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CONTINUATION OF THE LAUDATION TO

Professor Bui Minh Phong

on his 70-th birthday

by Imre Kátai (Budapest, Hungary)

We congratulated him in this journal on his 60th (38 (2012) 5–11) and 65th
birthday (47 (2018) 87–96). During the last five years many important things
has happened with him. Two new grandchildren were born and so the number
of grandchildren grew up to seven. His family consisted of 16 people in all, they
now live on three continents: Hungary (Europe), Vietnam (Asia) and Australia
(Australia).

Five years ago, he had a health-related problem, but fortunately everything was
resolved quickly, giving him the opportunity to continue to work and contribute.
In recent times, besides studying math, he also often writes poems, conveys his
feelings and thoughts about family, friends, country and the beauty of the
landscape.
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In the past five years Bui Minh Phong continued his research in number
theory. He wrote 26 new papers in number theory, some of them with coauthors.
He is now Professor Emeritus at Eötvös Loránd University (Budapest).

Here, we provide the highlights of his mathematical results and we enlarge
the categories to classify his new results as follows:

1. Additive arithmetical functions with values in topological groups
([104], [107])

Let N, Z, R and C denote the set of positive integers, integers, real and
complex numbers, respectively. Further let Qx and Rx stand respectively for
the multiplicative group of the positive rational numbers and the positive real
numbers.

Let G be an Abelian group. A mapping ϕ : N→ G is completely additive,
if

ϕ(nm) = ϕ(n) + ϕ(m) ∀n,m ∈ N.
Let A∗G be the set of completely additive functions.

If G is considered as a multiplicative (commutative) group, then the map-
ping V : N→ G satisfying the relation

V (nm) = V (n)V (m) ∀n,m ∈ N

is called a completely multiplicative function. M∗
G denotes the set of these

functions.

We can extend the domain of ϕ and V to Qx by the relations

ϕ
(m
n

)
= ϕ(m)− ϕ(n) and V

(m
n

)
= V (m)(V (n))−1

uniquely. Furthermore, the relations

ϕ(rs) = ϕ(r) + ϕ(s) and V (rs) = V (r)V (s) ∀r, s ∈ Qx

hold.

Let now G be an Abelian topological group, ϕ : Qx → G be a homomor-
phism. We shall say that ϕ is continuous at the point 1, if rν → 1 implies that
ϕ(rν)→ 0.

Theorem 1. (I. Kátai and B. M. Phong [104]) If G is an additively written
Abelian topological group with the translation invariant metric ρ and

1

log x

∑
n≤x

ρ(ϕ(n), ϕ(n+ 1))

n
→ 0 (x → ∞),
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where ϕ : N→ G is a completely additive function, then the extension ϕ : Rx →
→ G is a continuous homomorphism.

Theorem 2. (I. Kátai and B. M. Phong [107]) Let G be an additively written
Abelian topological group with the translation invariant metric ρ. Let ψ, ϕ ∈ A∗G
for which

1

log x

∑
n≤x

ρ(ψ(n+ 1), ϕ(n))

n
→ 0 (x → ∞).

Then ϕ(n) = ψ(n) (n ∈ N), and the extension ϕ : Rx → G is a continuous
homomorphism.

Theorem 3. (I. Kátai and B. M. Phong [107]) Let G be an additively written
Abelian topological group with the translation invariant metric ρ. Assume that
ψ, ϕ ∈ A∗G and

1

log x

∑
n≤x

ρ(ψ([
√
2n]), ϕ(n) +A)

n
→ 0 (x → ∞).

Then ϕ(n) = ψ(n) (n ∈ N), and the extension ϕ : Rx → G is a continuous
homomorphism. Furthermore A = ψ(

√
2).

We note that in the proofs of the above theorems the authors used the
results of O. Klurman (Compos. Math., 153 (2017), no. 8, 1622-–1657) and
O. Klurman, A. P. Mangerel (Algebra Number Theory, 14 (2020), no. 1, 155—
189).

