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Abstract. Features of several well-known global and local optimization
methods were discussed and their robustness and efficiency were tested on
several artificial test functions in Matlab environment. The tested local
methods were the interior-point, the quasi-Newton method, Nelder–Mead
simplex, the pattern search, the NEWUOA and the BOBYQA methods.
The global methods were the genetic algorithm (GA), the simulated anneal-
ing (SA), the particle swarm optimization (PSO), and the covariance ma-
trix adaptation evolutionary strategy (CMA-ES) methods (see subsections
2.2 and 2.3 for their details). Furthermore, a novel global optimization
method, called FOCusing robusT Optimization with Uncertainty-based
Sampling (FOCTOPUS), which proved to be very efficient in the opti-
mization of constrained and highly correlated parameters of combustion
kinetic models, was also tested. The test functions were selected in such
a way that they had a variety of features: uni-modal and multi-modal,
differentiable and non-differentiable, separable and non-separable, low di-
mensional and high dimensional. The following test functions were used:
the 20D Alpine function, the 4D Ackley function, the Cross-in-tray 2D
function, the Hartmann-6D function, the Holder table 2D function, the 5D
Rastrigin function, the 5D Rosenbrock function, the 4D modified Rosen-
brock function, the 20D Zakharov function and a typical 2D multi-modal
function. The general conclusion here is that, the global methods per-
formed well on the multi-modal and high-dimensional test functions while
the local methods were superior in the case of low-dimensional and uni-
modal test functions. For the highly multi-modal test functions, the GA
was better than all the other methods. The FOCTOPUS method proved
to be inferior to GA for most of the test functions, thus its application
cannot be generally recommended.

Key words and phrases: Local optimization methods, global optimization methods, artificial
test functions.
2010 Mathematics Subject Classification: 65K10.
The Project is supported by the Hungarian National Research, Development and Innovation
Office via grants K132109 (T.T.) and FK 134332 (T.N.).



176 S. Goitom, T. Nagy and T. Turányi

1. Introduction

In a recent study [4], efficient local optimization algorithms: the simplex,
the NEWUOA, the Hooke-Jeeves, the Powel and the UNIRANDI [17] methods
were compared on some benchmark functions including: Ackley (5D), Rastrigin
(4D), Rosenbrock (5D, 40D), Hartmann-6D and Zakharov (5D, 40D and 60D).
The methods were compared in terms of the number of function evaluations and
success rates. The results indicated that, the simplex method converged to the
global optima of the Ackley (5D), Rastrigin (4D), Rosenbrock (5D and 40D),
Hartmann-6D and Zakharov (5D, 40D and 60D) functions with a success rate
of 0%, 47%, (100%, 0%), 100% and (100%, 0%, 0%) respectively. However, the
NEWUOA converged with a success rate of 100%, 20%, (100%, 100%), 100%
and (100%, 100%, 100%) in the same order. In this paper, the benchmark
study was extended by a few additional local and several global methods and
by further test functions.

In a recent paper of Goitom et al. [9], several local and global optimiza-
tion methods were tested on a combustion kinetic parameter fitting problem
to optimize parameter sets of different sizes (with 5, 11 and 29 parameters) by
fitting to large number of experimental data points. In the smallest problem
(fitting 5 parameters to 732 experimental data points), all the local and global
methods resulted in identical optimal value but different speed and number of
function evaluations. In the case of fitting a large parameter set (fitting 29
parameters to 2307 data points), the FOCTOPUS method, which is a novel
global optimization method developed specifically for combustion kinetic prob-
lems, found the best optimal value, though it needed a high number of function
evaluations. FOCTOPUS is the acronym for FOCusing robusT Optimization
with Uncertainty-based Sampling. The method was first published in [39] and
later modified in [41] and [26], and described in the most detailed way in [9].
The BOBYQA method [32] also performed well in all the test cases. The sec-
ond purposes of the present paper, is to assess and compare the performance
of the novel FOCTOPUS and the other tested methods on a wider range of
artificial, but challenging problems.

