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CONTINUATION OF THE LAUDATION TO

Professor Jean-Marie De Koninck

on his 75th birthday

by Imre Kátai (Budapest, Hungary)

In Annales Univ. Sci. Budapest., Sect. Comp., 47 (2018) 47–61 I wrote the
Laudation to Professor Jean-Marie De Koninck. Here, I provide the highlights
of his mathematical results from 2018 to 2023.

1. On the consecutive prime divisors of an integer

Let ω(n) stand for the number of distinct prime factors of an integer n ≥ 2,
so that we may list the distinct prime factors of n as p1(n) < p2(n) < · · · <
< pω(n)(n). The growth rates of the functions ω(n) and pj(n) have been the
subject of much research in the last century, as they possess surprisingly regular
behavior. One such result is an interesting 1946 theorem of Paul Erdős which
asserts that if ξ(n) → ∞ as n → ∞, then for any small ε > 0 and ξ(n) ≤ k ≤
≤ ω(n) the inequalities

ee
k(1−ε)

< pk(n) < ee
k(1+ε)

are satisfied for almost all n ≤ x. This was strengthened in 1976 by János
Galambos as he showed that if ε > 0 is sufficiently small, and j = j(x) tends to
infinity with x such that j(x) ≤ (1−ε) log log x, then for any fixed real number
z > 1,

lim
x→∞

1

x
#

{
n ≤ x :

log pj+1(n)

log pj(n)
< z

}
= 1− 1

z
.

In [168], De Koninck and Kátai expanded on these results by studying the
distribution of the consecutive spacings between the prime factors of an integer.
More precisely, letting

νp = νp(n) := min{q | n : q > p}

and λ ∈ (0, 1], the authors studied the function

Uλ(n) :=
∑
p|n
log p

log νp(n)
<λ

1.
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They first proved that given an arbitrary real number λ ∈ (0, 1],

(1)
∑
n≤x

Uλ(n) = (1 + o(1))λx log log x (x → ∞)

and moreover that for every ε > 0,

(2) lim
x→∞

1

x
#

{
n ≤ x :

∣∣∣∣Uλ(n)ω(n)
− λ

∣∣∣∣ > ε

}
= 0.

In that same paper, they considered the “shifted prime version” of the above
by establishing that given an arbitrary real number λ ∈ (0, 1],∑

p≤x
Uλ(p+ 1) = (1 + o(1))λ li(x) log log x (x → ∞),

where li(x) :=

∫ x

2

dt

log t
is the logarithmic integral. Moreover, they proved that

for every ε > 0,

lim
x→∞

1

π(x)
#

{
p ≤ x :

∣∣∣∣Uλ(p+ 1)ω(p+ 1)
− λ

∣∣∣∣ > ε

}
= 0,

where as usual π(x) stands for the number of primes not exceeding x.

In a subsequent paper, De Koninck and Kátai [169] examined other func-
tions which provide further information on the spacings between the prime
divisors of an integer. First, given λ ∈ (0, 1) and p ∈ ℘ (here ℘ stands for the
set of all primes), consider the set

Bλ(p) :=
{
q ∈ ℘ : λ <

log q

log p
< 1/λ

}
.

We will say that a positive integer m is coprime to a set of primes A and write
(m,A) = 1 if (m, p) = 1 for every p ∈ A. De Koninck and Kátai studied the
arithmetic function

uλ(n) := #{p | n : (n/p,Bλ(p)) = 1}.

Observe that it follows from (1) and (2) that

(3)
∑
n≤x

uλ(n) = (1 + o(1))λ2 x log log x (x → ∞),

and

(4)
∑
n≤x

uλ(n)
2 = λ4 x (log log x)2 +O (x log log x) .
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By improving the above, they managed to show that, as x → ∞,

1

x

∑
n≤x

(
uλ(n)− λ2 log log x

)2
= (1 + o(1))ψ(λ) log log x,

where

ψ(λ) = λ2 + 2λ2(1− λ2)− 4λ4 log
1

λ
.

