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CONTINUATION OF THE LAUDATION TO

Professor Karl-Heinz Indlekofer

on his 80th birthday

by Imre Kátai (Budapest, Hungary)

On the last five years many important events have happened with him:

- Three new grandchildren were born: Matthea Luna Emilia (in 2019;
daughter of Dorothee), Niclas Karl and Romy Marie (in 2020, twin children of
Thomas).
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-Irmgard and Karl-Heinz celebrated their golden wedding (in 2022).

- He obtained Golden doctoral certificate from the University of Freiburg
for special scientific merits (2020).

- He continued his work in the church and in number theory.
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1. Orthonormal systems in spaces of number theoretical function
([158])

For a function f : N→ C we define ‖.‖α by

‖f‖α :=

⎧⎨⎩lim supx→∞
1

x

∑
n≤x

|f(n)|α
⎫⎬⎭

1
α

, 1 ≤ α < ∞.

Let
Lα := {f : N→ C : ‖f‖α < ∞}

be the linear space of functions on N with bounded seminorm ‖f‖α. By Lα

we denote the quotient space Lα modulo null-functions (i.e functions f with
‖f‖α = 0). For α ≥ 1, the norm space Lα is complete.

Let A be an algebra of subsets of N. Then

E(A) := {s ∈ E , s =
m∑
j=1

αj1Aj ; αj ∈ C, Aj ∈ A, j = 1, ...,m; m ∈ N}

denotes the space of simple functions on A.

Definiton 1. For a given algebra A and for 1 ≤ α < ∞ the space L∗α(A) is
defined as the ‖ ·‖α-closure of E(A). A function f ∈ L∗α(A) is called uniformly
(A) − α summable. By Lα(A) we denote the quotient space L∗α(A) modulo
null functions.

Remark 1. If A = P(N) is the algebra of all subsets of N then

L∗1(A) = ‖.‖1 closure of l∞

is the space L∗ of uniformly summable functions introduced by K.-H. Indlekofer
(Math. Z., 172 (1980), 255–271).

Here we consider algebras A, where every A ∈ A possesses an asymptotic
density δ(A) which is defined by

δ(A) := lim
n→∞

1

n

∑
m≤n
m∈A

1,

if the limit exists. Then δ is finitely additive on A, i.e. δ is a content on A.
We say that an arithmetical function f possesses an (arithmetical) mean

value M(f) if

M(f) := lim
n→∞

1

n

∑
m≤n

f(m)
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exists. If every A ∈ A possesses an asymptotic density then every f ∈ L∗1(A)
possesses a mean-value. Further, we define an inner-product on L∗2(A) by

〈f, g〉 :=M(fḡ), f, g ∈ L∗2(A).

Remark 2. The above described construction of L∗α(A) was the starting
point of an integration theory by K.-H. Indlekofer (see Probability Theory and
Applications, Math. Appl., 80 (1992), 299–308 and Advanced Studies in Pure
Mathematics, 49 (2005), 133–170).

Embedding N, endowed with the discrete topology, in the compact space
βN, the Stone-Čech compactification of N, we get:

Ā := {Ā : A ∈ A} where Ā := closβNA,

is an algebra in βN (for details see Probability Theory and Applications, Math.
Appl., 80 (1992), 299–308 and Advanced Studies in Pure Mathematics, 49
(2005), 133-–170).

Let δ be a content on A, i.e. δ : A → R≥0 is finitely additive, and define δ̄
on Ā by

δ̄(Ā) = δ(A), Ā ∈ Ā,

then δ̄ is a pseudo-measure on Ā and can be extended to a measure on σ(Ā),
which we denote by δ̄, too. This leads to the measure space (βN, σ(Ā), δ̄).

2. Some Hilbert spaces and corresponding orthonormal systems
([158])

2.1. A simple case

Let A0 be the algebra generated by the sets

Ap := {n ∈ N : p|n }, p prime

and put

δ(Ap) :=M(1Ap) = lim
n→∞

1

n

∑
m≤n
p|m

1 =
1

p
.