2. Arithmetical functions satisfying some relation ([105], [116], [121],
[126])

An arithmetic function f : N → R is said to be additive (multiplicative) if
(n,m) = 1 implies that

f(nm) = f(n) + f(m) (f(nm) = f(n)f(m))

and it is completely additive (multiplicative) if the above equality holds for
all positive integers n and m. Let A, M, A∗ and M∗ denote the set of
all additive, multiplicative, completely additive and completely multiplicative
functions, respectively.

P. Erdős proved in 1946 (Ann. Math., 47 (1946), 1–20) that if f : N → R
is an additive function such that

Δf(n) := f(n+ 1)− f(n) = o(1) as n → ∞,
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then f(n) is a constant multiple of log n. This assertion has been generalized
in several directions. Some results were surveyed and some new problems were
formulated in the above work of P. Erdős. The characterization of multiplica-
tive function f : N → C under suitable ”regularity condition” even in the
simplest case Δf(n) = o(1) as n → ∞ is much harder. I. Kátai formulated
the conjecture that if f is a multiplicative function and Δf(n)→ 0 (n → ∞),
then either f(n) → 0 or f(n) = nδ+it, where 0 ≤ δ < 1 and t ∈ R. This has
been proved by E. Wirsing in a private letter, and later together with Tang
Yuansheng and Shao Pintsung (see J. Number Theory, 56 (1996), 391–395).

Naturally, it would be nice to characterize those multiplicative functions f, g
for which g(An + B) − Ef(Cn +D) → 0 (n → ∞), where AD 
= BC,A,C ∈
∈ N, B,D ∈ Z.

Doing the first step N. L. Bassily and I. Kátai investigated those multiplica-
tive functions f, g for which g(2n + 1) − Ef(n) → 0 (n → ∞) (Aequationes
Math., 55 (1998), 1–14). B. M. Phong [43] obtained the result of the above
problem in the case B = C = 1, D = 0 and A ∈ N is arbitrary.

I formulated the conjecture that if f ∈ M and

lim
x→∞

1

x

∑
n≤x

|f(n+ 1)− f(n)| = 0

then either

lim
x→∞

1

x

∑
n≤x

|f(n)| = 0

or
f(n) = nδ+it (n ∈ N), 0 ≤ δ < 0, t ∈ R.

This has been proved by L. Klurman (Compos. Math., 153 (2017), no. 8,
1622–1657). He proved that if f ∈ M∗, |f(n)| = 1 (n ∈ N) and

lim
x→∞

1

log x

∑
n≤x

|f(n+ 1)− f(n)|
n

= 0,

then f(n) = nit (n ∈ N), t ∈ R.

Theorem 4. (I. Kátai and B. M. Phong [105]) Let f, g ∈ M∗, f(n)g(n) 
= 0
(n ∈ N), A 
= 0, and that

lim
x→∞

1

log x

∑
n≤x

|g(2n+ 1)−Af(n)|
n

= 0 and lim
1

log x

∑
n≤x

|f(n)|
n

> 0.

Then f(n) = g(n) for all odd n and A = f(2), f(n) = nδ+it for every n ∈ N,
where 0 ≤ δ < 1, t ∈ R.
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Let ‖x‖ be the distance of the real number x from a nearest integer. We
proved the following results.

Theorem 5. (I. Kátai and B. M. Phong [122]) Assume that f ∈ A, Δf(n) =
= f(n+ 1)− f(n), and that for every ε > 0 either

1

x
	{n ≤ x| ‖Δf(n)‖ > ε} → 0 as x → ∞

or
1

log x

∑
n≤x

‖Δf(n)‖>ε

1

n
→ 0 as x → ∞.

Then f(n) = λ log n+ E(n), where λ ∈ R, E ∈ A, E(n) ∈ Z for every n ∈ N.

Theorem 6. (I. Kátai and B. M. Phong [122]) Assume that f ∈ A and that
for every ε > 0 either

1

x
	{n ≤ x | |Δf(n)| > ε} → 0 as x → ∞

or
1

log x

∑
n≤x

|Δf(n)|>ε

1

n
→ 0 as x → ∞.

