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Abstract. In the simple random walk the steps are independent, whereas
in the elephant random walk (ERW), which was introduced by Schütz and
Trimper in 2004 [33], the next step always depends on the whole path so
far. In a series of earlier papers we have investigated some variations and
extensions, in particular cases when the elephant has a restricted memory.
In the present paper we summarize and extend some results on elephant
random walks, closing with some remarks and open questions.

1. Introduction

In the classical simple random walk the steps are equal to plus or minus
one and independent: P (X = 1) = 1−P (X = −1); the walker has no memory.
The walk is, in particular, Markovian. The other extreme is when the walker
has a complete memory, that is, when the next step depends on the whole
process so far. This is the case for the so called elephant random walk (ERW)
that was introduced by Schütz and Trimper [33] in 2004. The name refers to
the fact that elephants have a very long memory. The first mathematically
more rigorous papers in the area are, to the best of our knowledge, due to
Bercu [3] and Coletti et al. [13]. A main point is that the ERW is subject to
a phase transition, which results in a diffusive regime, a critical regime, and
a superdiffusive regime, with somewhat different asymptotics. It turns, för
example, out that usual strong laws hold in the former cases but not in the
superdiffusive one.

Key words and phrases: Elephant random walks, number of zeros, law of large numbers,
central limit theorem, Markov chain.
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Our interest in the topic centers around cases when the walker has some
(restricted) memory. In a series of earlier papers we have investigated some
variations and extensions in this direction, such as models in which the elephant
remembers only some distant past, only a recent past or a mixture of both.
In those models there is, contrary to the classical case, no phase transition.
Moreover, in some instances the behavior is dramatically different.

Some of our work was motivated by simulations [34, 16, 31]. There are also
connections to the concept of memory lapse; [18].

After describing some models and tools we review the classical case, after
which we present a collection of our findings for the various generalizations of
the ERW and replenish them with related results from the literature. We add
some new results on first passage times. Proofs are scarce; for details we refer
to the original papers. We close with some remarks for future thoughts and an
appendix containing some mathematical tools.

2. Models

Following [3], the elephant random walk is defined as a random walk in
which the first step X1 equals 1 with probability s ∈ [0, 1] and −1 with proba-
bility 1− s. After n steps, at position Sn =

∑n
k=1Xk, the next step is defined

as

Xn+1 =

{
+XK , with probability p ∈ [0, 1],
−XK , with probability 1− p,

(2.1)

where K = K(n) has a uniform distribution on the integers 1, 2, . . . , n. For
convenience, we assume that s = p.

Via martingale methods Bercu, in [3], establishes asymptotics for the ERW.
It turns out that the results depend crucially on the parameter p. More pre-
cisely, there is a diffusive regime (0 ≤ p < 3/4), a critical regime (p = 3/4) and
a superdiffusive one (3/4 < p ≤ 1).

In [22] we investigated analogous questions under the assumption that the
elephant has a limited memory, such as remembering only the first step, the
last step or both. We describe the memory via the index set Mn ⊂ {1, . . . , n}.
Since there is no martingale around we had to rely on alternative methods.

In [24] we additionally assumed that the elephant may stay put at each
step. The rule for a next step is then governed by

Xn+1 =

⎧⎪⎨⎪⎩
+XK , with probability p ∈ [0, 1],
−XK , with probability q ∈ [0, 1],
0, with probability r ∈ [0, 1],

(2.2)
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where p+ q+ r = 1, and where K = K(n) has a uniform distribution over Mn.
Let us mention in passing that, in the special case when the memory consists
of the most recent step only, the ERW stops as soon as a zero appears.

When one of us (A.G.) introduced Svante Janson to the world of elephant
random walks he remarked ”det blir en väldig massa nollor” (there will be a
lot of zeros). This triggered us to make a quantitative investigation of this fact
(cf. [23]).

Notation

We use the standard δa to denote the distribution function with a jump of
height one at a and Nμ,σ2 for the normal distribution with mean μ and variance

σ2. The arrows
a.s.→ ,

p→ and
d→ denote convergence almost surely, in probability

and in distribution, respectively,
d
= denotes equality in distribution, and 11{·}

denotes the indicator function of the set in braces. As for distributions, W
and S(1/2, 1/2) denote the Wiener process and the stable subordinator with
parameters 1/2, respectively. Constants c and C are numerical constants that
may change between appearances.

3. Conditioning

In the classical case the behavior of the next step is governed by the relation

E(Xn+1 | Gn) = (2p− 1) · Sn
n

,(3.1)

where Gn = σ{X1, X2, . . . , Xn}, so that, noticing that X2
k = 1 for all k,

E(Sn+1 | Gn) =
(
1 +

2p− 1

n

)
· Sn;(3.2)

E((Sn+1)
2 | Gn) =

(
1 +

2(2p− 1)

n

)
· (Sn)2 + 1.(3.3)

In the delayed case the relations become somewhat more complicated. With
Vn =

∑n
k=1X

2
k ,

E(Sn+1 | Gn) =
(
1 +

p− q

n

)
· Sn;

E((Sn+1)
2 | Gn) =

(
1 +

2(p− q)

n

)
· (Sn)2 + (1− r)

Vn
n
;

E((Vn+1)
2 | Gn) =

(
1 +

1− r

n

)
Vn.
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Taking expectations on both sides provides difference equations that can be
taken care of (via Proposition A.2).

Next we need analogs for ERWs with restricted memories. Toward that
end, let Fn = σ{Xk, k ∈ Mn} for n ≥ 1. The analog of (3.1) then turns out as

E(Xn+1 | Fn) = (2p− 1) ·
∑

i∈Mn
Xi

|Mn|
.(3.4)

Conditioning on steps that are not contained in the memory means conditioning
on steps that the elephant does not remember. Thus, if A ⊂ {1, 2, . . . , n} is an
arbitrary set of indices, then

E(Xn+1 | σ{A ∪Mn}) = E(Xn+1 | Fn) = (2p− 1) ·
∑

i∈Mn
Xi

|Mn|
,(3.5)

where, throughout, 2p− 1 is replaced by p− q in the delayed case.