They also obtained an analogue result for shifted primes, namely that, as
x → ∞,

1

π(x)

∑
p≤x

uλ(p+ 1) = (1 + o(1))λ2 log log x,

1

π(x)

∑
p≤x

(
uλ(p+ 1)− λ2 log log x

)2
= (1 + o(1))ψ(λ) log log x.

Finally, in a paper to appear in 2023, De Koninck and Kátai [172] examined
the spacings between particular types of prime divisors of n, such as certain
congruence classes of primes and various other subsets of ℘.

Let B be a set of primes whose corresponding counting function B(x) :=
:= #{p ≤ x : p ∈ B} is such that, for some real number β > 0, we have

(5) B(x) = β li(x) +O

(
x

log3 x

)
.

Any such set B satisfying (5) is called a B-set.

Now, consider the arithmetic function

Uλ,B(n) :=
∑
p|n
p∈B

log p
log νp(n)

<λ

1.

Using the techniques developed to establish (1) and (2), one will easily establish
that given λ ∈ (0, 1] and a set of primes B satisfying estimate (5),

(6)
∑
n≤x

Uλ,B(n) = (1 + o(1))λβx log log x (x → ∞)

and, for an arbitrarily small ε > 0,

(7) lim
x→∞

1

x
#

{
n ≤ x :

∣∣∣∣Uλ,B(n)ω(n)
− λβ

∣∣∣∣ ≥ ε

}
= 0.
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Moreover, estimates (6) and (7) can be modified to hold for shifted primes.
Indeed, given λ ∈ (0, 1], a set of primes B satisfying estimate (5) and a fixed
integer a 
= 0, we have

1

π(x)

∑
p≤x

Uλ,B(p+ a) = (1 + o(1))λβ log log x (x → ∞)

and moreover, for any arbitrarily small ε > 0,

lim
x→∞

1

π(x)
#

{
p ≤ x :

∣∣∣∣Uλ,B(p+ a)

ω(p+ a)
− λβ

∣∣∣∣ ≥ ε

}
= 0.

De Koninck and Kátai further extended the above results as follows. Given
λ ∈ (0, 1] and a set of primes B satisfying estimate (5), consider the arith-

metic function Ũλ,B(n) which counts the number of prime divisors p of n which
belong to B and for which the next prime divisor q of n also belonging to B
satisfies log p/ log q < λ. In short, setting QB(u, v) :=

∏
u<p<v
p∈B

p, one can define

this arithmetic function formally as

Ũλ,B(n) :=
∑
p|n

log p/ log q<λ
p,q∈B

( npq ,QB(p,q))=1

1.

In the case of the function Ũλ,B(n), one can obtain an asymptotic formula for
its average value with greater accuracy than the one obtained for the function
Uλ,B(n) (whose average value was revealed through estimate (6)). Indeed, we
have the following result.

Let λ ∈ (0, 1] and B a set of primes satisfying estimate (5). Then,∑
n≤x

Ũλ,B(n) = βλβx log log x+O(x log log log x).

Moreover, for any arbitrarily small ε > 0,

lim
x→∞

1

x
#

{
n ≤ x :

∣∣∣∣∣ Ũλ,B(n)ω(n)
− βλβ

∣∣∣∣∣ ≥ ε

}
= 0.

The authors then provided several examples of B-sets to which one can
apply the above results. Two of these are as follows.
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Given an integer k ≥ 3, let �1, . . . , �r be the reduced residue system modulo
k, with r = φ(k) (here φ stands for the Euler totient function). Then, it is
clear that each of the residue classes

B�j := {p ∈ ℘ : p ≡ �j (mod k)} (j = 1, . . . , r)

satisfies condition (5) and is therefore a B-set.