Then f(n) = c log n for some real number c.

Now let g be a completely multiplicative function, g(n) ∈ T, where T =
= {z ∈ C : |z| = 1}. Let A = {α1, . . . , αk} ⊂ T. Assume that

lim
x→∞

1

x
	{n ≤ x | |g(n+ 1)g(n)− αj | < ε} = ρ(αj) > 0

for each ε > 0 which is small enough. Assume furthermore that if δ ∈ T \ A,
then

lim
x→∞

1

x
	{n ≤ x | |g(n+ 1)g(n)− δ| < ε} = 0.

We formulated a conjecture on the possible A and g.

Conjecture 1. (I. Kátai and B. M. Phong [116]) Let

A = {α1, · · · , αk} ⊆ T.

Let g ∈ M∗
1 and C(n) = g(n+ 1)g(n) (n ∈ N). Assume that

lim
x→∞

1

x

∑
n≤x

min
β∈A

|C(n)− β| = 0



56 I. Kátai

and that for every γ ∈ A,

lim
x→∞

1

x
	{n ≤ x | |C(n)− γ| = min

β∈A
|C(n)− β|} = ρ(γ)

exists, and ρ(γ) > 0. Then there exists such an � ∈ N for which A� = {1}.
Consequently

g�(n) = niτ , g(n) = niτ/�G(n), G ∈ M∗
1, G

�(n) = 1.

Theorem 7. (I. Kátai and B. M. Phong [116]) Conjecture 1 is true if

(A1) k ∈ {1, 2}
and

(A2) k = 3, possibly except the case when A = {α1, α2, α3} = {1, β, β}.

We stated the following

Conjecture 2. (I. Kátai and B. M. Phong [116]) Let 0 ≤ u1 < u2 < · · · <
< uk < 1; p1, · · · , pk > 0 with

∑k
i=1 pi = 1. Let H be the class of the distribu-

tion functions of the random variables ξ satisfying the conditions P (ξ = ui) =
= pi. Let h(n) be an additive function, δ(n) = h(n+1)−h(n) (mod 1). Assume
that it has a limit distribution, and that its distribution F ∈ H,

F (y) = P (ξ ≤ y), P (ξ = ui) = pi (i = 1, · · · k).

Then h(n) ≡ τ log n+ E(n) and

1

x
	{n ≤ x | E(n+ 1)− E(n) (mod 1) = ui} = pi (i = 1, . . . , k),

furthermore �E(n) ≡ 0 (mod 1) for a suitable � ∈ N.

Conjecture 2 is a variant of Conjecture 1.

Conjecture 3. (I. Kátai and B. M. Phong [116]) Let h(n), δ(n) be as above.
Let I = [α, β) ⊆ [0, 1) and assume that

lim
x→∞

1

x
	{n ≤ x | δ(n) ∈ I} = 0.

Then h(n) ≡ τ log n + E(n) (mod 1) and �E(n) ≡ 0 (mod 1) for a suitable
� ∈ N.

Let α, β be positive real numbers such that α
β 
∈ Q. In papers [84]–[87]

I. Kátai and B. M. Phong formulated the following conjecture:
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Conjecture 4. (I. Kátai and B. M. Phong [126]) Let

U := {z ∈ C | |z| ≤ 1}.

If f ∈ M, f(n) ∈ U , and there exists some C for which either

f([βn])− Cf([αn])→ 0 as n → ∞

or
1

log x

∑
n≤x

f([βn])− Cf([αn])

n
→ 0,

then f(n) = niτ .

This conjecture was proved in the special case, when α = 1, β =
√
2.

Recently in [126] we proved the following result.

Theorem 8. (I. Kátai and B. M. Phong [126]) Let f, g ∈ M∗
1,

1

log x

∑
n≤x

|g([
√
2n])− Cf(n)|

n
→ 0 (x → ∞),

then f(n) = g(n) = niτ (τ ∈ R), where C = (
√
2)iτ .

3. On q-multiplicative functions with special properties ([112])

Let N0 be the set of all non-negative integers. For some integer q ≥ 2 let

Aq := {0, 1, · · · , q − 1}.