1.1. Mathematical formulations of optimization problems

Optimization is a technique that refers to minimization or maximization of
a function output. The problems of optimization are everywhere in academic
research and in real-world applications such as engineering, industry, finance,
different scientific areas and so on. In a real-life optimization problem, the
first step is to properly formulate the optimization problem using a mathe-
matical model. This mathematical model contains the objective function to
be minimized/maximized, the design variables that represent the arguments of
the objective function and the conditions for these design variables called con-
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straint functions. Based on the nature of the design variables, the constraint
functions and the objective function, one can classify optimization problems as
continuous and discrete, constrained and unconstrained, linear and nonlinear,
respectively. A general form of n-variable continuous, constrained minimization
problem is:

(1.1)

min
x∈X⊆Rn

f(x),

subject to gi(x) = 0, i ∈ I1,

hj(x) ≤ 0, j ∈ I2,

ak ≤ xk ≤ bk, ∀k = 1, 2, ..., n,

where f, gi and hj are real-valued functions from Rn to R, x is a vector of design
variables, I1 and I2 are set of indices, a and b are the vectors of the lower
and upper limits of the variables, respectively. The equality and inequality
constraints (gi and hj) and the lower and upper bounds (a and b) determine
the feasible set of points (X ⊆ Rn) in the n-variable optimization problem.
In the above equation, if both I1 and I2 are empty sets, the problem is called
unconstrained provided a and b are negative and positive infinity, respectively.
However, if vectors a and b have finite values, it is called bound constrained
problem.

2. Summary of tested local and global optimization methods

In this chapter, a short description of the local and global optimization
methods, the general procedures and their implementations will be discussed.

2.1. Local and global optimizer points

Usually, two types of local search methods are considered: methods which
rely on derivative information and those which are based only on function
evaluations. Let f : S �→ R be a function defined on a set S (domain of search
space). A point x∗ ∈ S is called local optimizer point of f(.), if there exists a
neighborhood Nx∗ of x∗ such that f(x∗) ≤ f(x) for all x ∈ Nx∗ and the value
of f (x∗) is called the local optimum value of f . On the other hand, a point
x∗∗ ∈ S is called a global optimizer point of f(.), if f (x∗∗) ≤ f(x) for all
x ∈ S. The value f(x∗∗) is called the global optimum value of f located at
x∗∗.

In an optimization problem, if objective function f has only one local op-
timizer point in the closure of S, it is also a global optimizer. All convex
functions have the property that a local optimum is also a global optimum
and they are categorized as uni-modal. However, if the objective function has
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more than one local optimizer point (their exact number might not be known)
it is classified as multi-modal. These type of test functions are used to test
the ability of numerical optimization methods to escape from the valley of a
local optimum. Numerical optimization methods that are designed specifically
to search for either a nearest local optimizer or the global optimizer point are
called as local and global optimization methods, respectively.

Figure 1. Local and global optimizer points and the corresponding optimum
values.

Most of the local and global optimization methods considered in this pa-
per were used from the MATLAB Optimization Toolbox [6] and the MAT-
LAB Global Optimization Toolbox, respectively. The following methods were
not present in the MATLAB Toolboxes: FOCTOPUS [39, 40, 9], NEWUOA,
BOBYQA [32] and the CMA-ES [8]. In this work, most of the tuning parame-
ters of the selected methods, were used with their default values recommended
in the MATLAB Optimization Toolboxes. It is worth mentioning that, optimiz-
ing the control parameters of the algorithms may improve their performance,
however, this is beyond the scope of this paper. The parameter settings used
for the different methods will be discussed in detail in Section 2.4.
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2.2. Local optimization methods

Local optimization methods are designed to iteratively search for extrema of
a function starting from some initial guess of the variables. In literature, several
derivative-based and derivative-free local optimization methods are available in
different implementations. In this paper, we investigated the most common lo-
cal optimization methods from MATLAB Optimization Toolbox and MATLAB
implementations of some other popular methods were taken from web pages.