A second interesting B-set involves the sum-of-digits function sq(n) which
stands for the sum of the base q digits of an integer n (here, q ≥ 2). First
note that it is known (for instance from the work of Mauduit and Rivat) that
if (k, q − 1) = 1, then there exists a real number σ = σq,k > 0 such that

(8)
1

π(x)
#{p ≤ x : sq(p) ≡ � (mod k)} = 1

k
+Oq,k

(
x−σ log x

)
.

Clearly, estimate (8) guarantees that if for a given integer k ≥ 3, we set

B� := {p ∈ ℘ : sq(p) ≡ � (mod k)} (� = 0, 1, . . . , k − 1),

then B� is indeed a B-set for each � = 0, 1, . . . , k − 1.

2. Consecutive integers divisible by a power of their largest prime
factors

Given an integer n ≥ 2, let P (n) stand for its largest prime factor. Given
integers k ≥ 2 and � ≥ 2, consider the set Ek,� of those integers n ≥ 2 for which
P (n+ i)� | n+ i for i = 0, 1, . . . , k − 1. These sets are very thin. For instance,
the smallest element of E3,2 is 1 294 298. The study of the sets Ek,� originated
in 2009 and was later pursued by several authors. In 2018, De Koninck and
Moineau [146] used an approach based on polynomials to find several elements
appearing in various Ek,� sets. For instance, by considering the system of
consecutive polynomials

g(x)− 1 = (2x+ 1)2(x− 1),

g(x) = x(4x2 − 3),

g(x) + 1 = (2x− 1)2(x+ 1),

they could find thousands of elements of E3,2, and by considering the system

g(x)− 1 = (2x− 1)3(30x4 + 45x3 + 24x2 + 6x+ 1),

g(x) = x3(240x4 − 168x2 + 35),

g(x) + 1 = (2x+ 1)3(30x4 − 45x3 + 24x2 − 6x+ 1),
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they could identify integers belonging of E3,3 with no less than 77 digits. In
order to find elements belonging to E2,�, they proved that, given any fixed
integer � ≥ 2, there exist g1(x), g2(x) ∈ Z[x] each of degree �− 1 such that

x� · g1(x) + (−1)� = (x− 1)� · g2(x).

Using this approach, they could find a 116-digit integer belonging to E2,6.

More generally, given k integers �0, �1, . . . , �k−1, each ≥ 2, consider the set

F (�0, �1, . . . , �k−1) := {n ∈ N : P (n+ i)�i | n+ i for i = 0, 1, . . . , k − 1},

so that in particular Ek,� = F (�, . . . , �︸ ︷︷ ︸
k

). Most likely, each set F (�0, �1, . . . , �k−1)

is infinite, but besides the set F (2, 2), no such statement has been proved.

In their 2018 paper, De Koninck and Moineau also showed that if we assume
that there exist infinitely many primes of the form 9k2 + 6k + 2 (respectively
4k2 + 2k + 1), then the set F (3, 2) (respectively F (4, 2)) is infinite. They
then explored some identities involving consecutive polynomials whose alge-
braic structure provides the potential for revealing infinitely many members of
F (�0, �1, . . . , �k−1) for any given k-tuple of integers �0 ≥ 2, �1 ≥ 2, . . . , �k−1 ≥ 2.

3. On the middle divisors of an integer

Given a positive integer n, let

ρ1(n) := max{d | n : d ≤
√
n} and ρ2(n) := min{d | n : d ≥

√
n}

stand for the middle divisors of n.

The mean value of ρ2(n) has been established more than 40 years ago as
Tenenbaum proved that∑

n≤x
ρ2(n) =

π2

12

x2

log x

(
1 +O

(
1

log x

))
.

In 2020, De Koninck and Razafindrasoanaivolala [158] generalised this last
estimate by showing that, given any real number a > 0 and any integer k ≥ 1,∑
n≤x

ρ2(n)
a = c0

xa+1

log x
+ c1

xa+1

log2 x
+ · · ·+ ck−1

xa+1

logk x
+O

(
xa+1

logk+1 x

)
,

where, for � = 0, 1, . . . , k − 1,

c� = c�(a) =
�!