Every n ∈ N0 can be uniquely represented in the form

n =

∞∑
r=0

ar(n)q
r with ar(n) ∈ Aq

and ar(n) = 0 if qr > n. Let Aq and Mq be the sets of q-additive and
q-multiplicative functions, respectively. We say that f ∈ Aq (g ∈ Mq), if
f : N0 → C (g : N→ C) satisfy the following conditions

f(0) = 0 and f(n) =
∞∑
r=0

f
(
ar(n)q

r
)

for every n ∈ N

and

g(0) = 1 and g(n) =
∞∏
r=0

g
(
ar(n)q

r
)

for every n ∈ N.
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It is easy to see that f ∈ Aq (g ∈ Mq) if and only if f(aq
r+ b) = f(aqr)+ f(b)

( g(aqr + b) = g(aqr)g(b)) for all a ∈ N0, r ∈ N, 0 ≤ b < qr.

In the following let Iq be the set defined as:

Iq := P ∪ {n ∈ N| (n, q) = 1}.

I. Kátai and B. M. Phong stated the following conjecture:

Conjecture 5. Let q ≥ 2 be an integer and g ∈ Mq. If g(p) = 1 for every
p ∈ P, then g(qm) = 1 for every m ∈ N and g(qm+r) = g(r) for every m ∈ N,
r ∈ {1, · · · , q − 1}, furthermore g(n) = 1 for every n ∈ Iq.

In [112] B. M. Phong and R. B. Szeidl proved the following

Theorem 9. (B. M. Phong and R. B. Szeidl [112]) Conjecture 5 is true for
every q ∈ {2, . . . , 50}.

We note from Theorem 9 that if q ∈ {2, · · · , 50}, q ∈ P and g ∈ Mq, then
the condition g(p) = 1 for every p ∈ P implies that g(n) = 1 for every n ∈ N.

4. The identity function with equations of functions ([117], [120])

In the following, let E(n) = 1, I(n) = n, 0(n) = 0 for every n ∈ N and
O(1) = 1,O(n) = 0 if n ≥ 2. Thus I is the identity function and 0 is the
zero function.

A characterization of the identity function I was studied by C. Spiro (Jour-
nal of Number Theory, 42 (1992), 232-246.), J.-M. De Koninck, I. Kátai and
B. M. Phong [38], B. M. Phong [92] and by others.

In 1992, C. Spiro proved that if f ∈ M satisfies

f(p+ q) = f(p) + f(q) (∀p, q ∈ P) and f(p0) 
= 0 for some p0 ∈ P,

then f = I.

In 1997, J.-M. De Koninck, I. Kátai and B. M. Phong [38] proved that if a
function f ∈ M satisfies the condition

f(p+m2) = f(p) + f(m2) for every p ∈ P,m ∈ N,

then f = I.

Let D ∈ Z be fixed. We consider the following equation

(1) f(n2 +Dnm+m2) = f2(n) +Df(n)f(m) + f2(m) for every n,m ∈ N.
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In the case D = 0, the equation (1) was studied by B. Bašić (Acta Math-
ematica Sinica, English Series, 30 (2014), Issue 4, 689–695). Recently P.-S.
Park (Bull. Korean Math. Soc., 60 (2023), no. 1, 75–81) proved that if f ∈ M
satisfies (1), then f = I. He also obtained a complete solutions f of (1) in the
case D = −1.

For some generalizations of above results we refer the works of B. M. M.
Khanh (Annales Univ. Sci. Budapest. Sect. Comp., 52 (2021), 195–216),
B. M. Phong and R. B. Szeidl [117]. They prove that if D ∈ {1, 2, 3} and an
arithmetical function f : N → C satisfy the conditions f(1) = 1 and (1), then
f = I.

Theorem 10. (B. M. Phong and R. B. Szeidl [117]) Assume that f : N → C
satisfies

f(n2 + nm+m2) = f2(n) + f(n)f(m) + f2(m) for every n,m ∈ N.