Note that the following relations of the characteristic functions

1A∩B = 1A · 1B , 1A\B = 1A − 1A · 1B 1A∪B = 1A + 1B − 1A · 1B

imply that the characteristic function of a set A ∈ A is a finite linear combina-
tion of products of 1Ap1 · · · 1Apr . Thus the asymptotic density δ(A) exists for
all A ∈ A0.
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For every prime p put

hp := p1Ap − 1

and define hn : N→ Z by hn = 1 for n = 1 and

hn :=
∏
p|n

hp for every square free n ∈ N.

Then obviously, for every prime p,

M(hp) = 0 and M(h2p) = p− 1.

Now, if f : N → C is such that M(f) exists and f(pm) = f(m) for all
m ∈ N, we conclude∑

m≤x
hp(m)f(m) = p

∑
pm≤x

f(pm)−
∑
m≤x

f(m) = p
∑
m≤ xp

f(m)−
∑
m≤x

f(m)

and M(hpf) = 0, i.e.

M(hn) = 0 if μ2(n) = 1, n > 1

and

M(hnhn′) = 0 if μ2(n) = μ2(n′) = 1 and n 
= n′.

In the same way we obtain

M(h2pf) = (p− 1)M(f).

By induction, this leads to

M(h2n) = ϕ(n) if μ2(n) = 1.

Putting h∗n :=
1

(ϕ(n))1/2
hn (μ2(n) = 1, we have shown the following:

Theorem 1. The set

{h∗n : n squarefree}

is a complete orthonormal system for L∗2(A0).

2.2. Almost even functions

For primes p and k = 0, 1, 2, ... let

Apk := {n ∈ N : pk|n}
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be the set of natural numbers divisible by pk. Let A1 be the algebra generated
by the sets {Apk}. Then, for all Apk the asymptotic density δ(Apk) exists and
equals 1

pk
, and, as above, the asymptotic density δ(A) exists for all A ∈ A1.

Define, hn = 1for n = 1 and

hn :=
∏
pk||n

hpk for n > 1,

Putting

h∗n =
1

(ϕ(n))1/2
hn

where ϕ is Euler’s function, it is easy to show (see above) that {h∗n} is an
orthonormal system. We conclude

Theorem 2. The set
{h∗n : n ∈ N}

is a complete orthonormal system for L∗2(A1).

2.3. Limit periodic functions

Let A2 be the algebra generated by all residue classes

Aa,r := {n ∈ N : n ≡ a mod r}, 1 ≤ a ≤ r, r ∈ N.

Here again the asymptotic density δ is a finite additive function on A2. Then
the following lemma holds.

Lemma 1. E(A2) is the space of all periodic functions on N.

The space L∗α(A2) is the space of α-limit-periodic functions.

Defining ea/r : N→ C by

ea/r(n) := exp
(
2πi

a

r
n
)

we have (see Arithmetical Functions, Cambridge University Press, Cambridge,
1994, p.207)

Theorem 3. The set

{ea/r : 1 ≤ a ≤ r, gcd(a, r) = 1, r = 1, 2, ...}

is a complete orthonormal system in L∗2(A2).
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2.4. Almost periodic functions

For β ∈ R the function eβ : N→ C defined by

eβ(n) = exp(2πiβn), n ∈ N

possesses a mean-value M(eβ).

Let C be the family of all half-open subsets of [0, 1] and denote by A3 the
algebra generated by the sets A(β,E) := {n ∈ N : {βn} ∈ E}, where β ∈ [0, 1),
E ∈ C and βn = [βn] + {βn} (0 ≤ βn < 1). Then (see Arithmetical Functions,
Cambridge University Press, Cambridge, 1994, p.207) we have the following:

Theorem 4. The set
{eβ : β ∈ [0, 1]}

is a complete orthonormal system in L∗2(A3).

