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Abstract. In classical analytic number theory, the Prime Number The-
orem and the asymptotic estimate for the sum of the Moebius function
can easily be deduced from one another. We show that the analogues of
these relations do not necessarily imply one another in Beurling generalized
number systems, and we give an explanation for this different behavior.

1. Introduction

The Prime Number Theorem (PNT) is the assertion that π(x), the number
of primes not exceeding x, is asymptotic to x/ log x, i.e.

(1.1) π(x) ∼ x/ log x , x → ∞ .

It is a familiar result of analytic number theory that the PNT is “equivalent”
to the proposition

(1.2)
∑
n≤x

μ(n) = o(x) .

Here μ is the Moebius function and f = o(g) means that f(x)/g(x) → 0 as
x → ∞. Also, we write f = O(g) or f � g if f(x)/g(x) is bounded. We use
the word “equivalent” in the informal sense that each of these relations can be
deduced from the other by quite simple real variable arguments.
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We shall survey when these relations imply one another in the universe
of Beurling generalized (g-) numbers [7], [9]. A Beurling g-number system is
defined as the abelian semigroup N generated by a sequence P of real numbers
(g-primes) with 1 < p1 ≤ p2 ≤ p3 ≤ . . . and pi → ∞. While the rational
integers have both an additive and a multiplicative structure, g-integers are only
multiplicative. Beurling theory seeks to draw conclusions about the distribution
of P (resp. N ) from (weak!) hypotheses on N (resp. P).

The g-number analogues of (1.1) and (1.2) are in general not equivalent :
under mild conditions, (1.2) follows from (1.1), but the converse is false without
further conditions. We shall study these implications and examine why one
relation does or does not imply the other.

By analogy with the classical case, write π(x) = πP(x) for the counting
function of the g-primes. The counting function of N is

N(x) = NP(x) := #{ni ≤ x : ni ∈ NP}

with appropriate multiplicity. For example, the g-number system created by
adjoining

√
2 to the rational primes has g-integers

1,
√
2, 2,

√
2
2
, 2

√
2,

√
2
3
, 3, 22, 2

√
2
2
,
√
2
4
, 3

√
2, 5, . . .

and N(5) = 12. The PNT for g-numbers also is expressed by (1.1).

To stay reasonably close to the rational integers, we shall always assume
that N(x) = O(x) and usually that N(x) ∼ cx for some positive number c as
x → ∞. In the first case, we say N has O-density and in the second, that
it has positive density c. (It is best not to require that c = 1 in the positive
density case, for as simple a g-number system as the odd rational integers has
N(x) ∼ x/2, i.e. density 1/2.) We shall make further hypotheses on N(x)− cx
when it is appropriate.

Unless we state otherwise, each of our statements is valid for g-numbers as
well as their rational counterparts.

2. Technical matters

Here we collect some notation and several relations that we shall need later.

We shall use multiplicative convolution, a commutative and associative mul-
tiplication of measures that arise from right-continuous Borel functions that are
of bounded variation on every interval [1, X] (cf. [1, �3.4.1], [7, �2.6]). Convo-
lution is defined on a Borel set E by

(2.1)

∫
E

dF ∗ dG :=

∫∫
uv∈E

dF (u) dG(v).
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For E = [1, x], the recipe takes the form

x∫
1−

dF ∗ dG =

∫∫
st≤x

dF (s) dG(t) =

x∫
1−

F (x/t) dG(t) =

x∫
1−

G(x/t) dF (t).

The Mellin transform of a measure dF associated with a function F of
polynomial growth at infinity is defined on some halfplane of C by

F̂ (s) :=

∞∫
1−

x−sdF (x).

The Mellin transform of a convolution is a product of Mellin transforms:

∞∫
1−

x−s(dF ∗ dG)(x) =
∞∫
1−

x−sdF (x) ·
∞∫
1−

x−sdG(x) .

As usual in prime number theory, a Chebyshev function is important for
our analysis. Set

ψ(x) = ψP(x) :=
∑
pai≤x

log pi,

with pi ∈ P (again with appropriate multiplicity) and α running over nonnega-
tive integers. G-numbers satisfy the analogue of Chebyshev’s elementary prime
number identity: in measure language Chebyshev’s identity can be expressed
as

(2.2) LdN = dψ ∗ dN.