4. The classical case

In order to analyze the behavior of the classical ERW we have to find proper
representations. Using the notation of [3] we set

γn = 1 +
2p− 1

n
and an =

n−1∏
k=1

γ−1n =
Γ(n)Γ(2p)

Γ(n+ 2p− 1)
.

It follows, in view of Lemma A.1, that {Mn = anSn, n ≥ 1} is a martingale.
Exploiting the martingale property Bercu [3] establishes (i.a.) the following

result, from which we learn that the process has different regimes depending
on the parameter p.

Theorem 4.1. (a) If 0 < p < 3/4 then

Sn
n

a.s.→ 0 and
Sn√
n

d→ N0,1/(3−4p) as n → ∞.

(b) If p = 3/4 then

Sn√
n log n

a.s.→ 0 and
Sn√

n log n

d→ N0,1 as n → ∞.

(c) If p > 3/4 then

Sn
n2p−1

a.s.→ L as n → ∞, for some nondegenerate rv L,
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defined in Theorem 3.7 of [3, 5], having moments

E(L) =
1− 2p

Γ(2p)
and E(L2) =

1

(4p− 3)Γ(2(2p− 1))
.

Remark 4.1. (Cf. [3]) For 0 < p < 3/4, there is also a LIL,

lim sup
n→∞

(lim inf
n→∞ )

Sn√
2n log log n

=
1√

3− 4p

(
− 1√

3− 4p

)
,

and a quadratic strong law,

lim
n→∞

1

log n

n∑
k=1

S2k
k2

=
1

3− 4p
a.s.

Further representations can be obtained by imbedding {Mn, n ≥ 1} into
a Wiener process {W (t), t ≥ 0}, with stopping times Tn, n ≥ 1, so that
Mn = W (Tn) for all n, or asymptotically by a weak invariance principle;
cf. Proposition A.3.

4.1. General steps

It is a relatively easy task to extend the results from [3] to a model in which

arbitrary steps are allowed. Namely, let {S̃n, n ≥ 1} be an ERW, and suppose
that R is a random variable with distribution function FR that is independent
of the walk. If S̃n/cn

a.s.→ Z as n → ∞ for some normalizing positive sequence
cn → ∞ as n → ∞ and some random variable Z, it follows from Proposition
A.1 that RS̃n/cn

a.s.→ RZ as n → ∞. We can therefore extend Theorems 3.1,
3.4 and (the first half of) Theorem 3.7 of [3]. Namely, consider the ERW for

which X̃1 ≡ 1, and let the random variables X̃n, n ≥ 2. Furthermore, let R
be a random variable, independent of {X̃n, n ≥ 1}, and consider Xn = R · X̃n,

n ≥ 1, and, hence, Sn = R · S̃n.

Theorem 4.2. (a) For 0 < p < 3/4,
Sn
n

a.s.→ 0 as n → ∞;

(b) For p = 3/4,
Sn√
n log n

a.s.→ 0 as n → ∞;

(c) For 3/4 < p < 1,
Sn

n2p−1
a.s.→ RL as n → ∞,

where L is the same as in Theorem 4.1.

As for convergence in distribution, we have to distinguish more carefully
between the three cases.
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Theorem 4.3. For 0 < p < 3/4,

Sn√
n

d→
∫

R\{0}

N0, 1
3−4p

(·/|t|) dFR(t) + P (R = 0) · δ[0,∞)(·) as n → ∞.

Moreover, if E(R2) < ∞, then

E(Sn/
√
n)→ 0 and E((Sn/

√
n)2)→ E(R2)/(3− 4p) as n → ∞.

For the critical case, p = 3/4, one similarly obtains, using [3], Theorem 3.6,
that

Sn√
n log n

d→
∫

R\{0}

N0,1(·/|t|) dFR(t) + P (R = 0) · δ[0,∞)(·) as n → ∞.

Remark 4.2. The supercritical case, 3/4 < p < 1, has a different evolution
and no analogous result exists.

4.2. Restricted memories

In this subsection we present some results, together with hints on proofs in
order to give a flavor of our procedure. For additional details we refer to our
original paper [22].

The easiest case is Mn = {1}, because then every step equals X1 with
probability p and −X1 with probability 1 − p. This means that Sn operates
like an ordinary simple random walk from step 2 on. Considering the two initial
values this yields

Sn
n

d→
{

2p− 1, with probability p,

−(2p− 1), with probability 1− p,
as n → ∞,

and

E
(Sn

n

)
→ (2p− 1)2 and Var (Sn/n)→ 4p(1− p)(2p− 1)2 as n → ∞.

If Mn = {1, 2} there are three possibilities for the first two summands; both
equal to +1, both equal to −1 and unequal. Analogous arguments show that

Sn
n

d→

⎧⎪⎪⎨⎪⎪⎩
2p− 1, with probability p2,

0, with probability 1− p,

−(2p− 1), with probability p(1− p),

as n → ∞,

and that

E
(Sn

n

)
→ p(2p−1)2 and Var (Sn/n)→ p(1−p)(2p−1)2(4p2+1) as n → ∞.
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Theorem 4.4. For Mn = {1, . . . ,m} with qk = P (Sm = m − 2k) and pk =
= m−2k

m (2p− 1) for 0 ≤ k ≤ m,

Sn
n

d→
m∑
k=0

qkδpk as n → ∞.

Remark 4.3. The quantities qk are in general not easily computed. However,
q0 = pm and qm = (1− p)pm−1.

The other extreme is when only the most recent step is remembered, viz.,
Mn = {n}. This model is also called a correlated random walk (CRW), see
e.g. [32].

We first assume X1 = 1, and denote the partial sums by Tn, n ≥ 1. Then,

E(E(Xn+1 | Fn)) = E
(
E(Xn+1 | Xn)

)
= (2p− 1) · E(Xn) for all n.

By iterating it follows, for n ≥ 0, that

E(Xn+1) = (2p− 1)nE(X1) = (2p− 1)n,

and that

E(Tn+1) =
1− (2p− 1)n+1

2(1− p)
, hence, E

(Tn
n

)
→ 0 as n → ∞.

