THE REGULARITY INDEX OF s FAT POINTS IN PROJECTIVE SPACE $\mathbb{P}^{2}, s \leq 6$

Phan Quang Nhu Anh and Tran Nam Sinh

(Da Nang, Vietnam)
Communicated by Bui Minh Phong
(Received July 1, 2023; accepted September 5, 2023)

Abstract

In this paper, we compute the regularity index of a set of five almost equimultiple (Theorem 3.2) and a set of six double points in general position in projective space \mathbb{P}^{2} (Theorem 4.2).

1. Introduction

Let P_{1}, \ldots, P_{s} be s distinct points in the projective space $P^{n}:=P_{K}^{n}$, with K an arbitrary algebraically closed field. Let $R:=K\left[x_{0}, x_{1}, \ldots, x_{n}\right]$ be a polynomial ring in $n+1$ variables $x_{0}, x_{1}, \ldots, x_{n}$ with coefficients in K. Let $\wp_{1}, \wp_{2}, \ldots, \wp_{s}$ be the homogeneous prime ideals of the polynomial ring R corresponding to the points $P_{1}, P_{2}, \ldots, P_{s}$.

Let $m_{1}, m_{2}, \ldots, m_{s}$ be positive integers. Then the set of all homogeneous polynomials that vanish at P_{i} to order m_{i} for $i=1, \ldots, s$ is the homogeneous ideal $I=\wp_{1}^{m_{1}} \cap \wp_{2}^{m_{2}} \cap \ldots \cap \wp_{s}^{m_{s}}$. We call the zero-scheme defined by I to be a set of fat points in \mathbb{P}^{n}, and we denote it by

$$
Z=m_{1} P_{1}+m_{2} P_{2}+\cdots+m_{s} P_{s}
$$

The homogeneous coordinate ring of Z is $A:=R / I$. The ring $A=\oplus_{t \geq 0} A_{t}$ is a graded ring whose multiplicity is

$$
e(A):=\sum_{i=1}^{s}\binom{m_{i}+n-1}{n} .
$$

Key words and phrases: Regularity index, fat points, zero scheme.
2010 Mathematics Subject Classification: Primary 14C20, Secondary 13D40.

The Hilbert function of Z, which defined by $H_{Z}(t)=\operatorname{dim}_{K} A_{t}$, strictly increases until it reaches the multiplicity $e(A)$, at which it stabilizes. The regularity index of Z is defined to be the least integer t such that $H_{Z}(t)=e(A)$, and we will denote it by $\operatorname{reg}(Z)$. It is well known that $\operatorname{reg}(Z)=\operatorname{reg}(A)$, the Castelnuovo--Mumford regularity of A.

The problem to exactly determine $\operatorname{reg}(Z)$ is more fairly difficult, so one finds an upper bound for $\operatorname{reg}(Z)$. Since 1961, many results on upper bound for $\operatorname{reg}(Z)$ have been published.

For generic fat points $Z=m_{1} P_{1}+\cdots+m_{s} P_{s}$ with $m_{1} \geq \cdots \geq m_{s}$, Segre [7] showed that

$$
\operatorname{reg}(Z) \leq \max \left\{m_{1}+m_{2}-1,\left[\frac{m_{1}+\cdots+m_{s}}{2}\right]\right\}
$$

Trung [8] conjectured an upper bound for the regularity index of arbitrary fat points in \mathbb{P}^{n} :

$$
\operatorname{reg}(Z) \leq \max \left\{T_{j} \mid j=1, \ldots, n\right\}
$$

where

$$
T_{j}=\max \left\{\left.\left[\frac{\sum_{l=1}^{q} m_{i_{l}}+j-2}{j}\right] \right\rvert\, P_{i_{1}}, \ldots, P_{i_{q}} \text { lie on a linear } j \text {-space }\right\} .
$$

This upper bound generalizes Segre's upper bound. So, we will call it the Segre bound.

The same conjecture was also given independently by Fatabbi and Lorenzini [3].

In 2020, Nagel and Trok [6] proved the hypothesis of Trung about the upper bound of $\operatorname{reg}(\mathrm{Z})$ in the general case.

