$$

Defining $(1 \le u \le x)$

$$K_1(u) = (\mathbf{1} * \Lambda_{f_0} * f)(u)$$

we conclude

$$\mathbf{1} * L_0 f = \mathbf{1} * \Lambda_{f_0} * f + \mathbf{1} * \Lambda_{h_1} * f$$

which implies (cf. (1.3)), for $2 \le u \le x$,

$$M(u) = \frac{K_1(u)}{\log u} + o\left(\frac{u}{\log u} \exp\left(\sum_{p \le u} \frac{g(p)}{p}\right)\right).$$

Now we argue as in [5]

$$\int_{1}^{x} \frac{|M(u)|}{u^{2}} du \leq \int_{1}^{x^{\epsilon}} \frac{|M(u)|}{u^{2}} du + \int_{x^{\epsilon}}^{x} \frac{|M(u)|}{u^{2}} du :=$$
$$:= I_{1} + I_{2}.$$

Then (cf.(1.4))

$$I_1 \ll \varepsilon^{\alpha} \exp\left(\sum_{p \le x} \frac{g(p)}{p}\right)$$

and

$$I_2 \ll \frac{1}{\varepsilon} \left(\frac{1}{\log x} \int_2^x \frac{|K_1(u)|^2}{u^3} du \right)^{\frac{1}{2}} + o\left(\exp\left(\sum_{p \le x} \frac{g(p)}{p} \right) \right).$$

From this we obtain, by Parseval's equality,

$$\int_{2}^{x} \frac{|K_{1}(u)|^{2}}{u^{3}} du \ll \int_{-\infty}^{\infty} \left| \frac{F_{0}'(s)^{2}}{F_{0}(s)} \right|^{2} |F(s)|^{2} \frac{dt}{|s|^{2}}.$$

Now, observe (cf. (4.5) of [7])

$$\int_{-\frac{1}{2}}^{\frac{1}{2}} \left| \frac{F_0'}{F_0} (1 + \frac{1}{\log x} + ik + it) \right|^2 dt \ll \int_{-\frac{1}{2}}^{\frac{1}{2}} \left| \frac{\zeta'}{\zeta} (1 + \frac{1}{\log x} + ik + it) \right|^2 dt \ll \log x$$

and

$$|F(s)| = o(G(\sigma)) \quad for \quad |t| \le K.$$

Then

$$\int_{-\infty}^{\infty} \left| \frac{F'_0}{F_0} (1 + \frac{1}{\log x} + ik + it) \right|^2 |F(1 + \frac{1}{\log x} + it)|^2 \frac{dt}{|s|^2} \le \\ \le \sum_{\substack{k \in \mathbb{Z} \\ |k| \le K}} \frac{o(G^2(\sigma))}{k^2 + 1} \int_{-\frac{1}{2}}^{\frac{1}{2}} \left| \frac{F'_0}{F_0} (1 + \frac{1}{\log x} + ik + it) \right|^2 |dt + \\ + \sum_{\substack{k \in \mathbb{Z} \\ |k| > K}} \frac{G^2(\sigma)}{k^2 + 1} \int_{-\frac{1}{2}}^{\frac{1}{2}} \left| \frac{F'_0}{F_0} (1 + \frac{1}{\log x} + ik + it) \right|^2 |dt \le \\ \le \delta \log x \exp\left(2\sum_{p \le x} \frac{g(p)}{p}\right) \quad if \ K \ge K_0(\delta) \ for \ every \ \delta > 0.$$

This ends the proof, if (1.2) diverges for all $a \in \mathbb{R}$.

Assume that (1.4) converges for $a = a_0$. Define g_{a_0} by

$$g_{a_0} = g(n)n^{ia_0} \quad for \quad n \in \mathbb{N}$$

and put

$$M = \mathbf{1} * (f - A_x g_{a_0}),$$

where

$$A_x = \frac{H_1(1+ia_0)}{H(1)} \exp\left(\sum_{p \le x} \frac{f(p)p^{-ia_0} - g(p)}{p}\right).$$

Then

$$LM = \mathbf{1} * L_0(f - A_x g_{a_0}) + R'_1,$$

where $R'_{1} = L * (f - A_{x}g_{a_{0}})$ and

$$R'_1(x) \ll \frac{x}{\log x} \exp\left(\sum_{p \le x} \frac{g(p)}{p}\right).$$

Further

$$\mathbf{1} * L_0(f - A_x g_{a_0}) = \mathbf{1} * \Lambda_{f_0} * (f - A_x g_{a_0}) + R'_2 + R'_3$$

where

$$\begin{aligned} R'_2 &= \mathbf{1} * \Lambda_{h_1} * (f - A_x g_{a_0}), \\ R'_3 &= \mathbf{1} * A_x g_{a_0} * (\Lambda_f - \Lambda_{g_{a_0}}). \end{aligned}$$