Here L = L(t) is the operator of multiplying by log t. It is easy to show that L is
a derivation: a linear operator satisfying L(dF ∗dG) = (LdF )∗dG+dF ∗(LdG).

Instead of expressing the PNT by (1.1), we shall use the (easily proved)
equivalent relation

(2.3) ψ(x) ∼ x.

And in place of the Moebius μ function we use the measure dM , defined as the
convolution inverse of dN , i.e. the solution of the equation dM ∗ dN = δ. The
measure δ is point mass 1 at 1, the unity element of convolution. Instead of
(1.2) we shall study whether M(x) = o(x) holds.

The following is a Moebius variant of the Chebyshev identity (2.2) that will
be of use presently. Since L is a derivation,

0 = Lδ = L(dN ∗ dM) = dM ∗ LdN + dN ∗ LdM.
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Now (2.2) implies that dM∗LdN = dψ. Thus dN∗LdM = −dψ, and convolving
each side of the last identity with dM yields

(2.4) LdM = −dψ ∗ dM.

The Chebyshev identity and this M-variant are valid in the g-number versions
as well as in the classical case.

We define the analogue of the classical weighted prime counting function
by

(2.5) Π(x) := π(x) +
1

2
π(x1/2) +

1

3
π(x1/3) + . . . .

Note that LdΠ = dψ. The next formula expresses N in terms of Π.

Lemma 2.1. Assuming (2.4), we have

(2.6) dN = δ + dΠ+
1

2!
dΠ∗2 +

1

3!
dΠ∗3 + · · · =: exp∗ dΠ.

Here dΠ∗n denotes the n-fold convolution of dΠ with itself, and the associated
function N converges in total variation on every interval [1, X].

Proof. Since L is a derivation, for every positive integer n we have

LdΠ∗n = ndΠ∗n−1 ∗ LdΠ = ndΠ∗n−1 ∗ dψ.

Applying L to exp∗ dΠ termwise we find

L exp∗ dΠ = dψ ∗ exp∗ dΠ.

Let dφ := dM ∗ exp∗ dΠ; then

Ldφ = (LdM) ∗ exp∗ dΠ+ dM ∗ dψ ∗ exp∗ dΠ.

If we use (2.4) to replace LdM , we find that Ldφ = 0. Since L is multiplication
by log t, we must have dφ(t) = 0 for all t > 1. Also, dφ{1} = 1, so dφ = δ.
Now convolve each side of the formula for dφ by dN to obtain (2.6).

The convergence claim follows immediately from the tail estimate

∑
n≥K

X∫
1

1

n!
dΠ∗n =

∑
n≥K

1

n!

∫
x1···xn≤X

· · ·
∫

dΠ(x1) · · · dΠ(xn)

≤
∑
n≥K

1

n!

{ X∫
1

dΠ
}n

= o(1), K → ∞. �
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Similar reasoning shows that

(2.7) dM = exp∗{−dΠ}.

As is shown in [7, Ch. 3], exp∗ has the expected properties of an exponential,
e.g. exp∗(dF + dG) = exp∗ dF ∗ exp∗ dG.

3. The PNT and O-density imply M(x) = o(x)

Proposition 3.1. Assume N is a g-number system that satisfies the O-density
condition N(x)� x and suppose the PNT holds. Then

(3.1) M(x) = o(x).

Proposition 3.1 has a couple of cousins, each concluding M(x) = o(x), but
with incomparable hypotheses. One of these [7, Prop. 14.10] assumes that the
PNT holds and that the g-integers satisfy the logarithmic density condition

x∫
1−

t−1 dN(t) ∼ c log x

for some positive c. Another, [4, Cor. 1.2], assumes that the g-integer system
has density (a more demanding condition than O-density) and, in place of the
PNT, the weaker condition that the generalized Chebyshev function satisfies
the upper bound ψ(x) = O(x). The present result comes from [3, �2]. Its proof
is based on the following approximate formula for M .

Lemma 3.1. Under the hypotheses of Proposition 3.1,

(3.2)
M(x)

x
=

−1
log x

x∫
1

M(t)

t2
dt+ o(1).