Currently, the calculation results $\operatorname{reg}(Z)$ are still very modest, only some results have been published in prestigious journals as follows:

For abitrary fat points $Z=m_{1} P_{1}+\cdots+m_{s} P_{s}$ in \mathbb{P}^{n}, Davis and Geramita [5] proved that

$$
\operatorname{reg}(Z)=m_{1}+\cdots+m_{s}-1
$$

if and only if points P_{1}, \ldots, P_{s} lie on a line in \mathbb{P}^{n}.
For fat points $Z=m_{1} P_{1}+\cdots+m_{s} P_{s}$ in \mathbb{P}^{n} with $m_{1} \geq \cdots \geq m_{s}$, Catalisano et al. [4] showed formulas to compute $\operatorname{reg}(Z)$ in the following two cases:

- If $s \geq 2,2 \leq m_{1} \geq m_{2} \geq \cdots \geq m_{s}$ and $P_{1}, P_{2}, \ldots, P_{s}$ are on a rational normal curve in \mathbb{P}^{n}, then

$$
\operatorname{reg}(Z)=\max \left\{m_{1}+m_{2}-1, \frac{\sum_{i=1}^{s} m_{i}+n-2}{n}\right\} .
$$

- If $n \geq 3,2 \leq s \leq n+2,2 \leq m_{1} \geq m_{2} \geq \cdots \geq m_{s}$ and $P_{1}, P_{2}, \ldots, P_{s}$ are in general position in \mathbb{P}^{n}, then

$$
\operatorname{reg}(Z)=m_{1}+m_{2}-1
$$

In 2012, Thien [9] showed a formula to compute $\operatorname{reg}(Z)=\max \left\{T_{j} \mid\right.$ $j=1, \ldots, n\}$ for $Z=m_{1} P_{1}+\cdots+m_{s+2} P_{s+2}$ with $P_{1}, P_{2}, \ldots, P_{s+2}$ not in a linear $(s-1)$-space in $\mathbb{P}^{n}, s \leq n$.

In 2017, Thien and Sinh [10] showed a formula to compute $\operatorname{reg}(Z)=$ $=\max \left\{T_{j} \mid j=1, \ldots, n\right\}$ for $Z=m P_{1}+\cdots+m P_{s+3}$ with $m \neq 2$ and P_{1}, \ldots, P_{s+3} not in a linear $(r-1)$-space in $\mathbb{P}^{n}, s \leq r+3$.

It's worth noting that the assumption $\operatorname{reg}(Z)=T=\max \left\{T_{j} \mid j=1, \ldots, n\right\}$ for the set of arbitrary fat points in \mathbb{P}^{n} is no longer true because U. Nagel and B. Trok (see [6], Example 5.7) have shown that: If $Z=m P_{1}+\cdots+m P_{s}$ is a set of fat points in \mathbb{P}^{n} consisting of five points in arbitrary positions and $\binom{d+n}{d}$ points in the general position, $d \geq 5$ then

$$
\operatorname{reg}(Z)<T
$$

with d (or n) large enough.
A set of s fat points $Z=m_{1} P_{1}+\cdots+m_{s} P_{s}$ in \mathbb{P}^{n} is said to be almost equimultiple if $m_{i} \in\{m-1, m\}$ for all $i=1, \ldots, s$ and $m \geq 2$.

A set of s fat points $Z=m_{1} P_{1}+\cdots+m_{s} P_{s}$ in \mathbb{P}^{n} is said to be double point if $m_{1}=\cdots=m_{s}=2$ for all $i=1, \ldots, s$.

In this paper, we compute the regularity index of a set of five almost equimultiple and a set of six double points in general position in projective space \mathbb{P}^{2}. These results are stated in Theorem 3.2 and Theorem 4.2.

2. Preliminaries

In proving the main results, we use the lemmas already proven in [2], [5], [9], [11]. The following lemma is used to calculate the value of $\operatorname{reg}(Z)$ when the set of points lie on a line.