(a+ 1)�+1

�∑
j=0

(a+ 1)j(−1)jζ(j)(a+ 1)
j!
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with ζ standing for the Riemann zeta function. They also proved that given
any integer k ≥ 1 and any real number r > −1,∑

n≤x

ρ2(n)

ρ1(n)r
= e0

x2

log x
+ e1

x2

log2 x
+ · · ·+ ek−1

x2

logk x
+O

(
x2

logk+1 x

)

where e0 =
ζ(r + 2)

2
and for each 1 ≤ � ≤ k − 1,

e� =

(
r + 2

2

)
c� +

�−1∑
ν=0

rcν
2

�−1∏
m=ν

(
m+ 1

2

)
,

with, for each ν = 0, 1, . . . , �,

cν =
ν!

(r + 2)ν+1

ν∑
j=0

(r + 2)j(−1)jζ(j)(r + 2)
j!

.

Interestingly, as a consequence of this last result,

Tr(x) :=
∑
n≤x

ρ2(n)

ρ1(n)r
∼ ζ(r + 2)

2

x2

log x
as x → ∞,

implying that all sums Tr(x) are of the same order, independently of the chosen
number r > −1. For instance, although it may at first appear counterintuitive,
we do have that

∑
n≤x

ρ2(n)
√

ρ1(n) �
∑
n≤x

ρ2(n)√
ρ1(n)

.

Later, in 2023, De Koninck and Razafindrasoanaivolala [173] proved that∑
4≤n≤x
n�=prime

log ρ2(n)

log ρ1(n)
= x log log x+O(x)

and also that for all x sufficient large,

c1 x <
∑
2≤n≤x

log ρ1(n)

log ρ2(n)
< c2 x,

where

c1 = 1− log 2 +

2∫
1

1− log u

u(u+ 1)
du+

∞∫
3

u− 1

u+ 1

ρ(u− 1)

u
du ≈ 0.528087,

c2 = 2− 2 log 2 ≈ 0.613706.
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4. Bounds for the counting function of the Jordan-Pólya numbers

A positive integer n is said to be a Jordan-Pólya number if it can be written
as a product of factorials. Jordan-Pólya numbers arise naturally in a simple
combinatorial problem. Given k groups of n1, n2, . . . , nk distinct objects, then
the number of distinct permutations of these n1 + n2 + · · ·+ nk objects which
maintain objects of the same group adjacent is equal to k! · n1! · n2! · · ·nk!, a
Jordan-Pólya number.

The smallest 20 Jordan-Pólya numbers are

1, 2, 4, 6, 8, 12, 16, 24, 32, 36, 48, 64, 72, 96, 120, 128, 144, 192, 216, 240.

Much study has been done on a particular subset of the Jordan-Pólya num-
bers, namely those which are themselves factorials. In particular, consider the
equation

(∗) n! = a1!a2! · · · ar! in integers n > a1 ≥ a2 ≥ · · · ≥ ar ≥ 2, r ≥ 2.

It is easy to show that this equation has infinitely many “trivial” solutions.
Indeed, choose any integers a2 ≥ · · · ≥ ar ≥ 2 and set n = a2! · · · ar!. Then,
choose a1 = n − 1. One can easily see that n! = n · (n − 1)! = a1!a2! · · · ar!.
Besides these trivial solutions of equation (*), we find the non-trivial solutions

(∗∗) 9! = 2! · 3!2 · 7!, 10! = 6! · 7! = 3! · 5! · 7!, 16! = 2! · 5! · 14!.

According to Hickerson’s conjecture, there are no other non-trivial solutions
for equation (*). In 2007, Luca showed that if the abc conjecture holds, then
equation (*) has only a finite number of non-trivial solutions. In 2016, Nair
and Shorey proved that any other non-trivial solution n of (*), besides those
in (**), must satisfy n > e80.