2.5. Almost multiplicative functions

Let f be a multiplicative function which assumes only the values {−1, 0, 1}
and define the sets

A+f = {n : f(n) = 1}, A0f = {n : f(n) = 0} and A−f = {n : f(n) = −1}

with characteristic functions f+, f0, and f−, respectively. Obviously

f+ =
1

2
(|f |+ f), f0 = 1− f+ − f−, f− =

1

2
(|f | − f).

We define the algebra A4 to be the algebra generated by the sets A+f , A0f , A
−
f

for all multiplicative f with f(N) ⊂ {−1, 0, 1}. Every A ∈ A4 possesses an
asymptotic density by Wirsing’s theorem. An arbitrary element A of A4 has
a characteristic function which is a linear combination of such multiplicative
functions. Thus, the asymptotic density δ(A) exists. Let E(A4) be the vector
space of simple functions on A4. Let L∗α(A4) be the ‖.‖α -closure of E(A4).

Definition 2. A function f ∈ L∗α(A4) is called an α-almost multiplicative
function.

First we show A1 ⊂ A4. For the proof consider

f∗(n) := (1− 1A
pk
)(n) =

{
0, pk|n;
1, otherwise.

Then f∗ is multiplicative. Since 1N\A
pk
= 1N − 1A

pk
= 1 − 1A

pk
∈ E(A4) we

have N \Apk ∈ A4. This implies that Apk ∈ A4.
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Since hn ∈ E(A1) we have hn ∈ E(A4). Every hn can be written as a finite
linear combination of 1A

p
α1
1

· · · 1Apαmm , where m ∈ N.

Theorem 5. Let f : N→ R be multiplicative with |f | ≤ 1. Then f ∈ L∗α(A4)
for all α ≥ 1.

Next, we construct an orthonormal system for the space L∗2(A4).
Let R0 be the set of all multiplicative functions with f(N) ⊂ {−1, 0, 1} and

M(|f |) 
= 0. Define the relation ∼ on R0 by

f ∼ g if and only if
∑
p

f(p)�=g(p)

1

p
< ∞.

Observe, that in this case
∑
p

f(p)=0

1
p < ∞. Obviously ∼ is an equivalence relation

on R0.
Now, choose a representative from each residue class which assumes only the

values ±1, and denote this set by F1. Then F1 forms an orthonormal system.
For this, let f, g ∈ F1 and observe that

∑
p

f(p)�=g(p)

1
p = ∞. Then M(fḡ) =

= 〈f, g〉 = 0. Furthermore, for f ∈ F1 we have f2 = 1 and 〈f, f〉 =M(f2) = 1.

This shows that F1 is an orthonormal system in L∗2(A4). Consider, for
f ∈ F1, the system

F2 := {fh∗n : f ∈ F1, n ∈ N}

where h∗n is the normalized function of Theorem 2.

Theorem 6. F2 is a complete orthonormal system for L∗2(A4).

2.6. q-ary almost even functions

First, we introduce q-multiplicative functions. Let q ≥ 2 be an integer and
A = {0, 1, . . . , q − 1}. The q-ary expansion of some n ∈ N0 is defined as the
unique sequence ε0(n), ε1(n), . . . for which

n =
∞∑
j=0

εj(n)q
j , εj(n) ∈ A

holds. ε0(n), ε1(n), . . . are called the digits in the q-ary expansion of n. In fact,
εr(n) = 0 if r > log n/ log q. A function f : N0 → C is called q-multiplicative if
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f(0) = 1 and for every n ∈ N0

f(n) =
∞∏
j=0

f(εj(n)q
j).

Let the algebra A5 be generated by the sets

Aj,a := {n ∈ N : εj(n) = a}

where j ∈ N0, a ∈ A. Every A ∈ A5 possesses an asymptotic density δ(A).

Let L∗1(A5) be the ‖.‖1-closure of E(A5). Here E(A5) is called the space
of q-ary even functions. Then L∗1(A5) is denoted as the space of q-ary almost
even functions.