Lemma 2.1 ([5], Corollary 2.3). Let $Z=m_{1} P_{1}+\cdots+m_{s} P_{s}$ be a set of arbitrary fat points in \mathbb{P}^{n}. Then,

$$
\operatorname{reg}(Z)=m_{1}+\cdots+m_{s}-1
$$

if and only if the points P_{1}, \ldots, P_{s} lie on a line.
Let $\left\{i_{1}, \ldots, i_{r}\right\}$ be the subset of the set of indices $\{1, \ldots, s\}$. We call $Y=m_{i_{1}} P_{i_{1}}+\cdots+m_{i_{r}} P_{i_{r}}$ the subset of fat points of $Z=m_{1} P_{1}+\cdots+m_{s} P_{s}$. The following lemma helps us to compare the regularity index of a subset of a given set of fat points.

Lemma 2.2 ([9], Lemma 3.3). Let $X=\left\{P_{1}, \ldots, P_{s}\right\}$ be a set of distinct points in \mathbb{P}^{n} and m_{1}, \ldots, m_{s} be positive integers. Put $I=\wp_{1}^{m_{1}} \cap \wp_{2}^{m_{2}} \cap \ldots \cap \wp_{s}^{m_{s}}$. If $Y=\left\{P_{i_{1}}, \ldots, P_{i_{r}}\right\}$ is a subset of X and $J=\wp_{i_{1}}^{m_{i_{1}}} \cap \wp_{i_{2}}^{m_{i_{2}}} \cap \ldots \cap \wp_{i_{r}}^{m_{i_{r}}}$, then

$$
\operatorname{reg}(R / J) \leq \operatorname{reg}(R / I)
$$

This implies that if $Z=m_{1} P_{1}+\cdots+m_{s} P_{s}$ is the set of fat points defining by I, and $Y=m_{i_{1}} P_{i_{1}}+\cdots+m_{i_{r}} P_{i_{r}}$ is the set of fat points defining by J, then

$$
\operatorname{reg}(Y) \leq \operatorname{reg}(Z)
$$

The next two lemmas allow us to compute the regularity index for a given set of points.

Lemma 2.3 ([9], Theorem 3.4). Let P_{1}, \ldots, P_{s+2} be distinct points not in a linear $(s-1)$-space in $\mathbb{P}^{n}, s \leq n$ and m_{1}, \ldots, m_{s} are positive integers. Put $I=\wp_{1}^{m_{1}} \cap \wp_{2}^{m_{2}} \cap \ldots \cap \wp_{s+2}^{m_{s+2}}, A=R / I$. Then,

$$
\operatorname{reg}(A)=\max \left\{T_{j} \mid j=1, \ldots, n\right\}
$$

where

$$
T_{j}=\max \left\{\left.\left[\frac{\sum_{l=1}^{q} m_{i_{l}}+j-2}{j}\right] \right\rvert\, P_{i_{1}}, \ldots, P_{i_{q}} \text { are on a linearj-space }\right\} .
$$

Lemma 2.4 ([11], Theorem 3.1). Let $X=\left\{P_{1}, \ldots, P_{s+3}\right\}$ be a set of distinct points in a general position on a linear s-space, not on a linear $(s-1)$-space in $\mathbb{P}^{n}, s \leq n$, and m_{i} are positive integers. Let $Z=m_{1} P_{1}+\cdots+m_{s+3} P_{s+3}$ be the set of fat points. Then,

$$
\operatorname{reg}(A)=\max \left\{T_{j} \mid j=1, \ldots, n\right\}
$$

where

$$
T_{j}=\max \left\{\left.\left[\frac{\sum_{l=1}^{q} m_{i_{l}}+j-2}{j}\right] \right\rvert\, P_{i_{1}}, \ldots, P_{i_{q}} \text { are on a linear } j \text {-space }\right\} .
$$

The following lemma gives the upper bound for the set $n+3$ non-degenerate fat points in \mathbb{P}^{n}.