Proof of the Lemma 3.1. We integrate each side of the identity LdM =
= −dψ ∗ dM and obtain

x∫
1−

LdM =

x∫
1−

−ψ
(x
t

)
dM(t).

If we add and subtract
x∫

1−

x

t
dM(t)
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to the right side of this formula, we obtain

(3.3)

x∫
1−

LdM =

x∫
1−

{x
t
− ψ
(x
t

)}
dM(t)−

x∫
1−

x

t
dM(t)

Because

(3.4) |dM | = | exp∗{−dΠ}| ≤ exp∗{dΠ} = dN

and M(1) = N(1), we have |M(t)| ≤ N(t) = O(t) for all t ≥ 1. Integrating by
parts the left side of (3.3) yields

M(x) log x−
x∫
1

M(t)

t
dt =M(x) log x+O(x).

By the PNT, the first term on the right side of (3.3) is
∫ x
1− o(x/t) dN(t) =

= o(x log x). Also, the last term of (3.3) is, upon integrating by parts,

M(x) + x
∫ x
1
M(t)
t2 dt.

Finally, we combine the estimates for (3.3), divide through by x log x, and
note that M(x)/(x log x) = o(1) to obtain (3.2). �

Proof of Proposition 3.1. We can assume thatM(x) has an infinite number
of sign changes. If not, there exists a number z beyond which M(x) is of one
sign. By (3.2), as x → ∞,

M(x)

x
=

−1
log x

z∫
1

O(t)

t2
dt− 1

log x

x∫
z

M(t)

t2
dt+ o(1)

or

M(x)

x
+

1

log x

x∫
z

M(t)

t2
dt =

O(log z)

log x
+ o(1) = o(1).

Since M(x) and the integral are of the same sign, M(x)/x → 0 as x → ∞, and
this case is done.

Now suppose that the right-continuous function M changes sign at x. We
show that M(x)/x = o(1). If M(x)/x = 0, the matter is finished. If, however,
M(x) > 0, then there is a number y ∈ (x − 1, x) with M(y) ≤ 0. Applying
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(3.2) again, along with the trivial bound M(t) = O(t), we find

M(x)

x
=

− log y
log x

1

log y

y∫
1

M(t)

t2
dt− 1

log x

x∫
y

M(t)

t2
dt+ o(1)

=
log y

log x

M(y)

y
+

1

log x

x∫
y

O(t) dt

t2
+ o(1).

Thus M(x)/x−M(y)/y = o(1); since M(x)/x and −M(y)/y is each nonnega-
tive, each is o(1). The case M(x) < 0 is handled similarly.

Finally, suppose that M changes sign at y (so that M(y)/y = o(1)) and
M(x) is of one sign for y < x ≤ z. We shall show that M(x)/x = o(1)
throughout this interval. Using (3.2) again, we find for any x ∈ (y, z]

M(x)

x
=

− log y
log x

1

log y

y∫
1

M(t)

t2
dt− 1

log x

x∫
y

M(t)

t2
dt+ o(1)

or

M(x)

x
+

1

log x

x∫
y

M(t)

t2
dt =

log y

log x

M(y)

y
+ o(1) = o(1)

as y → ∞. Now M(x)/x and the integral have the same sign, so M(x)/x =
= o(1). �

4. Density and M(x) = o(x) do not imply the PNT

In this section we give an example, derived from one of Beurling [2], ex-
hibiting the properties of the title. Our account is based on material from [7,
Prop. 14.12].

Theorem 4.1. The conditions M(x) = o(x) and

(4.1) N(x) = Ax+O(x(log ex)−3/2)

do not imply the PNT.

Note that (4.1) is a more demanding condition on a g-number system than
just having a density.

In addition to giving conditions that are not sufficient to yield the PNT,
the analysis of this example also shows a key difference between the PNT and
the estimate of M . This difference will be the topic of Section 6.
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At this point, this article takes an unusual turn: in place of discrete primes,
we use a continuous prime density distribution. One of the main reasons for
using measures is that they offer a relatively clean way of treating the present
example. The details are still quite technical, and we shall give only an outline.
The continuous example can be converted into a discrete one (cf. [4], [5]); here
too, we content ourselves with a brief indication of how this is done.