(a) The Nelder-Mead simplex method : it was first published by J.A. Nelder
and R. Mead [27] for real-valued function minimization tasks. The search
is based on a simplex and on some transformations (reflection, expansion,
and contraction) in order to explore the search space. It has become one of
the most widely used methods for nonlinear unconstrained optimization.
This method is a very efficient and robust local search method, especially
for small-scale problems [12]. The name of the corresponding Matlab
function is fminsearch, and it uses the simplex search method of Lagarias
et al. [21]. In this paper we will refer to it as the simplex method.

(b) The pattern search algorithm: This algorithm belongs to the family of
derivative-free optimization techniques that are used to solve non-smooth
constrained or unconstrained multivariate optimization problems. The
pattern search is a larger search in the improving direction also called
pattern direction. The Powell’s method tries to discard one direction
in each iteration step by replacing it with the pattern direction. One
important feature of these algorithms is that they can follow easily the
contour lines of the problems having narrow, turning valley-like shapes.
Well-known variants of the method are the Hooke–Jeeves algorithm [15]
and the NOMAD [22] method based on the Mesh Adaptive Direct Search.
The MATLAB codename is patternsearch and we will use the name pat-
tern search method.

(c) The constrained optimization method : it uses sequential quadratic pro-
gramming (SQP) that relies on the BFGS formula [28] when updating
the Hessian of the Lagrangian. The interior-point variant of the method
is a widely used procedure to solve the quadratic programming (QP)
sub-problem [28] and it was the default algorithm in the Matlab Opti-
mization Toolbox. The toolbox contains it under the name fmincon for
nonlinearly constrained optimization problems and we will refer to it as
the interior-point method.

(d) The unconstrained optimization method : this algorithm is designed specif-
ically for unconstrained optimization problems and it has several vari-
ants. Its quasi-Newton variant uses the BFGS formula for updating the
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approximation of the Hessian matrix. If the gradient of the objective
function is not supplied by the user, the method calculates it by using
the finite-difference method. MATLAB provides it as the fminunc rou-
tine for solving continuous problems without constraints. fminunc with
the BFGS updated procedure has been extensively tested [12] and is the
default algorithm in the Matlab Optimization Toolbox. In this paper it
will be referred to as the quasi-Newton method.

(e) The New Unconstrained Optimization with Quadratic Approximation
(NEWUOA) method [31] is a derivative-free unconstrained optimization
method that iteratively exploits the trust-region technique. The trust
region technique is opposite to the line search technique, as the former
first chooses a step size, then determines the direction, whereas the latter
first determines the direction then the step size. In each iteration, the
algorithm minimizes the objective function value within the trust region.
One important feature of NEWUOA is the Frobenius norm [10] updating
procedure that is applied during the quadratic interpolation process of
the model function. In many papers (see e.g. Hansen et al. [12], Rios
and Sahinidis [34], Pál [29]) NEWUOA appeared as a reference algorithm
and it was considered to be a state-of-the-art solver. NEWUOA was ob-
tained from the NLopt open source nonlinear optimization package [18]
through the OPTI Toolbox [6] and it was called through a MATLAB Mex
interface.

(f) The Bound Optimization BY Quadratic Approximation (BOBYQA)
method [32] is a constrained optimization solver without derivatives. It
is a bound-constrained variant of the NEWUOA algorithm. Similar to
the NEWUOA method, BOBYQA constructs the quadratic models by
the Frobenius norm updating process. BOBYQA is suitable for high-
dimensional functions and on problems where the function evaluation is
expensive. The method appeared as a reference algorithm in many rel-
evant articles and studies (Hansen et al. [12], Rios and Sahinidis [34]).
In this paper BOBYQA was tested using the implementation from the
NLopt optimization package through the OPTI Toolbox and it was called
through a MATLAB Mex interface.