The convergence of $\sum_{p} (g(p) - Ref(p)p^{-ia_0})p^{-1}$ implies

$$\sum_{p} \frac{|g(p) - \operatorname{Ref}(p)p^{-ia_0}|^2}{p} < \infty$$

and

$$R'_{3}(x) = O\left(\varepsilon^{\alpha} x \exp\left(\sum_{p \le x} \frac{g(p)}{p}\right)\right) + o\left(x \exp\left(\sum_{p \le x} \frac{g(p)}{p}\right)\right).$$

In any case

$$R'_2(x) = o\left(x \exp\left(\sum_{p \le x} \frac{g(p)}{p}\right)\right).$$

Now, in the same way as above we obtain

(2.2)
$$\int_{x^{\varepsilon}}^{x} \frac{|M(u)|}{u^2} du \ll \frac{1}{\varepsilon} \left(\frac{1}{\log x} \int_{-\infty}^{\infty} \left| \frac{F_0'(s)}{F_0(s)} \right|^2 |F(s) - A_x G(s - ia_0)|^2 \frac{dt}{|s|^2} \right)^{\frac{1}{2}} + o\left(\exp\left(\sum_{p \le x} \frac{g(p)}{p} \right) \right).$$

The integral on the right side of (2.2) can be estimated by

$$\int_{-\infty}^{\infty} \left| \frac{F_0'(s+ia_0)}{F_0(s+ia_0)} \right|^2 |F(s+ia_0) - A_x G(s)|^2 \frac{dt}{|s|^2}.$$

Observe

$$|F(s+ia_0) - A_x G(s)| = o(G(\sigma)) = o\left(\exp\left(\sum_{p \le x} \frac{g(p)}{p}\right)\right) \quad for \ t \in I_1(\varepsilon)$$

and

$$\max\{|F(s+ia_0), |G(s)|\} \ll \varepsilon^{\alpha\beta} \exp\left(\sum_{p \le x} \frac{g(p)}{p}\right) \text{ for } t \in I_2(\varepsilon)$$

Arguing as in (2.1) shows

(2.3)
$$\sum_{n \le x} f(n) = A_x \sum_{n \le x} g(n) n^{ia_0} + o\left(\sum_{n \le x} g(n)\right).$$

Now the assertion of Proposition 1.1 can be written as ([5], (2.1))

$$M^*(x) := \sum_{n \le x} g(n) \sim \alpha x (\log x)^{\alpha - 1} L^*(\log x)$$

where the function L^\ast is slowly oscillating. An integration by parts gives a representation

$$\sum_{n \le x} g(n)n^{ia_0} = x^{ia_0}M^*(x) - ia_0 \int_2^x u^{ia_0-1}M^*(u)du =$$
$$= \alpha x^{1+ia_0}(\log x)^{\alpha-1}L^*(\log x) - \alpha ia_0 \int_2^x u^{ia_0}(\log u)^{\alpha-1}L^*(\log u)du$$

provided x is not integer. Then, within an acceptable error, $L^*(\log u)$, for $x^{\varepsilon} \le u \le x$, may be replaced by $L^*(\log x)$ and factored out of the representation:

$$\begin{split} \sum_{n \le x} g(n) n^{ia_0} &= \alpha L^* (\log x) \{ x^{1+ia_0} (\log x)^{\alpha-1} - ia_0 \int_2^x u^{ia_0} (\log u)^{\alpha-1} du \} \\ &= \alpha L^* (\log x) \frac{x^{ia_0}}{1+ia_0} x (\log x)^{\alpha-1} + o(M^*(x)) \\ &= \frac{x^{ia_0}}{1+ia_0} M^*(x) + o(M^*(x)) \end{split}$$

which, by (2.3), ends the proof of Proposition 1.2.

References

- Daboussi, H. and Indlekofer, K.-H., Two elemantary proofs of Halász theorem, Math. Z., 209 (1992), 43–52.
- [2] Erdős, P., Some unsolved problems, Michigan Math. J., 4 (1957), 291–300.
- [3] Halász, G., Über die Mittelwerte multiplikativer zahlentheoretischer Funktionen, Acta. Mat. Sci. Hung., 219 (1986), 365–403.
- [4] Indlekofer, K.-H., Remarks on an elementary proof of Halász's theorem, Liet. Matem. Rink., 33 (1993), 417–423.
- [5] Indlekofer, K.-H., Kátai, I. and Wagner, R., A comparative result for multiplicative functions, *Liet. Matem. Rink.*, 41 (2) (2001), 183–201.
- [6] Indlekofer, K.-H., Identities in the convolution arithmetic of number theoretical functions, Annales Univ. Sci. Budapest., Sect. Comp., 28 (2008), 303–325.
- [7] Indlekofer, K.-H., A new proof of a result of Wirsing for multiplicative functions, *Manuskript*.
- [8] Wintner, A., Eratosthenian Averages, Waverly Press, Baltimore, 1943.
- [9] Wirsing, E., Das aymptotische Verhalten von Summen über multiplikative Funktionen II, Acta Math. Acad. Sci. Hung., 18 (1967), 411–467.

E. Kaya

kayaerdener@mersin.edu.tr