Define a “wobbly g-prime counting function” πw on [1, ∞) by setting

(4.2) πw(x) :=

x∫
1

1− cos(log t)

log t
dt.

The integrand is asymptotic to (log t)/2 as t → 1+, so the integral is conver-
gent. We see that πw(1) = 0 and πw ↑; πw(x) has the desired properies for a
(continuous) prime counting function, and we show that the “g-integer” system
it generates satisfies (4.1) and Mw(x) = o(x).

We establish the proposition via several lemmas, beginning with the punch-
line. The estimate we give for πw(x) will appear also in the next section.

Lemma 4.1. The “prime counting” function πw(x) does not satisfy the PNT.

Proof. Integrating (4.2) twice by parts, we find

πw(x) =
x

log x
− x

2 log x
{sin(log x) + cos(log x)}+O

( x

log2 x

)
.

Then a trigonometric identity shows

πw(x)

x/ log x
= 1− sin(π/4 + log x)√

2
+ o(1).

Thus the PNT does not hold for πw.

Define Πw, the analogue of the classical weighted prime counting function
by

(4.3) Πw(x) := πw(x) +
{1
2
πw(x

1/2) +
1

3
πw(x

1/3) + . . .
}
=: πw(x) + Π2(x).

By Lemma 2.1, dΠw is one term in exp∗ dΠw. Since Nw satisfies the O-density
condition, we have πw(x) = O(x). Also, a small calculation shows that Π2(x)�
� πw(x

1/2) � x1/2. Thus the main contribution to the estimates of Nw and
Mw will come from πw(x), and we treat Π2(x) as a perturbation term.

The convolution exponential has the same homomorphic property as the
usual exponential [7, Prop. 3.10]. Thus we have

dNw = exp∗(dπw + dΠ2) = exp∗ dπw ∗ exp∗ dΠ2 =: dN1 ∗ dN2,
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a convolution of a main term, dN1, and a secondary term, dN2. We separately
analyze the two parts of this formula. Then we shall establish (4.1) by showing
that Nw(x) keeps the form of its bigger convolution factor, N1(x). Finally, we
shall show M(x) = o(x). �

Lemma 4.2. With a suitable constant c0, we have

N1(x) :=

x∫
1−

exp∗dπw = x+
c0x cos(log x)

log3/2 x
+O

( x

log5/2 x

)
.

Lemma 4.3.

N2(x) :=

x∫
1−

exp∗dΠ2 � x1/2.

Lemma 4.4. Let πw be defined by (4.2) and let Πw be the weighted g-prime
function defined by (4.3). The associated g-integer counting function

Nw(x) :=

x∫
1−

exp∗dΠw

satisfies (4.1)

Proof of Lemma 4.2. Let

π̂w(s) :=

∞∫
1

x−sdπw(x) =

∞∫
1

x−s
{1− cos(log x)

log x

}
dx =

=

∞∫
1

x−s
{1− (xi + x−i)/2

log x

}
dx .

Then

π̂w
′
(s) = −

∞∫
1

x−s
{
1− xi + x−i

2

}
dx = − 1

s− 1
+

1/2

s− 1− i
+

1/2

s− 1 + i
,

and since π̂w(s) and the log expression below both vanish as s → +∞, we have

π̂w(s) =
log(s− 1− i) + log(s− 1 + i)

2
− log(s− 1) =

= log

{√
(s− 1− i)(s− 1 + i)

s− 1

}
= log

{√
(s− 1)2 + 1

s− 1

}
.
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Using the branch of the square root that is positive for s real and s > 1, we
find

(4.4) N̂1(s) = exp

∞∫
1

x−sdπw(x) =

√
(s− 1)2 + 1

s− 1
.

By the Mellin inversion formula, for any x > 1 and a > 1,

N1(x) =
1

2πi

a+i∞∫
a−i∞

xs N̂1(s)
ds

s
.

To simplify convergence considerations, introduce

φ(s) := N̂1(s)− 1 =

√
(s− 1)2 + 1− (s− 1)

s− 1
.