On the other hand, more than 40 years ago, Erdős and Graham showed
that the number of distinct integers of the form a1!a2! · · · ar!, where a1 < a2 <
< · · · < ar ≤ y is exp{(1 + o(1))y(log log y)/ log y} as y → ∞.

In 2020, letting J stand for the set of Jordan-Pólya numbers and J (x) for its
counting function, De Koninck, Doyon, Verreault, and Razafindrasoanaivolala
[157] showed that J (x) = o(x) and in fact that, given any small ε > 0, the
much stronger estimate

J (x) < exp

{
(4 + ε)

√
log x log log log x

log log x

}
(x ≥ x1)

holds for some x1 = x1(ε) > 0. They also showed that, for any given ε > 0,
there exists x2 = x2(ε) such that

J (x) > exp

{
(2− ε)

√
log x

log log x

}
(x ≥ x2).
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5. New upper bounds for the number of divisors function

Let τ(n) stand for the number of positive divisors of n. In 1915, Ramanujan
obtained the upper bound

τ(n) ≤
(
log(nγ(n))

ω(n)

)ω(n)
· β(n) (n ≥ 2),

where

γ(n) =
∏
p|n

p and β(n) =
∏
p|n

1

log p
.

In 2020, De Koninck and Letendre [155] obtained several new optimal pointwise
upper bounds for the number-of-divisors function τ(n). In particular, they
proved the following:

� For all n ≥ 2,

τ(n) ≤
(

η2 log n

ω(n) logmax(2, ω(n))

)ω(n)
,

where η2 = exp

(
1

6
log 96− log

(
log 60060

6 log 6

))
= 2.0907132 . . . is optimal.

Moreover, the constant η2 can be replaced by 2 if
n ≥ 782139803452561073520.

� For each integer n > 782139803452561073520,

τ(n) ≤
(

2 log n

ω(n) logmax(2, ω(n))

)ω(n)
.

Moreover, the above inequality is true for all n ≥ 2 with ω(n) ≤ 3.

� For all n ≥ 2,

τ(n) ≤
(
1 + η3

log n

ω(n) logmax(2, ω(n))

)ω(n)
,

where η3 =
(11521/7 − 1)7 log 7

log 367567200
= 1.1999953 . . . is optimal. Moreover,

the constant η3 can be replaced by 1 if ω(n) ≥ 74.

� For each positive integer n with k = ω(n) ≥ 74,

τ(n) <

(
1 +

log n

k log k

)k
.

Finally, an interesting consequence of some of their results is that n ≥ ω(n)ω(n)

whenever ω(n) 
∈ [4, 12] or n > 43 · 2 · 3 · 5 · · · 31 = 8 624 101 075 590.
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6. Characteristics of multiplicative functions at consecutive argu-
ments

De Koninck, Kátai and Phong recently published five joint papers ([150],
[153], [160], [164], [166]) regarding families of multiplicative functions which
are characterised by their behaviour at consecutive arguments.

In [160], the bulk of their results can be summarized as follows.

Let M∗
1 stand for the set of completely multiplicative functions f

such that |f(n)| = 1 for all positive integers n and let c0, c1, c2
be three complex numbers such that (c0, c1, c2) 
= (0, 0, 0). Given
f ∈ M∗

1 and setting s(n) := c0f(n− 1) + c1f(n) + c2f(n+ 1), and
assuming that limx→∞ 1

x

∑
n≤x |s(n)| = 0, then c0 + c1 + c2 = 0

and there exists a real number τ such that f(n) = niτ for all pos-
itive integers n. Moreover, let f0, f1, f2 ∈ M∗

1 and consider the
sum s(n) := c0f0(n − 1) + c1f1(n) + c2f2(n + 1). Assuming that
limn→∞ s(n) = 0 and assuming also that either f0(n) = f1(n) or
f0(n) = f2(n) or f1(n) = f2(n), then c0 + c1 + c2 = 0 and there
exists τ ∈ R such that f0(n) = f1(n) = f2(n) = niτ for all positive
integersn.