For the second moments we obtain, via conditioning,

E(T 2n+1) = E(T 2n) + 2(2p− 1)E(TnXn) + 1 .

For the middle term we similarly obtain

E(TnXn) = E(X2
n) + E(Tn−1E(Xn | Gn−1)) = 1 + (2p− 1)E(Tn−1Xn−1) ,

which, after iteration, yields

E(TnXn) = 1 +

n−1∑
k=1

(2p− 1)k =
1− (2p− 1)n

2(1− p)
.

Combining the two relations and telescoping finally yields, as n → ∞,

E(T 2n+1) =
np

1− p
+O(1), hence, Var (Tn+1) =

np

1− p
+O(1) .

Noticing that Sn = X1Tn and that X1 = ±1 establishes the following result:
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Theorem 4.5.
Sn√
n

d→ N0, p
1−p

as n → ∞.

The Markov property provides, in addition, a strong law:

Sn
n

a.s.→ 0 as n → ∞.

Remark 4.4. If the elephant remembers a fixed, but finite, number, k say, of
the most recent steps, the sequence of steps forms a Markov chain of order k,
and we obtain, by (basically) the same arguments as above that Sn/

√
n will

be asymptotically normal (a Markov chain of order k can be considered as a
k-dimensional Markov chain).

We close this subsection with a combination of early and recent steps, no-
tably the simpliest case.

Theorem 4.6. For Mn = {1, n},

Sn
n

d→ S =

⎧⎪⎪⎨⎪⎪⎩
2p− 1

3− 2p
, with probability p,

−2p− 1

3− 2p
, with probability 1− p,

as n → ∞.

Moreover, E(Sn/n)
r → E(Sr) for all r > 0, since |Sn/n| ≤ 1 for all n.

Here is a quick sketch of the proof. For X1 = 1 we have E(X2) = 2p − 1,
and, via conditioning, that

E(Xn+1) = (2p− 1)E
(X1 +Xn

2

)
=
2p− 1

2
· (1 + E(Xn)).

Exploiting Proposition A.2(i) we obtain, for n ≥ 1,

E(Xn) =
2p− 1

3− 2p
+
(2p− 1

2

)n−1
· 4(1− p)

3− 2p
,

and, hence, after summation, that

E(Tn) = n · 2p− 1

3− 2p
+
8(1− p)

(3− 2p)2
+ o(1) as n → ∞ .

The relations for the second and mixed moments are

E(T 2n+1) = E(T 2n) + (2p− 1)E(Tn) + (2p− 1)E(TnXn) + 1,

and

E(Tn+1Xn+1) =
2p− 1

2
· E(TnXn) +

2p− 1

2
E(Tn) + 1,

respectively.

Some tedious computations and appeals to Proposition A.2 complete the
proof of the theorem.
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4.3. Increasing memory

What happens if we have a slowly increasing memory; Mn = {mn, . . . , n}
with mn ↗ ∞ but mn/n → 0? Here is a main result. For details and further
results we refer to [25].

Theorem 4.7. (a) If 0 < p < 3/4, then

Sn
√
mn

n

d→ N0,(2p−1)2/(3−4p) as n → ∞ .

(b) If p = 3/4, then

Sn
√

mn/ logmn

n

d→ N0,1/4 as n → ∞ .

(c) If 3/4 < p < 1, then

Snm
2(1−p)
n

n

d→ (2p− 1)L as n → ∞ ,

where the random variable L is the same as in Theorem 4.1.

Remark 4.5. If p = 1/2, we recall that the ERW reduces to coin-tossing,

hence, Sn/
√
n

d→ N0,1 as n → ∞. Note also that Theorem 4.7 (a) reduces to

Sn
√
mn/n

p→ 0 as n → ∞ in that case.

Remark 4.6. Another approach is given in [29] by Laulin. She replaces the
uniform distribution of the index variable K in the classical model with proba-

bilities P (K = k) = (β+1)Γ(β+k)Γ(n)
Γ(k)Γ(β+n+1) for 1 ≤ k ≤ n and β ≥ 0. The case β = 0

corresponds to the classical case, and a large β corresponds to an elephant losing
its early memory. In Laulin’s case there is a phase transition with change point
p = 4β+3

4(β+1) . Hence, it is the early memory which causes the phase transition.

5. ERWs with delays — ERWD [24]

Next we introduce the possibility of delays in that the elephant, in addition,
has a choice of staying put in every step. The steps are then governed by

Xn+1 =

⎧⎪⎨⎪⎩
+XK , with probability p ∈ [0, 1],
−XK , with probability q ∈ [0, 1],
0, with probability r ∈ [0, 1],

(5.1)

where p + q + r = 1, and where K has a uniform distribution on Mn. Here
X1 = 1,−1, 0 with probabilities p, q, and r respectively. Everything reduces,
of course, to the classical case if r = 0. Since it turns out that a key task is to
keep track of the number of zeros, it is convenient to begin by considering the
following one-zero ERW.
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5.1. The Bernoulli-ERW — BERW

We naturally define the BERW via

Xn+1 =

{
XK , with probability α ∈ [0, 1],
0, with probability 1− α.

(5.2)

Just as the ERW is a special case of an ERWD with r = 0, the BERW is a
special case of an ERWD with q = 0.

For the following result we need to define the Mittag–Leffler distribution:

Definition 5.1. Let 0 < α < 1. The Mittag–Leffler distribution with pa-
rameter α, MLα, is a distribution with moment generating function Mα(t) =
=
∑∞

n=0 t
n/Γ(1 + nα).

Theorem 5.1. ([26]) Let 0 < α < 1. Then,

P
(Sn
nα

≤ x
)
−→ α ·MLα(x) + (1− α) · δ0(x) as n → ∞ ,

where MLα denotes the Mittag–Leffler distribution with parameter α.

Moreover, for the limit variable Yα,

E(Yα) =
1

Γ(α)
and Var (Yα) =

2α

Γ(1 + 2α)
− 1

Γ2(α)
.

The proof amounts to the usual computations, however, of all moments,
after which one identifies them with the Mittag–Leffler distribution.

5.1.1. Restricted memories

We confine ourselves to stating results for our two most elementary cases
from [26] and refer to our paper for more.