Rationalizing the numerator, we obtain

(4.5) φ(s) =
1

(s− 1)
{√

(s− 1)2 + 1 + (s− 1)
} � 1

|s|2 , |s| large.

Now write the Mellin formula as N1(x) = I + 1, say, with

I :=
1

2πi

a+i∞∫
a−i∞

xs φ(s)
ds

s
.

The integrand of I has singularities at 0, 1, and 1± i. We deform the contour
to the vertical line {s : �s = 1/2}, with loops taken to avoid crossing the rays
(−∞− i, 1− i) and (−∞+ i, 1+ i). By the residue theorem, the contribution
to I from the pole of φ(s) at s = 1 is x. By the bound φ(s) � 1/|s|2 from
(4.5) and the fact that |xs| = x1/2 on the vertical line, the contribution to I
from the vertical portion of the new contour is O(x1/2).

It remains to treat the loop integrals about 1± i; we sketch the calculation
near 1 + i. Write

N̂1(s)/s = (s− 1− i)1/2 f(s)

where f(s) is analytic for |s− 1− i| ≤ 1/2. We have on this disc

φ(s)/s = (N̂1(s)− 1)/s = −1/s+ c′0(s− 1− i)1/2 +O(|s− 1− i|3/2)

for c′0 a suitable constant.
The integral of −1/s about the loop has the value 0 by analyticity.
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The horizontal portion of the loop stretches along the “top” and “bottom”
of the line segment [1/2 + i, 1 − ε + i], and there is a circle of radius ε about
1+ i. On the circle, φ is bounded and so the contribution here goes to 0 with ε.

For the upper and lower line segments, use the appropriate branches of the
square root and combine the contributions of the two segments. The resulting
integral yields

(c/2)x1+i log−3/2 x+O(x1/2) ,

with the Euler Gamma function evaluated at 3/2 contributing to the factor c/2.

Integrating the O-term around the loop yields an error term O(x log−5/2 x).

The corresponding calculation near 1 − i yields the conjugate result: the
exponent of x changes to 1−i. Together, the two loop integrals yield the cosine
term and the error term in the formula for N1(x). �

Proof of Lemma 4.3.
We begin by estimating the contribution of (1/2)πw(x

1/2), the first term of Π2.
By a weak version of Lemma 4.2,

N3(x) :=

x∫
1−
exp∗

{1
2
dπw(t

1/2)
}
=

√
x∫

1−
exp∗

{1
2
dπw

}
≤

√
x∫

1−
exp∗dπw = O(

√
x).

Now

N2(x) :=

x∫
1−

dN3 ∗ exp∗
{1
3
dπw(t

1/3) +
1

4
dπw(t

1/4) + · · ·
}

�

�
x∫

1−

√
x

t
exp∗

{
dπw(t

1/3) + dπw(t
1/4) + · · ·

}
.

Extend the integration to infinity and use the fact that for an absolutely con-
vergent Mellin transform exp and

∫
“commute”: we have

∞∫
1−

t−s exp∗ dF (t) =

∞∫
1−

t−s
∞∑
n=0

1

n!
dF ∗n(t) =

∞∑
n=0

1

n!

∞∫
1−

t−sdF ∗n(t) =

=

∞∑
n=0

1

n!

{ ∞∫
1−

t−sdF (t)
}n

= exp
{ ∞∫
1−

t−sdF (t)
}
.
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We find that

N2(x)�
√
x

∞∫
1−

t−1/2 exp∗
{
dπw(t

1/3) + dπw(t
1/4) + · · ·

}
=

=
√
x exp

∞∫
1

t−1/2
{
dπw(t

1/3) + dπw(t
1/4) + · · ·

}
=

=
√
x exp

{ ∞∫
1

t−3/2dπw(t)
}

· exp
{ ∞∫
1

t−2dπw(t)
}

· · ·

=
√
x exp

{ ∞∫
1

(
t−3/2 + t−2 + t−5/2 + · · ·

)
dπw(t)

}
=

=
√
x exp

{ ∞∫
1

t−3/2

1− t−1/2
1− cos(log t)

log t
dt

}
.