Then the following assertions holds:

(B1) If f(1) = 0, then f(n) = 0 for every n ∈ N,
(B2) If f(1) = 1

3 , then f(n) = 1
3 for every n ∈ N,

(B3) If f(1) = 1, then f = I.

Theorem 11. (B. M. Phong and R. B. Szeidl [120]) An arithmetical function
f : N→ C satisfies

(2) f(n2 − nm+m2) = f2(n)− f(n)f(m) + f2(m) for every n,m ∈ N

if and only if
f ∈ {0, O, E, I, ΘM},

where

ΘM (n) =

{
0, if M | n
1, if M � n for every n ∈ N

and M = 2 or M = q1 · · · qs ≥ 5 is a square-free number, qi ≡ 2 (mod 3) (i =
= 1, . . . , s).

Theorem 12. (B. M. Phong and R. B. Szeidl [120]) An arithmetical function
f : N→ C satisfies

f(n2 − 2nm+m2) = f2(n)− 2f(n)f(m) + f2(m) for every n,m ∈ N

if and only if if and only if

f ∈ {0, I, χ2},

where χ2(n) is a Dirichlet character (mod 2).
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It follows easily from Theorem 11 that a function f ∈ M satisfies (2) if and
only if f ∈ {E, I, χq}, where χq is the Dirichlet principal character (mod q),
q ∈ P, q ≡ 2 (mod 3).

5. Arithmetical functions commutable with sums of squares ([114],
[118], [119])

In [118] we prove the following results.

Theorem 13. (I. Kátai and B. M. Phong [118]) Assume that the arithmetical
functions f, g : N0 → C satisfy the relation

f(a2 + b2 + c2 + d2) = g(a2) + g(b2) + g(c2) + g(d2)

for every a, b, c, d ∈ N0. Then there are numbers A and B such that

f(n) = An+ 4B and g(m2) = Am2 +B

hold for every n,m ∈ N0.

Theorem 14. (I. Kátai and B. M. Phong [118]) Assume that the arithmetical
functions F,G : N0 → C satisfy the relation

F (a2 + b2 + c2 + d2) = G(a2 + b2) +G(c2 + d2)

for every a, b, c, d ∈ N0. Then there are numbers C and D such that

F (n) = Cn+ 2D and G(n2 +m2) = C(n2 +m2) +D.

It follows easily from the above results that if f = g in Theorem 13 or
F = G in Theorem 14, then f(n) = f(1)n or F (n) = F (1)n holds for every
n ∈ N0.

Theorem 15. (I. Kátai and B. M. Phong [114]) Let k ∈ N0 and K ∈ C.
Assume that the arithmetical functions f, h1, h2, h3, h4 : N0 → C satisfy the
relation

f(x21 + x22 + x23 + x24 + k) = h1(x1) + h2(x2) + h3(x3) + h4(x4) +K

for every x1, x2, x3, x4 ∈ N0. Then there are numbers A,B1, B2, B3, B4 ∈ C
such that

hi(m) = Am2 +Bi (i = 1, . . . , 4)

and
f(n+ k) = An+B1 +B2 +B3 +B4 +K

hold for every n,m ∈ N0.
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Theorem 16. (I. Kátai and B. M. Phong [114]) Let k ∈ N and K ∈ C. Assume
that the arithmetical functions F,H1, H2, H3, H4 : N→ C satisfy the relation

F (x21 + x22 + x23 + x24 + k) = H1(x1) +H2(x2) +H3(x3) +H4(x4) +K

for every x1, x2, x3, x4 ∈ N. Then there are numbers C,D1, D2, D3, D4 ∈ C
such that

Hi(m) = Am2 +Di (i = 1, . . . , 4)

and

F (x21 + x22 + x23 + x24 + k) = C(x21 + x22 + x23 + x24) +D1 +D2 +D3 +D4 +K

hold for every m,x1, x2, x3, x4 ∈ N.