Theorem 5.2. If Mn = {1}, then Sn
n

a.s.→ p 11{X1 = 1} as n → ∞.

Theorem 5.3. If Mn = {n}, then Sn
a.s.→ S as n → ∞,

where S is a geometric random variable with mean E(S) = p/(1− p).

We now return to the ERWD and its asymptotic behavior.

5.2. The ERWD with full memory

Recall (5.1) and set p̃r = 2p− 1 + r.
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Proposition 5.4. As n → ∞,

E(Sn) ∼ np̃r

Γ(p̃r)
;

Var (Sn) ∼

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

(1− r)n1−r

Γ(1− r)(1− r − 2p̃r)
,

1− r

Γ(1− r)
n2p̃r log n =

1− r

Γ(1− r)
n1−r log n,

n2p̃r
( 1− r

(2p̃r − (1− r))Γ(2p̃r)
− 1

Γ2(p̃r)

)
,

for 0 < p < 3
4 (1− r), p = 3

4 (1− r), and 3
4 (1− r) < p < 1, respectively.

In this setting there are two martingales involved, namely,{Γ(n)Γ(p̃r + 1)
Γ(n+ p̃r)

Sn, n ≥ 1
}

and
{Γ(n)Γ(1− r + 1)

Γ(n+ 1− r)
Vn, n ≥ 1

}
,

where Vn =
∑n

k=1X
2
k for all n. In the diffusive case with |X1| = 1 , we use

Theorem 1 in [28] and obtain Sn/
√
Vn is asymptotically normal and Vn is a

BERW with parameter α = 1 − r . This leads (cf. [28]) to Fr,σ2 being the

distribution function of a random variable Z =
√
Y · W , where Y ∈ ML1−r is

independent W ∈ N0,σ2 . Therefore,

Fr,σ2(x) =

∞∫
0

x/v∫
−∞

e−w
2/(2σ2) dw√

2πσ2
ML1−r(dv),

which is a symmetric distribution with E(Z) = 0 and E(Z2) = σ2

Γ(1−r) .

The following result is obtained by adapting the proofs from [4].

Theorem 5.5. ([24]) (a) For p < 3
4 (1− r) and σ2 = 1/(3(1− r)− 4p),

P
( Sn√

n1−r
≤ x
)

d→ (1− r)Fr,σ2(x) + r δ0(x) as n → ∞.

Furthermore
Sn
n1−r

a.s.→ 0 as n → ∞.

(b) For p = 3
4 (1− r),

P
( Sn√

n1−r log n
≤ x
)

d→ (1− r)Fr,1 + r δ0(x) as n → ∞.
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And, again,
Sn
n1−r

a.s.→ 0 as n → ∞.

(c) For 3
4 (1− r) < p < 1,

Sn
n2p−1+r

a.s.→ L · 11{X1 = 1} − L · 11{X1 = −1} as n → ∞,

where L is a non-degenerate random variable with moments

E(L) =
1

Γ(2p+ r)
and E(L2) =

1− r

(2p̃r − (1− r)) Γ(2p̃r)
,

with p̃r = 2p− 1 + r.

5.3. Restricted memories [24]

If the walker only remembers the first step, the game is over if that step
equals zero.

Theorem 5.6. If Mn = {1}, then

Sn
n

d→

⎧⎪⎪⎨⎪⎪⎩
p− q, with probability p,

0, with probability r,

−(p− q), with probability q,

as n → ∞.

Moreover,

E(Sn/n)→ (p−q)2 and Var (Sn/n)→ (p−q)2
(
p+q−(p−q)2

)
as n → ∞.

The case Mn = {1, 2} is similar with six cases to take care of.
A very special model is when the elephant only remembers the most recent

step, because in that case the walk terminates as soon as a zero appears. Letting
τ = min{n : Xn = 0} we observe that τ is geometric with mean 1/r. The τ − 1
zero-truncated summands X̃k are thus coin-tossing random variables with mean
(p − q)/(1 − r) = (p − q)/(p + q). They are, however, not independent of the
number of them, and we can therefore not apply e.g. Theorem 2.15.1 in [20].

Theorem 5.7. Suppose that Mn = {n}, let τ = min{n : Xn = 0}. Then

(a) τ is geometric with mean
1

1− p− q
;

(b) Sn
a.s.→ Sτ as n → ∞;

(c) E(Sτ ) =
1− p

1− p+ q
and E(S2τ ) = 1 +

(p− q)(1− 2p+ (p+ q)2)

qr(1− p+ q)
.
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We close with the case when the memory consists of the first and most
recent steps.

Theorem 5.8. For Mn = {1, n},

Sn
n

d→ S =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

p− q

2 + q − p
, with probability p,

0, with probability r,

− p− q

2 + q − p
, with probability q,

as n → ∞.

Moreover, E(Sn/n)
r → E(Sr) for all r > 0, since |Sn/n| ≤ 1 for all n.

6. More on the number of zeros in ERWDs [23, 26]

Since it is mathematically more convenient to investigate the number of
non-zeros, set, for n ∈ N

Nn =
n∑
k=1

Ik, where In = 11{Xn=0} and N∗n =
n∑
k=1

I∗k , where I
∗
n = 11{Xn �=0},

and note that any starred result can easily be transferred to a non-starred one,
since Nn +N∗n = n.

6.1. The classical case

The starred process forms a BERW. Exploiting the fact that{(
M∗n =

Γ(n)Γ(2− r)

Γ(n+ 1− r)
N∗n,Fn

)
n ≥ 1

}
is nonnegative a martingale,

with {Fn, n ≥ 1} being the natural filtration, one can prove the following
result.

Theorem 6.1. There exists a random variable Y , such that M∗n
a.s.→ Y as

n → ∞, and, hence, that

N∗n
n1−r

=
n−Nn

n1−r
a.s.→ Y

Γ(2− r)
as n → ∞.