Remark 3. Let f be a real-valued q- multiplicative function of modulus ≤ 1.
Then the mean-values M(|f |) and M(f) always exist (see Annales Univ. Sci.
Budapest., Sect. Comp., 25 (2005), 171–294). Especially we have

(i) If ‖f‖1 =M(|f |) > 0 then

∞∑
j=0

∑
a∈A

(1− |f(aqj)|) < ∞.

(ii) If

∑
a∈A

f(aqj) 
= 0 for all j ∈ N0 and

∞∑
j=0

∑
a∈A

(1− f(aqj)) < ∞,

then M(f) 
= 0.

As an immediate consequence we have

Corallary 1. Let f be a real-valued q- multiplicative function of modulus ≤ 1.
If

∞∑
j=0

∑
a∈A

(1− f(aqj)) < ∞

then f ∈ L∗1(A5).

This ends Remark 3.

Let L∗2(A5) be the ‖.‖2-closure of E(A5). Then we define a complete or-
thonormal system for the space L∗2(A5).
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Theorem 7. The set {ha0,...,ar} of q-multiplicative functions with

ha0,...,ar (n) :=

r∏
j=0

exp

(
2πiaj
q

εj(n)

)
,

aj ∈ A, j = 0, . . . , r, r ∈ N0 is a complete orthonormal system for L∗2(A5).

2.7. Almost q-multiplicative functions

Let f be a q-multiplicative function which assumes only the values {−1, 0, 1}
and define the sets

A+f = {n : f(n) = 1}, A0f = {n : f(n) = 0} and A−f = {n : f(n) = −1}

with characteristic functions f+, f0, and f−, respectively. We define the alge-
bra A6 to be algebra generated by the sets A+f , A0f , A

−
f for all q-multiplicative

f with f(N) ⊂ {−1, 0, 1}.
An arbitrary element A of A6 has a characteristic function which is a linear

combination of q- multiplicative functions. From this and by the theorem of
Delange (Acta Arith., 21 (1972),285–298) the asymptotic density δ(A) exists.
Let E(A6) be the space of simple functions on A6. Let L∗(A6) be the ‖.‖1
-closure of E(A6).

Definition 3. A function f ∈ L∗(A6) is called almost q-ary multiplicative
functions.

Next, we define a complete ortonormal system for L∗2(A6). Let

G := {f : N→ R : f q −multiplicative, f(n) ∈ {−1, 0, 1},
for all n ∈ N with ‖f‖2 
= 0}.

Define the relation ∼ on G by

f ∼ g if and only if

∞∑
l=0

q−1∑
a=0

(1− f(aql)g(aql)) < ∞.

Obviously, ∼ is an equivalence relation on G.
Now, we choose a representative from each equivalence class which is 
= 0

for all n ∈ N. We denote this set of representatives by F3. We consider

F4 := {ha0,...,arf : f ∈ F3, aj ∈ A, j = 0, . . . , r; r ∈ N}

and show the following
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Theorem 8. F4 is a complete orthonormal system for L∗2(A6).

3. On uniformly distributed functions ([156])

Let g(n) > 0 for every n ∈ N, S(x) =
∑

ng(n)≤x 1. In [156] it is proved
that

(∗) lim
S(x)

x
= C

holds with some positive constant C, if g has a continuous limit distribution
F , for which

∞∫
0

u−2F (u)du < ∞,

and that

sup
u∈R

|Fx(u)− F (u)| � 1

(log log x)2
,

where
Fy(u) =

1
x 	{n ≤ x : |g(n)| < u}.

Let furthermore g(n)(log log n) ≥ C1 if n ≥ 10, C1 is a positive constant.
Then

C =

∞∫
0

F (u)

u2
du.

In [157] the uniform distribution of function is extended for the set of shifted
primes, and the following theorem is proved.

Let g be a multiplicative function, g(n) ∈ R+. Let f(n) = log n. Assume
that with some constant B

1

(log log n)B
≤ g(n) ≤ (log log n)B if n ≥ n0

and that for every fixed C

f(qr)(log qr)C → 0 as qr → ∞.