To facilitate the presentation of the results obtained by De Koninck, Kátai
and Phong [166] on the same topic, let us first introduce additional notation.
Let T := {z ∈ C : |z| = 1} stand for the set of points on the unit circle and
given f ∈ M∗

1, let Δ f(n) := f(n+ 1)− f(n).

In 2017, Klurman proved a 1983 conjecture of Kátai, namely that given f ∈
∈ M∗

1 such that
∑

n≤x |Δf(n)| = o(x) as x → ∞ (or such that
∑

n≤x
|Δf(n)|

n =

= o(log x) as x → ∞), then there exists some real number t such that f(n) = nit

for all n ∈ N.
Given f ∈ M∗

1, we shall denote by S(f) the set of limit points of the set
{f(n) : n ∈ N} and by R(f) the set {p ∈ ℘ : f(p) 
= 1}, where ℘ stands
for the set of all primes. Also, given k ∈ N, we set Wk := {e(a/k) : a =
= 0, 1, . . . , k− 1} = {ω ∈ C : ωk = 1}, where e(y) := e2πiy. Finally, given a set
of complex numbers {an : n ∈ N}, we denote its closure by {an : n ∈ N}. In
2018, Klurman and Mangerel proved the following.

Theorem A. (Klurman and Mangerel) Assume that f, g ∈ M∗
1 are such that

S(f) = S(g) = T and also that {(f(n), g(n+ 1)) : n ∈ N} 
= T × T. Further
assume that for infinitely many j ∈ N, either |R(f j)| · |R(gj)| > 1 or R(f j) 
=

= R(gj). Then, for some real number t and positive integers k and �, we have
f(n) = nit/kF (n) and g(n) = nit/�G(n), where F (N) ∈ Wk and G(N) ∈ W�.
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This last theorem motivates the introduction of the set H, namely the set
made up of those pairs (f, g) of functions in M∗

1 for which there exist infinitely
many j ∈ N for which either |R(f j)| · |R(gj)| > 1 or R(f j) 
= R(gj).

In their 2020 paper, De Koninck, Kátai and Phong [166] applied the above
results of Klurman and Mangerel to characterise those triplets of multiplicative
functions f, g, h with unusually small gaps between their consecutive values,
and they also considered the higher iterations Δmf(n) for each of the integers
m = 2, 3, 4, 5, 6, 7 and obtained bounds for |Δmf(n)|.

More precisely, they proved the following.

Theorem 1. Let f, g, h ∈ M∗
1 be such that the function s(n) := g(n + 2) −

−2h(n+ 1) + f(n) satisfies∑
n≤x

|s(n)|
n

= o(log x) (x → ∞).

Then, there exists a real number t such that f(n) = g(n) = h(n) = nit for all
n ∈ N.

Theorem 2. Let f, g, h ∈ M∗
1 be such that S(f) = S(g) = S(h) = T. Assume

also that

{(g(n+ 1), h(n)) : n ∈ N} 
= T×T and {(h(n+ 1), f(n)) : n ∈ N} 
= T×T

and that (f, h), (h, g) ∈ H. Finally, let ω, κ ∈ T be such that

(∗) s(n) := g(n+ 2)ω − 2h(n+ 1) + f(n)κ

satisfies lim
n→∞ s(n) = 0. Then, there exists a real number t such that f(n) =

= g(n) = h(n) = nit for all n ∈ N and moreover ω = κ = 1.

Interestingly, the situation is much simpler if at least one of the three sets
S(f), S(g), S(h) is not equal to T, as can be seen in the following theorem.

Theorem 3. Let f, g, h ∈ M∗
1, where at least one of the three sets S(f), S(g),

S(h) is not equal to T. Letting s(n) be as in Theorem 1 and assuming that
relation (∗) of Theorem 2 holds, then

ω = κ = 1 and f(n) = g(n) = h(n) = 1 for all n ∈ N.

Regarding iterations of the Δf(n), we only mention two of the results ob-
tained by De Koninck, Kátai and Phong in [160].