Moreover, convergence holds in L1, in particular,

E
( N∗n
n1−r

)
= E

(n−Nn

n1−r
)
→ 1

Γ(1− r)
as n → ∞.
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Proof. We first note that E(I∗1 ) = 1− r and that E(I∗2 ) = (1− r)2. Further-
more,

E(I∗n+1 | Fn) = (1− r) · 1
n

n∑
k=1

11{I∗k �=0} =
1− r

n
N∗n,

and thus

E(N∗n+1 | Fn) =
1− r

n
N∗n +N∗n,

so that

E(N∗n+1) =

n∏
k=1

k + 1− r

k
E(N∗1 ) =

1− r

Γ(2− r)
· Γ(n+ 1 + (1− r))

Γ(n+ 1)
=

=
Γ(n+ 2− r)

Γ(1− r)Γ(n+ 1)
.

Lemma A.2 now tells us that, as n → ∞,

E(N∗n+1) =
n1−r

Γ(1− r)
+ n−r

(1− r)(2− r)

2Γ(1− r)
+O(n−r−1).(6.1)

A similar, but more complicated, calculation of second moments leads, via
Lemma A.1, to asymptotics of the quadratic variation {< M∗n >, n ≥ 1}.
Almost sure convergence for the starred process now follows via a standard
convergence result, see, e.g., p. 510 in [20]. Mean convergence is due to the
boundedness of the variances. The limit of the expected values is immediate
from (6.1). �

Remark 6.1. It follows from the convergence of the expected values that

E(Y ) = 1 − r. Comparing with Theorem 5.1 shows, in addition, that Y
d
=

d
= Γ(2− r)

(
(1− r)ML(1−r) + rδ0

)
.

6.2. Restricted memories

When Mn = {1} it follows (again) that the indicators are independent and
identically distributed. Moreover, E(I∗1 ) = 1−r and E(I∗n+1 | X1) = (1−r) |X1|
for all n, which imples that, given I∗1 = 1 , {N∗n , n ≥ 1}, is a binomial random
walk, and is identically zero if I∗1 = 0. Note that Theorems 6.2 and 6.4 are
slight corrections of the corresponding results in [23].

Theorem 6.2. For Mn = {1},

N∗n
n

a.s.→ (1− r) I∗1 and
Nn

n

a.s.→ 1− (1− r) I∗1 as n → ∞.
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For ERWDs with Mn = {n} there will be almost surely a finite number
of non-zero steps. Recall from Theorem 5.7 that τ = min{n : Xn = 0} has a
geometric distribution with mean 1/r. Moreover, P (N∗n = k) = (1 − r)kr, for
k = 0, . . . , n−1, that P (N∗n = n) = (1−r)n. The generating function therefore
turns out as

gN∗
n
(t) =

r (1− ((1− r)t)n

1− (1− r)t
+ (1− r)ntn → r

1− (1− r)t
= g(t) as n → ∞

(provided t < 1/(1−r)). The limiting generating function is that of a geometric
random variable with mean (1− r)/r; in particular, the generating function of
τ − 1.

Theorem 6.3. For Mn = {n},

N∗n = n−Nn
a.s.→ Z as n → ∞,

where Z = τ − 1 is a geometric random variable with mean 1−r
r . Moreover, all

moments converge.

Proof. Almost sure convergence holds since N∗n is monotone increasing and
bounded almost surely. That Z = τ − 1 is, again, immediate. Convergence of
the generating functions does the rest. �
Remark 6.2. Note that {I∗n , n ≥ 1} is a two state Markov chain where one
state is absorbing.

Theorem 6.4. Suppose that Mn = {1, n}. Then

N∗n
n

a.s.→ 1− r

1 + r
I∗1 and

Nn

n

a.s.→ 1− 1− r

1 + r
I∗1 as n → ∞.

Proof. If X1 = 0 the random walk stays put at zero. We therefore suppose
in the following that X1 
= 0, and, hence, that I∗1 = 1. Then, E(I∗2 | I∗1 ) =
= 1− r = E(I∗2 ), and, generally, for n ≥ 1,

E(I∗n+1) = E
(
E(I∗n+1 | Fn)

)
=
1− r

2
E(I∗1 )+

1− r

2
E(I∗n) =

1− r

2
+
1− r

2
E(I∗n).

Adding the extreme members yields, for n ≥ 1,

E(N∗n+1)− 1 =
n(1− r)

2
+
1− r

2
E(N∗n),

which, after an application of Proposition A.2, tells us that

E(N∗n) =
n(1− r)

1 + r
+

4r

(1 + r)2
+ o(1) as n → ∞.

Being in the branch with I∗1 = 1 we are faced with a stationary ergodic Markov
chain, which asserts the validity of the first strong law, after which the second
one follows in the usual manner. �
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7. Recurrence, renewal theory and related questions

Apart from Theorem 7.1 the results in this section are new.

Recurrence and transience are connected with return times to zero.

7.1. Full memory

In [14] it was shown that the classical elephant random walk is recurrent
for 0 < p ≤ 3/4 and transient for p > 3/4. After each visit to zero the walk
starts afresh, although the situation is different each time, since the walker
remembers the whole past. For the diffusive case a more detailed analysis has
been provided by Bertoin in [9]:

Theorem 7.1. Let 0 < p < 3/4.

(a) Let Z(n) = Card{1 ≤ j ≤ n : Sj = 0} be the number of zeros up to step
n. Then there exists a nondegenerate random variable Vp, such that

Z(n)√
n

d→ Vp as n → ∞.

(b) The return time to 0, τ0 = min{n : Sn = 0} has a heavy-tailed distribution
with

P (τ0 > n) ∼
√
6− 8p√
π Γ(2p)

n2p−3/2 as n → ∞.

Hence E(τ0) < ∞ iff p < 1/4. The result remains true for any further visit to
zero.

The basic tools are the embedding of a relevant martingale process into a
Wiener process with suitable stopping times and excursion theory for Wiener
processes.

Consider possible asymptotics for the first passage times

τ (+)n = min{k ∈ N : Sk ≥ n} = min{k : Sk = n}, n ≥ 1.

These are stopping times which are closely related to renewal theory.

A first observation is that the stopping times are not proper random vari-
ables in the superdiffusive case.

Proposition 7.2. τ
(+)
n is not a proper random variable for 3/4 < p < 1, at

least for n ∈ N large enough.