Here qr runs over the set of prime powers.

Under these conditions, we have

lim 1
li x 	{p ≤ x|(p+ 1)g(p+ 1) ≤ x} = A,

where A is explicitly countable constant.
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4. On uniformly summable functions and a problem of Halmos in
ergodic theory ([155])

Let (X,F , μ) be a measure space together with a measure-preserving trans-
formation T , i.e. T : X → X and∫

X

f(Tn)a)dμ =

∫
X

f(x)dμ

for all n = 0, 1, 2, · · · and all f ∈ L1 := L1(X,F , μ)

Then P. Halmos (Lectures on Ergodic Theory, Chelsea Publ. Comp,, New
York, (1956)) formulates Birkhoff’s ergodic theorem as follows.

Individual Ergodic Theorem. If T is a measure preserving transformation
and if f ∈ L1, then

1
n

∑n−1
j=0 f(T

jx) converges almost everywhere. The limit
function f∗ is integrable and invariant (i.e. f∗(Tx) = f∗(x) almost every-
where). If μ(X) < ∞, then

∫
X
f∗(x)dμ =

∫
X
f(x)dμ.

In his ”Comments on the Ergodic Theorem” (see Lectures on Ergodic The-
ory, pp. 22–24) Halmos writes

I cannot resist the temptation of concluding these comments with an al-
ternative ”proof” of the ergodic theorem. If f is a complex-valued function
on the non-negative integers, write

∫
f(n)dn = lim 1

n

∑n−1
j=0 f(j) whenever the

limit exists, and call such functions integrable. If T is a measure-preserving
transformation on a space X and f is an integrable function on X, then∫ ∫

|f(TnX)|dndx =
∫ ∫

|f(Tnx)|dxdn =

=

∫ ∫
|f(x)|dxdn =

∫ ∫
|f(x)|dx < ∞.

Hence, by ”Fubini’s theorem”, f(Tnx) is an integrable function of its two ar-
guments and therefore, for almost every fixed x, it is an integrable function of
n. Can any of this nonsense be made meaningful?

We assume μ(X) < ∞ and define, for f ∈ L1, the arithmetic function fx
by

fx(n) = f(Tn−1x).

Then we show, that fx lies in the space L∗ of uniformly summable functions
for almost all x ∈ X.

Next, the linear functional Λ on the vector space

{s ∈ L∞ : s(n) = const for every n ∈ N},
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defined by

Λ(s) = lim
N→∞

N−1
∑
n≤N

s(n)

can be extended to a linear functional Λ∗ on L∗. We show, that, for all
f ∈ L∗, Λ∗(f) can be written as an integral and solve the problem formu-
lated by Halmos.

CONTINUATION OF LIST OF PUBLICATIONS

Karl-Heinz Indlekofer

The previous parts of his publications is published in this journal 22 (2003)
15–22, 39 (2013) 13–16 and 47 (2018) 45–46.

[153] Remarks on number theory over additive arithmetical semigroup, Ukräın.
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Professor Karl-Heinz Indlekofer as governor of Tempus

project in between the University of Paderborn

(Germany) and some hungarian universities.

According to the decision of the European Economical Commission in 1990
the TEMPUS was established. It was a very fruitful program which supported
the modernization of higher education in between countries in eastern Europa
and countries in EU.

In the frame of TEMPUS I, II many projects were established between the
university of Paderborn and hungarian universities. Professor Indlekofer was
the leader of these projects. Appreciating his outstanding services and research
activities the hungarian universities honored him with the following awards:

Order of Merit of Eötvös Loránd University (1992), Doctor Honoris Causa
of Kossuth Lajos University, Debrecen (1992), Doctor Honoris Causa of Janus
Pannonius University, Pécs (1996), Honorary Doctor and Professor of Eötvös
Loránd University (2004).

As a byproduct, he initiated and created the twin-city relationship between
Paderborn and Debrecen.