Lemma 2.5 ([2], Theorem 2.1). Let $Z=m_{1} P_{1}+\cdots+m_{n+3} P_{n+3}$ be a set of $n+3$ non-degenerate fat points in \mathbb{P}^{n}. Then,

$$
\operatorname{reg}(Z) \leq \max \left\{T_{j} \mid j=1, \ldots, n\right\}
$$

where

$$
T_{j}=\max \left\{\left.\left[\frac{\sum_{l=1}^{q} m_{i_{l}}+j-2}{j}\right] \right\rvert\, P_{i_{1}}, \ldots, P_{i_{q}} \text { are on a linear } j \text {-space }\right\} .
$$

3. The regularity index of a set of five almost equimultiple in \mathbb{P}^{2}

We will begin this section with the following proposition:
Proposition 3.1. Let $X=\left\{P_{1}, \ldots, P_{5}\right\}$ be a set of five non-degenerate distinct points in \mathbb{P}^{2}. Let m_{1}, \ldots, m_{5} be positive integers and a set of five fat points

$$
Z=m_{1} P_{1}+\cdots+m_{5} P_{5} .
$$

Put

$$
T_{j}=\max \left\{\left.\left[\frac{\sum_{l=1}^{q} m_{i_{l}}+j-2}{j}\right] \right\rvert\, P_{i_{1}}, \ldots, P_{i_{q}} \text { is on a linear } j \text {-space }\right\},
$$

and

$$
T=\max \left\{T_{j} \mid j=1,2\right\}
$$

If $T=T_{1}$ then

$$
\operatorname{reg}(Z)=T
$$

Proof. Since $T=T_{1}$, there is a line, denoted d, that passes through the points $P_{i_{1}}, P_{i_{2}}, \ldots, P_{i_{r}} \in X$ such that $T_{1}=m_{i_{1}}+m_{i_{2}}+\cdots+m_{i_{r}}-1$. Considering the set of fat points $Y=m_{i_{1}} P_{i_{1}}+m_{i_{2}} P_{i_{2}}+\cdots+m_{i_{r}} P_{i_{r}}$, according to Lemma 2.2, we have

$$
\operatorname{reg}(Z) \geq \operatorname{reg}(Y)=T_{1}=T
$$

Furthermore, by Lemma 2.5, we have $\operatorname{reg}(Z) \leq T$. Hence $\operatorname{reg}(Z)=T$.
Using Proposition 3.1 we calculate the regularity index of the set of five almost equimultiple fat points in \mathbb{P}^{2}, the result is presented in the following theorem:

Theorem 3.2. Let $X=\left\{P_{1}, \ldots, P_{5}\right\}$ be a set of five non-degenerate distinct points in \mathbb{P}^{2}, let m_{1}, \ldots, m_{5} be positive integers satisfying $m_{i} \in\{m-1, m\}$, $i=1, \ldots, 5, m \geq 2$ and a set of almost equimultiple fat points

$$
Z=m_{1} P_{1}+\cdots+m_{5} P_{5}
$$

Put

$$
T_{j}=\max \left\{\left.\left[\frac{\sum_{l=1}^{q} m_{i_{l}}+j-2}{j}\right] \right\rvert\, P_{i_{1}}, \ldots, P_{i_{q}} \text { are on a linear } j \text {-space }\right\}
$$

and

$$
T=\max \left\{T_{j} \mid j=1,2\right\}
$$

Then

$$
\operatorname{reg}(Z)=T
$$

Except for the following cases:

1) $m_{1}=m_{2}=1, m_{3}=m_{4}=m_{5}=2$.
2) $m_{1}=m_{2}=m_{3}=m-1, m_{4}=m_{5}=m, m \in\{2,3\}$.

Proof. According to the assumption of multiples of the fat points Z, we have the following 3 cases:
i) Case 1: $Z=(m-1) P_{1}+m P_{2}+m P_{3}+m P_{4}+m P_{5}$.

Now we consider the different positions of the set of points X :
i_{1}) If X is in a general position in \mathbb{P}^{2} then according to Lemma 2.4,

$$
\operatorname{reg}(Z)=T=T_{2}=\left[\frac{5 m-1}{2}\right]
$$

i_{2}) If X has 4 points on a line, then we have $4 m-2 \leq T_{1} \leq 4 m-1$, $T_{2}=\left[\frac{5 m-1}{2}\right]$. So for $m \geq 2, T_{1}>T_{2}$, thus $T=\max \left\{T_{1}, T_{2}\right\}=T_{1}$. According to Proposition 3.1, then $\operatorname{reg}(Z)=T$.
i_{3}) If X has three points on a line, denote by d.