Proof. If τ
(+)
n is finite a.s. for a subsequence nk ↗ ∞, then, as τ

(+)
nk ↗ ∞,

nk

τ
(+)
nk

a.s.→ L as k → ∞.
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However, since E(Sn/n
2p−1 | X1 = −1) ∼ − 2p

Γ(2p) as n → ∞, L cannot be a

positive random variable, thus yielding a contradiction. Hence, τ
(+)
nk = ∞ for

all k ≥ k0 on a set of positive measure, which implies that τ
(+)
n = ∞ for all

n ≥ k0. �
In the diffusive case we obtain strong laws and almost sure bounds.

Theorem 7.3. (i) For 0 < p < 3/4, lim inf
n→∞

τ
(+)
n log log n

n2
≥ 3− 4p

2
a.s.

(ii) For p = 3/4, lim inf
n→∞

τ
(+)
n log n log log log n

n2
≥ 1

2
a.s.

Proof. (i): It follows from the LIL, lim sup
n→∞

Sn√
2n log logn

= 1√
3−4p a.s. (cf. [3],

Theorem 3.2), that

lim sup
n→∞

S
τ
(+)
n√

2τ
(+)
n log log τ

(+)
n

≤ 1√
3− 4p

a.s.

along the sequence {τ (+)n , n ≥ 1}, which, since S
τ
(+)
n

= n, is the same as

lim sup
n→∞

n√
2τ
(+)
n log log τ

(+)
n

≤ 1√
3− 4p

a.s.

(ii): The proof follows the same pattern, departing from [3], Theorem 3.5. �

Remark 7.1. (i) For 0 < p ≤ 3/4 it follows, in particular, that τ
(+)
n /n

a.s.→ ∞
and, hence, that E(τ

(+)
n )/n → ∞ as n → ∞. This might be interpreted as a

negative renewal theorem, in that the almost sure limit equals 1/μ < ∞ for
random walks with positive mean μ ([19], Theorem 3.6.1).

(ii) For 3/4 < p < 1 the LLN for Sn does not imply an LLN for τ
(+)
n .

Next in turn is a result on distributional convergence.

Theorem 7.4. (i) For 0 < p < 3/4,

P
(τ (+)n

n2
≤ x
)

d→ Gp(x) as n → ∞,

where

Gp(x) = P
( 1√

3− 4p
max
0<t≤x

{t2p−1W (t3−4p)} ≥ 1
)
=

= P
(

max
0<t≤x3−4p

{
t(2p−1)/(3−4p)W (t)

}
≥
√
3− 4p

)
.
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(ii) For p = 3/4, P
(τ (+)n log n

n2
≤ x
)

d→ 2
(
1− N0,1(1/

√
x)
)

as n → ∞.

Proof. (i) Using the weak invariance from Proposition A.3 we find that

P (τ (+)n > un2) = P ( max
n≤k≤un2

Sk < n) = P
(

max
1
n≤ k

n2
≤u

{S k
n2
n2

n

}
< 1
)
=

= P
( 1√

3− 4p
max
0≤t≤u

{t2p−1W (t3−4p)} < 1
)
(1 + o(1)).

(ii) This part follows the same pattern. For v(k, n) = exp{k lognn2 n2/ log n}
we have

P
(τ (+)n log n

n2
> u
)

= P
(

max
n≤k≤un2/ logn

Sk < n
)
=

= P
(

max
logn/n≤k logn/n2≤u

{ Sv(k,n)√
(n2/ log n) log n

}
< 1
)
=

=
(
1 + o(1)

)
P
(
max
0≤t≤u

W (t) < 1
)
=

=
(
1 + o(1)

)(
1− 2P

(
W (u) ≥ 1

))
=

=
(
1 + o(1)

)(
1− 2P

(
W (1) ≥ 1/

√
u
))

,

where we used the change of variable t = k logn
n2 and Proposition A.3(c). �

Remark 7.2. With suitable constants, c1, c2, d1, d2, it follows from the proof
that, for x large,⎧⎨⎩

√
c1/x3−4p√
d1/x

⎫⎬⎭ ≤ 1−Gp(x) ≤

⎧⎨⎩
√

c2/x, for 0 < p ≤ 1/2,√
d2/x3−4p, for 1/2 ≤ p < 3/4,

,

by using that t2p−1W (t3−4p) a.s.→ 0 as t → 0+, and that x2p−1 ≤ t2p−1 ≤ δ2p−1

for δ ≤ t ≤ x, e.g., for 0 < p ≤ 1/2.
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7.1.1. Moments of first passage times

We begin with some inequalities. For n ≥ 2,∑
k≥n

k P (τ (+)n = k) ≥
∑
k≥n

k P
(
τ
(+)
n−1 = k − 1

)
×

× (k − 1− (n− 1))(1− p)/2 + (n− 1 + k − 1)p/2

k − 1
≥

≥
∑
k≥n

(k − 1)P
(
τ
(+)
n−1 = k − 1

)( (k − 1− (n− 1))

2(k − 1)
+

n− 1

k − 1
p
)
≥

≥
∑
k≥n

P
(
τ
(+)
n−1 = k − 1

) (1
2
(k − 1) + (n− 1)(p− 1/2)

)
,

and∑
k≥0

(2k + 1)P
(
τ
(+)
1 = 2k + 1

)
≥ p+

∑
k≥1

(2k + 1)P
(
τ0 = 2k

) k(1− p) + kp

2k
,

which, together yield the following

Lemma 7.1. For 0 < p < 1,

E(τ
(+)
1 ) ≥ p+

1

2
E(τ0) and

E(τ (+)n ) ≥ 1

2
E(τ

(+)
n−1) + (n− 1)(p− 1

2
)P (τ

(+)
n−1 < ∞) for n ≥ 2.

From the previous subsection we know that E(τ0) = ∞ for 1/4 < p < 3/4,
which immediately tells us that

Theorem 7.5. For 1/4 ≤ p < 3/4 we have E(τ
(+)
n ) =∞ for all n ≥ 1.

Remark 7.3. We guess that E(τ
(+)
n ) < ∞ for 0 < p < 1/4.