Some corollaries follow from Theorem 15 and Theorem 16, for example it
follows from Theorem 16 that if � ≥ 4 and the arithmetical functions F : N→ C
satisfy the relation

F (x21 + · · ·+ x2�) = F 2(x1) + · · ·+ F 2(x�)

for every x1, . . . , x� ∈ N, then

F ∈
{
0, I,

ε

�

}
,

where ε(n) ∈ {−1, 1} and ε(x21 + · · ·+ x2�) = 1.

We define S and A as follows:

S := {4s(8t+ 7) | s, t ∈ N0}

and

A := {r ∈ N | r2 = k2+h2+ t2 and r2 = u2+v2 for some k, h, t, u, v ∈ N}.

For some k ∈ N let k ≡ k (mod 4) such that k ∈ {0, 1, 2, 3}.

Theorem 17. (I. Kátai and B. M. Phong [119]) Let k ∈ N0 and K ∈ C.
Assume that the arithmetical functions f, h : N→ C satisfy the equation

f(a2 + b2 + c2 + k) = h(a) + h(b) + h(c) +K

for every a, b, c ∈ N. Then there are numbers A,B,C ∈ C such that

h(m) = Am2 +Bχ2(m) + C

and

f(a2 + b2 + c2 + k) = A
(
a2 + b2 + c2

)
+B

(
χ2(a) + χ2(b) + χ2(c)

)
+D3
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hold for every m, a, b, c ∈ N, where D3 = 3C + K and χ2(r) is the Dirichlet
character (mod 2), that is

χ2(r) =

{
1 if (r, 2) = 1

0 if 2|r.

Furthermore
f(r2n+ k) = Ar2n+ nBχ2(r) +D3

holds for every n ∈ N, n 
∈ S and for every r ∈ A.

In the following let

M := {a2 + b2 + c2|a, b, c ∈ N}

and for each k ∈ N0 let

Hk =

⎧⎪⎨⎪⎩
{1, . . . , e+ 2} if k = 2ek1, (k1, 2) = 1, 2|e and k1 ≡ 1 (mod 8),

N \ {e+ 2} if k = 2ek1, (k1, 2) = 1, 2|e and k1 ≡ 5 (mod 8),

N in any other cases.

Theorem 18. (I. Kátai and B. M. Phong [119]) Let k ∈ N0 and K ∈ C.
Assume that F,H ∈ M satisfy the relation

F (a2 + b2 + c2 + k) = H(a) +H(b) +H(c) +K

for every a, b, c ∈ N. Then one of the following assertions holds:

(C1) H = E and F (η + k) = 0 (∀η ∈M) if K = −3,
(C2) H = E and F (2n+1) = 1, F (2α) = K+3 (∀α ∈ Hk) if K 
= −3
(C3) H = χ2 and F (2n+ 1) = 1 (∀n ∈ N) if (k,K) 
= (3,−1) ,

(C4) H = χ2 and F (2n+ 1) = (−1)n, F (2) = (−1) k+1
4 2, F (2α) = 0,

(∀n ∈ N, ∀α ∈ Hk, α ≥ 2) if (k,K) = (3,−1),
(C5) H = I2, F (2n+ 1) = 2n+ 1 and F (2α) = 2α (∀n ∈ N, ∀α ∈ Hk).

One can deduced from the above results that if � ∈ N, � ≥ 4 and the
arithmetical function F : N→ C satisfy

F (n21 + · · ·+ n2�) = F (n21) + · · ·+ F (n2�) for every n1, · · · , n� ∈ N,

then there is a complex A such that F (m2) = Am2 and F (n21 + · · · + n2�) =
= A(n21+ · · ·+n2�) hold for every m,n1, . . . , n� ∈ N. Consequently, F (n) = An
for every n which can be written as n = n21 + · · ·+ n2� for n1, . . . , n� ∈ N.
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6. Characterizations of arithmetical functions with special relations
([121], [124], [125], [129])

6.1. The equation F (n2 +m2 + k) = H(n) +H(m) +K

Theorem 19. (I. Kátai, B. M. M. Khanh and B. M. Phong [121]) Let E be
the set of positive integers, which are the sum of two squares. The numbers
k ∈ E ,K ∈ C and the functions F,H ∈ M∗ satisfy the equation