- If d passes through P_{1} then $T_{1}=3 m-2, T_{2}=\left[\frac{5 m-1}{2}\right]$.

We have $3 m-2-\frac{5 m-1}{2}=\frac{m-3}{2}$. So for $m \geq 3$ then $3 m-2 \geq$ $\geq\left[\frac{5 m-1}{2}\right]$.
If $m=2$ then $T_{1}=4$ and $T_{2}=\left[\frac{5.2-1}{2}\right]=4$. So for $m \geq 2$ we have $T_{1} \geq T_{2}$.

- If d does not go through P_{1} then $T_{1}=3 m-1, T_{2}=\left[\frac{5 m-1}{2}\right]$.

We have $3 m-1-\frac{5 m-1}{2}=\frac{m-1}{2}$. So for $m \geq 2$ then $3 m-1 \geq\left[\frac{5 m-1}{2}\right]$. That is, for $m \geq 2$, then $T_{1} \geq T_{2}$.

To summarize in all subcases of Case i_{3}, with $m \geq 2$ we have $T=$ $=\max \left\{T_{1}, T_{2}\right\}=T_{1}$. According to Proposition 3.1 we have $\operatorname{reg}(Z)=T$.
ii) Case 2: $Z=(m-1) P_{1}+(m-1) P_{2}+m P_{3}+m P_{4}+m P_{5}$.

Now we consider the different positions of the set of points X :
ii_{1}) If X is in the general position in \mathbb{P}^{2} then according to Lemma 2.4,

$$
\operatorname{reg}(Z)=T=T_{2}=\left[\frac{5 m-2}{2}\right]
$$

i_{2}) If X has 4 points on a line, then

$$
4 m-3 \leq T_{1} \leq 4 m-2, T_{2}=\left[\frac{5 m-2}{2}\right]
$$

So for $m \geq 2, T_{1}>T_{2} \Rightarrow T=\max \left\{T_{1}, T_{2}\right\}=T_{1}$. According to Proposition 3.1, we have $\operatorname{reg}(Z)=T$
ii $\left.3_{3}\right) X$ has three points on a line, denote by d. Then:

- If d passes through P_{1} and P_{2} then $T_{1}=3 m-3, T_{2}=\left[\frac{5 m-2}{2}\right]$.

We have $3 m-3-\frac{5 m-2}{2}=\frac{m-4}{2}$. So for $m \geq 4$ then $3 m-3 \geq\left[\frac{5 m-2}{2}\right]$.
For $m=3$ then $T_{1}=6$ and $T_{2}=\left[\frac{5.3-2}{2}\right]=6$. So for $m \geq 3$ then $T_{1} \geq T_{2}$.

- If d only passes through either point P_{1} or P_{2} then

$$
T_{1}=3 m-2, T_{2}=\left[\frac{5 m-2}{2}\right]
$$

We have $3 m-2-\frac{5 m-2}{2}=\frac{m-2}{2}$. So for $m \geq 3$ then $3 m-1 \geq\left[\frac{5 m-1}{2}\right]$. That is, with $m \geq 3$, then $T_{1} \geq T_{2}$.

- If d does not pass through both points P_{1} and P_{2} then

$$
T_{1}=3 m-1, T_{2}=\left[\frac{5 m-2}{2}\right]
$$

So $T_{1} \geq T_{2}$.
To summarize in all subcases of Case ii_{3}), with $m \geq 3$ we have $T=$ $=\max \left\{T_{1}, T_{2}\right\}=T_{1}$. According to Proposition 3.1, we have $\operatorname{reg}(Z)=T$. Therefore

$$
\operatorname{reg}(Z)=T
$$

iii) Case 3: $Z=(m-1) P_{1}+(m-1) P_{2}+(m-1) P_{3}+m P_{4}+m P_{5}$.