7.2. Restricted memories

Theorem 7.6. Suppose that Mn = {1}.
(i) As n → ∞,

τ
(+)
n

n

a.s.→

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1

2p−1 , for p > 1/2 and X1 = 1,

∞, for p > 1/2 and X1 = −1,
1

1−2p , for p < 1/2 and X1 = −1,
∞, for p < 1/2 and X1 = 1.
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(ii) If p > 1/2 and X1 = 1, then

τ
(+)
n − n/(2p− 1)√

n

d→ N
0,

p(1−p)
(2p−1)3

as n → ∞.

If p < 1/2 and X1 = −1, then

τ
(+)
n − n/(1− 2p)√

n

d→ N
0,

p(1−p)
(1−2p)3

as n → ∞.

(iii) If p = 1/2, then

τ
(+)
n

n2
d→ S(1/2, 1/2) as n → ∞.

Proof. (i) and (ii): If p > 1/2 and X1 = 1, then Sn = 1 + Tn−1, where
Tn is a sum of i.i.d. random variables Yk = ±1 with probabilities p and 1− p,
respectively. If p > 1/2 and X1 = −1, then Sn = −1 + T̃n−1, and the trend
is negative. The conclusions follow from results on stopped random walks, see
e.g. [19], Chapter 3.

The other cases follow via analogous arguments.

(iii): For the case p = 1/2 we are faced with a simple symmetric random walk
with well known results. �

Theorem 7.7. Suppose that Mn = {1, 2}, and that p > 1/2. Then,
(i)

τ
(+)
n

n

a.s.→
{

1
2p−1 , for X1 = X2 = 1,

∞, for X1 = X2 = −1.
as n → ∞.

(ii) If X1 = X2 = 1, then

τ
(+)
n − n/(2p− 1)√

n

d→ N
0,

p(1−p)
(2p−1)3

as n → ∞.

If X1 ·X2 = −1, then

τ
(+)
n

n2
d→ S(1/2, 1/2) as n → ∞.

The proof is similar to that of Theorem 7.6.

Theorem 7.8. If Mn = {n}, then p τ
(+)
n

(1− p)n2
d→ S(1/2, 1/2) as n → ∞.
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Proof. As in the proof of Theorem 7.4 we use the fact that a stationary
recurrent, hence ergodic, Markov chain follows a weak invariance principle with
a limiting Wiener process. �
Theorem 7.9. For 0 < p < 1, τ0 is a proper random variable with infintely
many returns to zero.

Proof. Apply the LIL for ergodic Markov chains with a finite state space. �
Remark 7.4. We conjecture that E(τ0) = ∞, and, hence, that the ERW is
nullrecurrent.

Theorem 7.10. Let M = {1, n} and set σ2T = 1 + 2p−1
(3−2p)3 (4p

2 − 24p + 19)

(cf. [22]).

(i) As n → ∞,

τ
(+)
n

n

a.s.→

⎧⎪⎪⎪⎨⎪⎪⎪⎩
3−2p
2p−1, for p > 1/2 and X1 = 1,

∞, for p > 1/2 and X1 = −1,
3−2p
1−2p , for p < 1/2 and X1 = −1,
∞, for p < 1/2 and X1 = 1.

(ii) For p > 1/2 and X1 = 1,

τ
(+)
n − n(3− 2p)/(2p− 1)

σT
√

n((3− 2p)/(2p− 1))3
d→ N0,1 as n → ∞.

(iii) For p < 1/2 and X1 = −1,

τ
(+)
n − n(3− 2p)/(1− 2p)

σT
√

n((3− 2p)/(1− 2p))3
d→ N0,1 as n → ∞.

(iv) If p = 1/2, then

τ
(+)
n

n2
d→ S(1/2, 1/2) as n → ∞.

Proof. (i): If p > 1/2 and X1 = 1 then {Xn, n ≥ 1} is a stationary recurrent
Markov chain with Sn/n

a.s.→ (2p− 1)/(3− 2p) as n → ∞ (see e.g. [22]) which
yields the first line. If p < 1/2 and X1 = −1 then E(Sn) ∼ n(1− 2p)/(3− 2p)
and we obtain the third line. In the other two cases the result follows from the
LIL and the negative trend.

(ii): Using the Skorohod representation of the CLT (see e.g. [20], Section 5.13)(
Sn − n(2p − 1)/(3 − 2p)

)/(
σT

√
n
) d→ N0,1 as n → ∞, we proceed as before

and obtain(
S
τ
(+)
n

− τ (+)n (2p− 1)/(3− 2p)
)/(

σT

√
τ
(+)
n

) d→ N0,1 as n → ∞,
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which, together with part (i), and the symmetry of the normal distribution,
provides the result.

(iii): As in (ii).

(iv): Again we are in the situation of a classical symmetric random walk. �

8. Final remarks and suggestions

(i) We have described the classical elephant random walk as well as walks
with various restricted memories, in particular when Mn = {1, 2, . . . ,m} for
some fixed m. Details are provided for m = 1 and m = 2. For larger sizes, see
Ben-Ari et al., [2]. Other variations are Mn = {m,m+1, . . . , n} or a combina-
tion of them. Details are here given for the cases Mn = {n} and Mn = {1, n}.
We have also discussed the situation if the elephant remembers an increasing
number of early steps. Related to this is the work of Laulin [29], in which the
elephant has a decreasing memory in the distant past, i.e., has a kind of amne-
sia. It would be interesting to know what happens if the elephant remembers
an increasing number of late steps, as well as in both ends. This would i.a. be
of interest with respect to phase changes (which we have only encounted in the
classical case).

(ii) The different initial steps (+1, −1, or 0) cause multiple branches. Asymp-
totic normality therefore cannot hold. However, with a random centering the
following result from [22] holds for Mn = {1, 2}:

Sn − n(2p− 1) (X1 +X2)/2√
n

d→ p · N0,4p(1−p) + (1− p) · N0,1 as n → ∞.

(iii) The classical elephant random walk has a connection to Pólya urn models.

Namely, let U(n) = (B(n), R(n)
)T
, where B(n), R(n) denote the number of

black and red balls at time n, respectively, and T denotes transpose. Now,
suppose that

U(n+ 1) = U(n) +A(n) (1, 0)T with a random matrix A(n),

where

A(n) =

⎧⎪⎨⎪⎩
I2, with probability p,( 0 1

1 0

)
, with probability 1− p.