In the next theorems, we always assume that f ∈ M∗
1, S(f) = T and also

that |R(fm)| =∞ for infinitely many positive integers m. Moreover, we set

ξ(n) := f(n+ 1)f(n).
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We then have the following result.

Theorem 4. Assume that there exist δ > 0, ω ∈ T and some n0 ∈ N such that

|ξ(n)ω − 1| < 2− δ (n ≥ n0).

Then, there exists a real number t such that f(n) = nitF (n) for all n ∈ N,
where F (N) ⊆ Wk and ω ∈ Wk for some positive integer k.

Considering iterations of Δf(n), let

Δ2f(n) := ΔΔf(n) = Δ(f(n+ 1)− f(n)) = f(n+ 2)− 2f(n+ 1) + f(n),

and for an arbitrary integer k ≥ 3, let Δkf(n) := ΔΔk−1f(n). Observe that
we have the trivial bound |Δkf(n)| ≤ 2k, with equality achieved in the case of
the multiplicative function f(n) = (−1)n+1.

In each of the following theorems, the real numbers ε > 0 and δ > 0 are
arbitrary but fixed.

Theorem 5. Assume that |Δ2f(n)| ≤ K := 2 − δ for all n ≥ n0 for some
positive integer n0. Then, there exists a real number t and some positive integer
k such that f(n) = nit/kF (n) for all n ∈ N, where F k(n) = 1 for all n ≥ 1.
Moreover, setting E(n) := F (n+2)−2F (n+1)+F (n), we have |E(n)| ≤ K+ε
for all n ≥ n0.

Theorem 6. Assume that |Δ3f(n)| ≤ K := 4 − δ for all n ≥ n0 for some
positive integer n0. Then, there exists some real number t such that f(n) =
= nitF (n) for all n ∈ N, where F �(n) = 1 for all n ∈ N and |Δ3F (n)| ≤ K + ε
provided n ≥ n1(ε).

The authors then moved on to establish upper bounds for |Δmf(n) for
m = 4, 5, 6, 7. They concluded their paper by the following interesting conjec-
ture.

Conjecture. Theorem A remains true if the condition

{(f(n), g(n+ 1)) : n ∈ N} 
= T× T

is weakened and replaced by the following: there exists a pair of points ξ, η
located on the unit circle for which∑

n≤x
|f(n)−ξ|<ε
|g(n+1)−η|<ε

1

n
= o(log x) as x → ∞,

provided ε > 0 is sufficiently small.



Continuation of the laudation to Jean-Marie De Koninck 45

In 1985, M. V. Subbarao introduced the concept of weakly multiplicative
arithmetic function (later renamed quasi-multiplicative) as those functions f
for which

f(np) = f(n)f(p)

for every p ∈ ℘ and n ∈ N coprime to p.

Similarly, g is said to be quasi-additive if

g(np) = g(n) + g(p)

for every p ∈ ℘ and n ∈ N coprime to p.

Clearly, multiplicative (resp. additive) functions are quasi-multiplicative
(resp. quasi-additive) functions.

Many interesting papers have been published on this topic, in particular
those of J. Fabrykowski and M. V. Subbarao, J. Fehér and B. M. Phong , as
well as B. M. Phong.

First, some known results. The following is an old result proved indepen-
dently in 1970 by I. Kátai and E. Wirsing.

Proposition 1. Let f be an additive function satisfying

1

x

∑
n≤x

|f(n+ 1)− f(n)| → 0 as x → ∞,

Then there exists a constant c such that f(n) = c log n for all positive integers n.

In 2000, I. Kátai and M. V. Subbarao proved the following four results
regarding wider classes of arithmetical functions.

Theorem A. If a quasi-additive function f is monotonic, then it is a constant
multiple of log n.

Theorem B. If f is a quasi-additive function and

1

x

∑
n≤x

|f(n+ 1)− f(n)| → 0 as x → ∞,

then there exists a constant C such that f(n) = C log n.