F (n2 +m2 + k) = H(n) +H(m) +K for every n,m ∈ N

if and only if one of the following assertions holds:

(D1) K = k, H = I2, F = I,

(D2) K = −1, H = F = E,

(D3) K = −2, H = E, F (n2 +m2 + k) = 0 for every n,m ∈ N,
(D4) K = −1, k ≡ 2 (mod 3), H = χ∗3, F = χ3, where χ∗3(m)

(mod 3) is the principal Dirichlet character and χ3(m) (mod 3) is the non-
principal Dirichlet character, i.e χ∗3(0) = 0, χ∗3(1) = 1, χ∗3(2) = 1, χ3(0) = 0,
χ3(1) = 1, χ3(2) = −1.

It follows from Theorem 19 that if the numbers k ∈ E ,K ∈ C \ {−1,−2}
and the functions F,H ∈ M∗ satisfy the equation in Theorem 19, then (D1)
holds.

6.2. The equation Ag(n+ 1) = Bf(n) + C

Theorem 20. (I. Kátai and B. M. Phong [125]) If A,B,C ∈ C, AB 
= 0 and
the functions g, f ∈ M∗ satisfy the relation

Ag(n+ 1) = Bf(n) + C for every n ∈ N,

then:
C ∈

{
0, −B, A−B, Bf(2)2 − 2Bf(2) +A

}
and the following assertions hold:

(E1) If C = 0, then A = B and g = f = E.

(E2) If C = −B, then

(g, f) =

{
(O,E) if f(2) = 1

(χ2, χ2) if f(2) 
= 1.

(E3) If A = B + C, then g = f = E.
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(E4) If C = Bf(2)2 − 2Bf(2) +A, then f(2) ∈
{
0, 1, A+B

B

}
.

(E4.1) If f(2) = 0, then g(2) = 0 and g = f = χ2.

(E4.2) If f(2) = 1, then f = g = E.

(E4.3) If f(2) = A+B
B 
∈ {0, 1}, then A = B = C and f = g = I.

No other solutions exist.

6.3. On the equation G(p+ 1) = F (p− 1) +D

In [125] we stated the following

Conjecture 6. If F ∈ M∗ satisfies the relation

F (p+ 1) = F (p− 1) + 2 for every p ∈ P,

then F (n) = n for every n ∈ N.

The classical theorem of Dirichlet states that any arithmetic progression a
(mod q) in which a and q are relatively prime contains infinitely many prime
numbers. A natural question to ask is then, how big is the first such prime,
P (a, q) say? The theorem is named after Yuri Vladimirovich Linnik, who
proved in 1944 that there are constants c and L such that P (a, q) < cqL.
The constant L is called Linnik’s constant and the best value of L is 5. It is
also conjectured by R. Heath-Brown that P (a, q) < q2.

In the following for each positive integer n > 1 let P (n) be the largest prime
divisor of n. We think that the following assertion holds.

Conjecture 7. Let q ∈ P, q > 2. Then there exists such a p1 ∈ P, for which

q|(p1 + 1) and P
(
(p1−1)(p1+1)

q

)
< q, and such a p2 ∈ P, for which q|(p2 − 1)

and P
(
(p2−1)(p2+1)

q

)
< q.

It proved that from Conjecture 7 implies Conjecture 6.

Theorem 21. (I. Kátai and B. M. Phong [125]) Assume that Conjecture 7 is
true. Let G,F ∈ M∗, D ∈ C and

G(p+ 1) = F (p− 1) +D for every p ∈ P.

Then we have

(G(2), F (2), D) = {(0, 0, 0), (0, 1,−1); (1, 1, 0), (2, 2, 2)},

furthermore
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(F1) If (G(2), F (2), D) = (0, 0, 0), then G(3) = 1 and F (n) is arbitrary if
(n, 2) = 1, G(n) is arbitrary if (n, 6) = 1.

(F2) If (G(2), F (2), D) = (0, 1,−1), then G(n) is arbitrary for every odd
n > 1, and F (p− 1) = 1 for every p ∈ P, consequently F (n)τ = 1 (n ∈ N) for
some τ ∈ {1, 2, 3}.