Then Sn = U(n) (1,−1)T and one can transfer results. For more see [1].
(iv) Multivariate elephant random walks have also been discussed in the lite-
rature, see e.g., [6, 8, 11].
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(v) Another topic that might be of interest is the gambler’s ruin problem for
elephants, with as well as without delays. (For the classical problem with
delays, cf. [21]).

(vi) Another angle is the statistical one, e.g., how to estimate the unknown
parameter p from the history of the process, cf., Bercu and Laulin [7].

(vii) When preparing for the next step the elephant has throughout chosen
uniformly among then previous ones. It would be interesting to find out what
happens if different steps have different weights, for example if more emphasis
is given on recent times (or past times).

(viii) There exist other models related to ours. Engländer and Volkov, [17],
is devoted to a variation in that the next step is not generated by flipping a
coin, rather by turning it over or not. They have a somewhat different focus,
in particular, they allow for different p-values in each step.

In addition, there is a large literature dealing with so-called correlated ran-
dom walks, although with different aims. Chen and Renshaw [12] investigate
a walk in dimension d and the probability of returns. Menshikov and Volkov,
[30], consider continuous time processes generalizing the ERW and questions of
transience and recurrence, and Comets et al. [15] study a kind of self-avoiding
walk in Rd.

A. Appendix

Here we collect some auxiliary material from probability and analysis.

A.1. A martingale lemma

Lemma A.1. Let {Un, n ≥ 1} be a sequence of random variables adapted to
Fn, n ≥ 1, with

E(Un+1 | Fn) = an Un + bn for n ≥ 1,

with two squences {an} and {bn}, n ≥ 1, where an 
= 0 for all n. Then

{(Mn = αn Un + βn,Fn) , n ≥ 1} is a martingale,

where α1 = 1, β1 = 0, and

αn =

n−1∏
k=1

1

ak
and βn = −

n−1∑
k=1

αk+1 bk for n ≥ 2 .

The proof amounts to checking that the martingale condition is satisfied.
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A.2. Asymptotics for the Gamma-function ([23], Lemma 2.2)

Lemma A.2. For x ∈ R,

Γ(n+ 1 + x)

Γ(n+ 1)
= nx

(
1 +

x(1 + x)

2n
+O(n−2)

)
as n → ∞.

A.3. Disturbed limit distributions

The following result is a special case of the Cramér–Slutsky theorem.

Proposition A.1. Let {Un, n ≥ 1} be a sequence of random variables, and

suppose that V is independent of all of them. If Un
d→ U as n → ∞, then

UnV
d→ UV as n → ∞.

Proof. Using characteristic functions and bounded convergence we have, as
n → ∞,

ϕUnV (t) = E exp{itUnV } = E
(
E(exp{itUnV } | V )

)
= EϕUn(tV )

→ EϕU (tV ) = E
(
E(exp{itUV } | V )

)
= E exp{itUV }) = ϕUV (t).

An application of the continuity theorem for characteristic functions finishes
the proof. �

A.4. Difference equations

In the proofs we use several difference equations. For easy reference we
summarize some well-known facts about linear difference equations (consult
e.g. [27]).

Proposition A.2. (i) Consider the first order equation

xn+1 = a xn + bn, for n ≥ 1, with x1 = x∗1 as initial value.

Then

xn = an−1x∗1 +
n−2∑
j=0

ajbn−1−j .

If, in addition, |a| < 1 and bn = bnγ with γ > −1, then

xn =
bn−1
1− a

− γabn−1
n(1− a)2

(
1 + o(1)

)
as n → ∞.

(ii) If, in particular, |a| < 1 and xn+1 = axn + b, then

xn =
b

1− a
+ an−1

(
x∗1 −

b

1− a

)
=

b

1− a

(
1 + o(1)

)
as n → ∞.



Elephant random walks 195

(iii) Consider the homogeneous second order equation

xn+1 = a xn + b xn−1, for n ≥ 2, with x∗1, x
∗
2 given.

Then, with λ1/2 = (a±
√
a2 + 4b)/2, provided a2 + 4b 
= 0,

xhn = c1λ
n
1 +c2λ

n
2 with c1, c2 chosen such that xhi = x∗i for i = 1, 2.

(iv) As for the inhomogeneous second order equation

xn+1 = a xn + b xn−1 + dn, for n ≥ 2, with x∗1, x
∗
2 given,

we have xn = xhn+yn, where yn is some solution of the inhomogeneous equation,
where the constants c1, c2 in xhn are chosen properly. If dn ≡ d and a + b 
= 1
we may choose yn = d/(1− a− b).

A.5. Asymptotics

Proposition A.3. Suppose that Sn, n ≥ 1, is a classical ERW, and let L be
as described in, e.g., [3].

(a) For 0 < p < 3/4 we have Sn/
√
n

d→ N0,1/(3−4p), hence,

S2n(3− 4p)

n

d→ χ21 as n → ∞,

whereas, for p = 3/4,

S2n
n log n

d→ χ21 as n → ∞,

and, for 3/4 < p < 1,

Sn
n2p−1

a.s.→ L as n → ∞.

(b) If Z ∈ χ21, then 1/Z ∈ S(1/2, 1/2), and if Un
d→ χ21 as n → ∞ for a se-

quence of positive random variables {Un, n ≥ 1}, then 1/Un d→ S(1/2, 1/2) as
n → ∞.

(c) Moreover, the following invariance principles, due to [1], hold on the Sko-
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rohod space (D[0,∞),D[0,∞)) (see e.g. [10], Section 16) as n → ∞:

S[nt]√
n

d→ t2p−1√
3− 4p

W (t3−4p), for 0 < p < 3/4,

i.e., the process oscillates strongly,

although with slower speed as p increases;

S[nt]√
nt log n

d→ W (t), for p = 3/4;{S[nt]√
n

, t ≥ 0
}

a.s.→
{
t2p−1 L , t ≥ 0

}
, for 3/4 < p < 1.
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