Theorem C. If g is a quasi-multiplicative function, |g(n)| = 1 and

Δg(n) := g(n+ 1)− g(n)→ 0 as n → ∞,

then g(n) = niτ for some τ ∈ R.
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Theorem D. If g is a quasi-multiplicative function, |g(n)| = 1 and

1

x

∑
n≤x

|g(n+ 1)− g(n)| → 0 as x → ∞,

then g is a completely multiplicative function.

Observe that Theorem C and Theorem D also hold for multiplicative func-
tions.

Let B be a set of primes for which∑
p∈B

1

p
< ∞

and let B∗ be the multiplicative semigroup generated by B. Moreover, let M
be the set of squarefree numbers coprime to B∗. It is clear that every integer
n can be uniquely written in the form n = Km, (K,m) = 1, where m is the
largest divisor of n that belongs to M and for which (n/m,m) = 1.

Definition. Let f : N→ R. We say that f is almost-additive if for every p ∈ ℘
and n ∈ N with (p, n) = 1 and (p,B) = 1, we have

f(np) = f(n) + f(p).

Definition. Let g : N→ C. We say that g is almost-multiplicative if for every
p ∈ ℘ and n ∈ N with (p, n) = 1 and (p,B) = 1, we have

g(np) = g(n)g(p).

In 2021, De Koninck, Kátai and Phong [166] generalized Theorems A–D of
I. Kátai and M. V. Subbarao by proving the following results.

Theorem 1. If some given almost-additive function f is monotonic, then
f(n) = C log n for some C ∈ R.

Theorem 2. If f is an almost-additive function and

1

x

∑
n≤x

|f(n+ 1)− f(n)| → 0 as x → ∞,

then f(n) = C log n for some C ∈ R.

Theorem 3. If g is an almost-multiplicative function, |g(n)| = 1 and

1

x

∑
n≤x

|g(n+ 1)− g(n)| → 0 as x → ∞,

then g(n) = niτ for some τ ∈ R.
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From these, follows the following.

Corollary. If g is an almost-multiplicative function, |g(n)| = 1 and

Δg(n) := g(n+ 1)− g(n)→ 0 as n → ∞,

then g(n) = niτ for some τ ∈ R.

7. On the behaviour of certain arithmetic functions at shifted primes

Let ϕ stand for the Euler totient function. Garcia and Luca have proved
that, given any positive integer �, the set of those primes p such that ϕ(p +
+�)/ϕ(p − �) > 1 has the same density as the set of those primes p for which
ϕ(p + �)/ϕ(p − �) < 1. In 2018, De Koninck and Kátai [147] proved this
result using classical results from probabilistic and analytic number theory,
and thereafter established similar results for the sum of divisors function and
for the k-fold iterate of the Euler function. They also examined the modu-
lus of continuity of some arithmetical functions and finally provided a gen-
eral result regarding the existence of the distribution function for the function
s(p) := f(p+ �)− f(p− �) for any fixed positive integer � provided the additive
function f satisfies certain conditions.

Let τ(n) stand for the number of positive divisors of n. Given an additive
function f and a real number α ∈ [0, 1), let

hn(α) :=
1

τ(n)

∑
d|n

{f(d)}<α

1,

where {y} stands for the fractional part of y, and consider the discrepancy
Δ(n) := sup0≤α<β<1 |hn(β) − hn(α) − (β − α)|. In 2019, De Koninck and
Kátai [152] showed that Δ(p + 1) → 0 for almost all primes p if and only

if
∑
q∈℘

‖mf(q)‖2
q

=∞ for every positive integer m, where ‖x‖ stands for the

distance between x and its nearest integer and where the sum runs over all
primes q.
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Annales mathématiques du Québec 42(1) (2018), 31–47. (with I. Kátai)
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[170] Expanding on results of Wirsing and Klurman, Annales. Univ. Sci. Bu-
dapest., Sect. Comp., 53 (2022), 137–143. (with I. Kátai and B. M.
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