Now we also consider the different positions of the set of points X :
iii $_{1}$) If X is in the general position in \mathbb{P}^{2} then according to Lemma 2.4,

$$
\operatorname{reg}(Z)=T=T_{2}=\left[\frac{5 m-3}{2}\right]
$$

iii_{2}) If X has 4 points on a line, we have

$$
4 m-4 \leq T_{1} \leq 4 m-3, T_{2}=\left[\frac{5 m-3}{2}\right]
$$

We have $4 m-4-\frac{5 m-3}{2}=\frac{3 m-5}{2}>0, \forall m \geq 2$. So if $m \geq 2$, then $T_{1}>T_{2}$ $T=\max \left\{T_{1}, T_{2}\right\}=T_{1}$. According to Proposition 3.1 we obtain that $\operatorname{reg}(Z)=T$.
iii ${ }_{3}$) If X has three points on a line, denote by d, we have:

- If d passes through P_{1}, P_{2} and P_{3} then $T_{1}=3 m-4, T_{2}=\left[\frac{5 m-3}{2}\right]$. We have $3 m-4-\frac{5 m-3}{2}=\frac{m-5}{2}$.
If $m \geq 5$ then $3 m-4 \geq\left[\frac{5 m-3}{2}\right]$.
If $m=4$ then $T_{1}=8$ and $T_{2}=\left[\frac{5.4-3}{2}\right]=8$. So for $m \geq 4$ then $T_{1} \geq T_{2}$.
- If d only passes through either point P_{4} or P_{5} then

$$
T_{1}=3 m-3, T_{2}=\left[\frac{5 m-3}{2}\right]
$$

We have $3 m-3-\frac{5 m-3}{2}=\frac{m-3}{2}$. So for $m \geq 3$ we obtain that $3 m-3 \geq\left[\frac{5 m-3}{2}\right]$. That is, if $m \geq 3$, then $T_{1} \geq T_{2}$.

- If d passes through both points P_{4} and P_{4} then

$$
T_{1}=3 m-2, T_{2}=\left[\frac{5 m-3}{2}\right]
$$

We have $3 m-2-\frac{5 m-3}{2}=\frac{m-1}{2}$. So for $m \geq 2$ we obtain that $T_{1} \geq T_{2}$.

To summarize in all subcases of Case iii ${ }_{3}$, with $m \geq 4$ we obtain that $T=\max \left\{T_{1}, T_{2}\right\}=T_{1}$.

According to Proposition 3.1 we have $\operatorname{reg}(Z)=T$.
Theorem 3.2 is proved.

4. The regularity index of a set of six double points in the general position in \mathbb{P}^{2}

Let $X \subset \mathbb{P}^{n}$ be a zero-dimensional subscheme and I_{X} be the idean defined by X. We say that X has maximal Hilbert function in degree t if

$$
H_{R / I_{X}}(t)=\min \left\{e\left(R / I_{X}\right),\binom{n+t}{t}\right\} .
$$

To prove the main result of this section, we use the following lemma:
Lemma 4.1 (Alexander-Hirschowitz, [1]). Let n, t be positive integers. Let X be a general set of r double points in \mathbb{P}^{n}. Then X has maximal Hilbert function in degree t with the following exceptions:
(1) $t=2$ and $2 \leq r \leq n$;
(2) $t=3, n=4$ and $r=7$;
(3) $t=4,2 \leq n \leq 4$ and $r=\binom{n+2}{2}-1$.

Next, we consider the set of 6 double points in general positions in P^{2} and use Lemma 4.1 to get the following result:

Theorem 4.2. Let $Z=2 P_{1}+\cdots+2 P_{6}$ be a set of 6 double points in general position in projective space \mathbb{P}^{2}. Put

$$
T_{j}=\max \left\{\left.\left[\frac{\sum_{l=1}^{q} m_{i_{l}}+j-2}{j}\right] \right\rvert\, P_{i_{1}}, \ldots, P_{i_{q}} \text { are on a linear } j \text {-space }\right\}
$$