A small calculation shows the last integrand is bounded near t = 1 and is
o(t−3/2) for large t. Thus the integral is finite, and so N2(x) = O(

√
x) . �

We pause here to establish a formula for the zeta function of the wobbly
g-number system generated by πw. We have

ζw(s) := exp

∞∫
1

x−s{dπw(x) + dΠ2(x)} = N̂1(s) · exp
∞∫
1

x−sdΠ2(x) .

Since Π2(x) � x1/2, the last integral converges for �s > 1/2 and defines an
analytic function g(s) there. Using g and (4.4), we find for �s > 1,

(4.6) ζw(s) =

√
(s− 1)2 + 1

s− 1
exp{g(s)} .

Proof of Lemma 4.4.

First note that since N2(x)�
√
x, integration by parts gives

y∫
1−

dN2(t)

t
=

∞∫
1−

dN2(t)

t
−
∞∫
y

dN2(t)

t
= A+O(y−1/2), y → ∞,

for some constant A.
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Apply the Dirichlet hyperbola method, writing

Nw(x) =

x∫
1−

dN1 ∗ dN2 = I + II

with

I :=

√
x∫

1−
N1(x/t) dN2(t), II :=

√
x∫

1−
{N2(x/t)−N2(

√
x)} dN1(t).

Now

I =

√
x∫

1−

{
x

t
+O

(
x/t

log3/2 x/t

)}
dN2(t) =

= Ax+O(x3/4) +O

(
x

log3/2 x

√
x∫

1−
t−1 dN2(t)

)
= Ax+O

(
x

log3/2 x

)

with A =
∞∫
1−

t−1 dN2(t). Next, by another integration by parts,

II =

√
x∫

1−
O
(√

x/t
)
dN1(t) = O

(
x3/4

)
.

The two calculations together give the claimed formula for Nw(x). �

To finish proving Theorem 4.1, we show that M(x) = o(x) holds for our
example.

Lemma 4.5. Suppose a g-number system has counting function

(4.1 bis) N(x) = Ax+O(x(log ex)−3/2) .

Then its associated Moebius sum function satisfies M(x) = o(x).

Proof. On {s : �s > 1} we have, by (4.6),

M̂(s) =
1

ζ(s)
=

s− 1√
(s− 1)2 + 1

exp{−g(s)},

with g analytic. This function can be extended analytically to the closed half
plane, except at s = 1±i, where it has half order poles. It follows that M̂(σ+it)
has an L1 limit on any bounded t interval as σ → 1+.
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ThusM would be amenable to estimation by the Wiener-Ikehara tauberian
theorem, except that it is not monotonic. Recalling that |dM | ≤ dN by (3.4),
apply W-I to M(x) + N(x), which is a nondecreasing function. The Mellin
transform of this function is analytic in the closed half plane except for the order
1 pole at 1 and the half order zeros and poles at 1±i. We findM(x)+N(x) ∼ Ax
as x → ∞, and since N(x) ∼ Ax, we conclude that M(x) = o(x). �

5. Conversion of Nw to a discrete example.

One method to create a discrete example is to define, for each positive
integer r, the rth g-prime by pr = π−1w (r), where πw(x) is the prime counting
function of (4.2) (see [5]). Then the prime counting function satisfies π(x) =
= �πw(x) , and define the weighted companion, Π(x), by (2.5).
Proposition 5.1. There exists a discrete g-number system whose integer count-
ing function satisfies

N(x) = cx+O(x(log ex)−3/2)

for which the PNT does not hold.

Remarks on the proposition. We note that c < A, where A is the integer
density of Theorem 4.1, because π(x) < πw(x) a.e. Also, since π(x) = πw(x) +
+O(1), the PNT does not hold for the discrete g-prime system.

The proof of the asymptotic formula for N(x) can be carried out much like
that of Nw(x), with the latter function serving as the main convolution factor
and exp∗{dΠ− dΠw} as a perturbation factor.

Another method of creating a discrete g-number system from a continuous
one is to choose the g-primes probabilistically. The probability of a g-prime
being selected in any small interval is taken to be proportional to the size of∫
dπw over that interval (see [6]). This method is, of course, not constructive,

but it enables one to use the zeta function of the wobbly g-number system to
accurately approximate the new probabilistic zeta function.