(F3) If (G(2), F (2), D) = (1, 1, 0), then G = F = E.

(F4) If (G(2), F (2), D) = (2, 2, 2), then G = F = I.

6.4. The equation G(n) = F (n2 − 1) +D

For each ω ∈ C with ω3 = −1 we define the function Ψω : N→ C such that

Ψω(n) =

⎧⎪⎨⎪⎩
0 if 3|n
ω

2(n−1)
3 if n ≡ 1 (mod 3)

ω
4(n−2)

3 +1 if n ≡ 2 (mod 3).

One can check that Ψω ∈ M∗ and Ψ−1 = χ∗3.

Theorem 22. (I. Kátai, B. M. M. Khanh and B. M. Phong [124]) Let N1 :=
N \ {1}. Assume that D ∈ C and the functions G,F ∈ M∗ satisfy the relation

G(n) = F (n2 − 1) +D for every n ∈ N1.

Then the following assertions hold.

(G1) If D = 0 and F (3) 
= 0, then G = F = E,

(G2) If D = 0 and F (3) = 0, then G = O and F (2) = F (3) = F (5) =
= F (7) = 0, F (n2 − 1) = 0 for every n ∈ N1,

(G3) If D 
= 0, F (2) = F (3) = 0, then D = 1, G = E and F (n2 − 1) =
= 0 for every n ∈ N1,

(G4) If D 
= 0, F (2) = 0 and F (3) 
= 0, then (D,G, F ) = (1, χ2, χ
∗
4),

(G5) If D 
= 0, ω = F (2) 
= 0 and F (3) = 0, then ω3 = −1 and (D,G, F ) =
= (1, χ3,Ψω)},

(G6) If D 
= 0 and F (2)F (3) 
= 0, then (D,G, F ) = {(−1,O,E), (1, I2, I)}.

We note that if F is the set of all F ∈ M∗, for which F (n2 − 1) = 0 holds
for every n ∈ N1, then |F| =∞ (see [124]).
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6.5. The equation F (n3) = F (n3 − 1) +D

Theorem 23. (I. Kátai, B. M. M. Khanh and B. M. Phong [129]) Assume that
D ∈ C and the function F ∈ M∗ satisfy the relation

F (n3) = F (n3 − 1) +D for every n ∈ N1.

Then
(D,F ) ∈ { (0,O), (0, E), (1, I)}.

It follows from Theorem 23 that if the number D ∈ C\{0} and the function
F ∈ M∗ satisfy F (n3) = F (n3−1)+D for every n ∈ N1, then (D,F ) = (1, I).

We are unable to find the solutions of

F (n3) = AF (n3 − 1) +B for every n ∈ N1
if A,B ∈ C and F ∈ M∗. We think that the following assertions hold:

Conjecture 8. If p is a prime, C is a nonzero complex number and the function
F ∈ M∗ satisfy

F (p) = 0, F (pm+ 1)3 = 1 and F (p3m3 − 1) = C 
= 0 for every m ∈ N,

then C = 1 and F = χp, where χp is a Dirichlet character (mod p).

Conjecture 9. If the function F ∈ M∗ satisfies

F (n4 − 1) = 1 for every n ∈ N1,

then F = E.

Conjecture 10. If the function F ∈ M∗ satisfies

F (n3 + 1) = 1 for every n ∈ N,

then F = E.

7. Other results

J.-M. De Koninck, I. Kátai and B. M. Phong recently published six joint
papers ([106], [108], [109], [113], [115], [123]) regarding families of multiplicative
functions which are characterised by their behaviour at consecutive arguments.
The results of these papers can find in Section 6 of Laudation to Professor
Jean-Marie De Koninck.

Similarly K.-H. Indlekofer, I. Kátai and B. M. Phong has two joint papers
([110], [111]), for which we refer to Section 3 of Laudation to Professor K-H.
Indlekofer on his 80th birthday.
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I. Kátai)



68 I. Kátai
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