and

$$
T=\max \left\{T_{j} \mid j=1,2\right\}
$$

Then

$$
\operatorname{reg}(Z)=T-1
$$

Proof. Apply Lemma 4.1 to a set of 6 double points in the general position

$$
Z=2 P_{1}+\cdots+2 P_{6}
$$

in \mathbb{P}^{2}, then Z has maximal Hilbert function in degree t, denote by $H_{Z}(t)$.
Furthermore, if X is a set of r double points in a general position in the projective space \mathbb{P}^{n} then $e(A)=e(R / I)=\sum_{i=1}^{r}\binom{2+n-1}{n}=r(n+1)$. Thus, a set of r double points in the general position in \mathbb{P}^{n} has maximal Hilbert function in degree t if and only if

$$
H_{Z}(t)=\min \left\{\binom{n+t}{n}, r(n+1)\right\}
$$

For $n=2, r=6$, i.e. with a set of 6 double points in general positions in \mathbb{P}^{2}, we have

$$
H_{Z}(t)=\left\{\begin{array}{l}
1 \text { if } t=0 \\
3 \text { if } t=1 \\
6 \text { if } t=2 \\
10 \text { if } t=3 \\
15 \text { if } t=4 \\
18 \text { if } t \geq 5
\end{array}\right.
$$

Thus, when $t=5$ then $H_{Z}(t)=e(A)=18$, at which it stabilizes. Hence

$$
\operatorname{reg}(Z)=5
$$

In this case, $T_{1}=2 * 2-1=3, T_{2}=\left[\frac{6 * 2}{2}\right]=6$.
So $T=\max \left\{T_{1}, T_{2}\right\}=6$.
Hence

$$
\operatorname{reg}(Z)=T-1
$$

Theorem 4.2 is proved.
Acknowledgement. The author research is supposed by The University of Danang - University of Science and Education. Under Grant: T2023-TN-01.

References

[1] Alexander, J. et A. Hirschowitz, La méthode d'Horace éclatée: application à I'interpolation en degré quatre, Invent. Math., 107 (1992), 585-602.
[2] Ballico E., O. Dumitrescu and E. Postinghel, On Segre's bound for fat points in \mathbb{P}^{n}, Journal of Pure and Applied Algebra, 220(6) (2016), 2307-2323.
[3] Benedetti B., G. Fatabbi and A. Lorenzini, Segre's bound and the case of $n+2$ fat points of \mathbb{P}^{n}, Comm. Algebra, 40 (2012), 395-403.
[4] Catalisano, M.V., N.V. Trung and G. Valla, A sharp bound for the regularity index of fat points in general position, Proc. Amer. Math. Soc., 118 (1993), 717-724.
[5] Davis, E.D. and A.V. Geramita, The Hilbert function of a special class of 1-dimensional Cohen-Macaulay graded algebras, The Curves Seminar at Queen's, Queen's Paper in Pure and Appl. Math., 67 (1984), 1-29.
[6] Nagel, U. and B. Trok, Segre's regularity bound for fat point schemes, Annali della Scuola normale superiore di Pisa. Classe di scienze, 20(1) (2020), 217-237.
[7] Serge, B., Alcune questioni su insiemi finiti di punti in geometria algebrica, Atti. Convergno. Intern. di Torino, (1961), 15-33.
[8] Thien, P.V., Segre bound for the regularity index of fat points in P3, J. Pure and Appl. Algebra, 151 (2000), 197-214.
[9] Thien, P.V., Regularity index of $s+2$ fat points not on a linear $(s-1)$ space, Comm. Algebra, 40 (2012), 3704-3715.
[10] Thien, P.V. and T.N. Sinh, On the regularity index of s fat points not on a linear $(r-1)$-space, $s \leq r+3$, Communications in Algebra, 45(10) (2017), 4223-4138.
[11] Thien, P.V. and T.T.V. Trinh, An estimate of the regularity index of fat points in some cases, Annales Univ. Sci. Budapest., Sect. Comp., 49 (2019), 399-410.
[12] Trung, N.V., An algebraic approach to the regularity index of fat points in \mathbb{P}^{n}, Kodai Math. J., 17 (1994), 382-389.

P. Q. N. Anh and T. N. Sinh

Department of Mathematics
The University of Danang - University of Science and Education Vietnam
pqnanh@ued.udn.vn and tnsinh@ued.udn.vn