6. Why the difference?

For the rational integers, it is well-known that the truth of the PNT formula
ψ(x) ∼ x implies that of the Moebius sum relationM(x) = o(x) and vice versa.
However, as we have shown, for Beurling g-integers with O-density, validity of
the PNT implies M(x) = o(x), but the converse need not be true.

What lies behind this difference? We give an answer to this question in
terms of properties of the associated Mellin transforms. The Mellin transforms
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of N , M , and ψ are, respectively, in both the classical and g-number cases,

ζ(s) =

∞∫
1−

x−sdN(x),
1

ζ(s)
=

∞∫
1−

x−sdM(x), −ζ ′(s)
ζ(s)

=

∞∫
1−

x−sdψ(x).

As we noted in the proof of Lemma 4.5, we can establish the desired asymp-
totic relations by the Wiener-Ikehara theorem in the classical or g-number case
(using the M +N trick for M(x)), provided that the associated Mellin trans-
form has a local L1 limit, aside from a possible pole at s = 1. This observation
leads to an answer to the question of this section:

A key difference between the ψ and the M cases lies in the nature of possible
singularities of their associated Mellin transforms on their abscissa of conver-
gence.

In the example of Theorem 4.1, ζ(s) has fractional order zeros at the points
s = 1 ± i. (This follows from (4.4); the contribution arising from the per-
turbation term dΠ2 does not change the behavior of the zeta function on
{s : �s ≥ 1}.) Thus 1/ζ(s) has fractional order poles at s = 1 ± i, and
these do not bar a local L1 limit. Therefore we can apply the W-I theorem to
establish the M estimate. On the other hand, (−ζ ′/ζ)(s) has poles of order 1
at 1 ± i, and these induce an oscillatory term in the formula for ψ(x), and so
the PNT fails.

7. Other possible equivalences

One can also consider possible equivalences between the PNT,M(x) = o(x),
and such additional relations as

(7.1) m(x) :=

x∫
1−

1

u
dM(u) = o(1),

and the so-called sharp Mertens relation

(7.2)

x∫
1−

1

u
dψ(u) = log x+ c′ + o(1),

for some number c′.

In the rational numbers, the Riemann zeta function has no zeros or singu-
larities on {s : �s = 1}, and these relations can be shown mutually equivalent
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(in our informal sense). Implications between some of these in the g-number
case are discussed in [7] and [8], and we make only a few further remarks here.

In the g-number context, relation (7.2) is the strongest of the four, in that it
implies each of the others with no further assumptions. For example, relation
(7.1) implies M(x) = o(x), as one can see immediately by writing M(x) =

=
x∫
1−

t dm(t) and integrating by parts.

The converse implication, however, is false in the absence of further as-
sumptions. For example, take Ne to be the g-number system with counting
function

Ne(x) :=
∑
n≤x

1

n
.

(We have Ne(x)� log x, which is is much smaller than x.)

The arithmetic function 1/n has the convolution inverse μ(n)/n, with μ the
usual Moebius function. Then

Me(x) =
∑
n≤x

1

n
μ(n) = o(x)

(with much to spare!) but

me(x) =
∑
n≤x

1

n2
μ(n) =

6

π2
+ o(1) 
= o(1).

One can deducem(x) = o(1) fromM(x) = o(x) if Δ:= N(x)−cx is suitably
small, e.g. Δ� x log−γ x, with γ > 1 suffices.

We conclude this article by asking whether M(x) = o(x) and the weaker
condition N(x) ∼ cx are sufficient to show m(x) = o(1). The fact that M
and m have similar Mellin transforms, 1/ζ(s) and 1/ζ(s+1), suggests that the
asymptotic conditions for M and m might be connected. But there does not
seem to be an easy path from the one relation to the other.

Here is one remark of possible use. The condition N(x) ∼ cx implies that
the zeta function of N satisfies ζ(s) ∼ c/(s− 1) as s → 1+, and thus

lim
s→0+

∞∫
1−

x−sdm(x) = lim
s→0+

1/ζ(s+ 1) = 0.

Thus, if one can prove that m(x) has some limit as x → ∞, then that limit is
zero.
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