2.3. Global optimization methods

Global optimization methods are designed to search the best possible solu-
tion out of all feasible solutions. Depending on the domain of the search space,
there could be multiple, even an infinite number of optimal solutions to an
optimization problem. In this case, the task of any good global optimization
algorithm is to find globally optimal solution or at least a local minimum with
similarly low function value.
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(a) The FOCusing robusT Optimization with Uncertainty-based Sampling
(FOCTOPUS) is a global optimization method that was developed by
Tibor Nagy and first published in [39] by Turányi et al. This method is
an iterative technique based on a sampling distribution, a search domain
defined by a prior covariance matrix and a focusing procedure (shrinking
or enlarging the search volume). While previously the method was used
to minimize the weighted mean-square deviation of model results from
experimental data, it is straightforward to apply to any test function in
this study.

(b) The genetic algorithm (GA) [36] is a heuristic population-based search
procedure that mimics the natural selection process. The method relies
on mutation, crossover and selection operations, in order to find a solution
for multivariate functions without the usual mathematical requirements
of strict continuity, differentiability, convexity, and other properties. Das
et al. [7] presented a survey of the state-of-art GA methods together with
other evolutionary techniques.

(c) The simulated annealing (SA) [20] is a stochastic optimization technique
inspired by the thermodynamic process of cooling molten metals (initially
at high temperature) to attain the lowest free energy state. The method
was successfully applied as a tool for single and multiobjective optimiza-
tion problems. The reader can find detailed descriptions about simulated
annealing variants in the paper of Suman and Kumar [37].

(d) The particle swarm optimization (PSO) method is a stochastic population
based optimization method, first published by Kennedy and Eberhart
[19]. The standard particle swarm optimizer includes a swarm of particles
that represent the potential solutions to the problem on hand. PSO
belongs to the most studied evolutionary techniques. A review of the
method was provided by Barrera and Coello [5].

(e) The covariance matrix adaptation evolutionary strategy (CMA-ES) meth-
od was proposed by Hansen and Ostermeier [11] for nonlinear, non-convex
function optimization. It is considered as a state-of-the-art evolutionary
method, and it has been applied in many different research fields. The
primary feature of the CMA-ES is the adaptation of the covariance matrix
through an iterative procedure so that the obtained covariance matrix is
similar to the inverse Hessian of the objective function. Detailed bench-
marking results of the CMA-ES algorithm were published by Hansen et
al. [12]. The MATLAB implementation was obtained from the GitHub
site of the method [8].
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2.4. Parameter settings

Generally speaking, optimization algorithms have several control parame-
ters (i.e. tuning parameters or settings) and their performance depends on
the user-selected values of these parameters. Well-tuned control parameters
provide optimal optimization performance, but how to find these well-tuned
settings for an algorithm is an open question for researchers. Optimization
of tuning parameters of optimization methods in practical applications were
discussed in [42, 14, 1].

In this work, the tested numerical optimization methods were taken from the
MATLAB Optimization Toolbox and some Matlab codes were taken from the
authors’ web sites. The algorithm parameters were pretuned by the authors so
as to get optimal efficiency for most problems. Nevertheless, one can optionally
redefine these parameter settings using the optimOption keyword.

In this paper, the local optimization methods were tested using their de-
fault settings unless they are specified. The fminunc and fmincon methods (in
this case, interior-point and quasi-Newton solvers) usually stop if the termina-
tion tolerance on x (TolX) or the termination tolerance on the function value
(TolFun) is smaller than 1e-6. Furthermore, the maximum number of function
evaluations allowed is 100*NumberOfVariables. The maximum number of iter-
ations for the interior-point algorithm is 1000 and for all the other algorithms
is 400. The fminsearch (simplex method) algorithm stops when it satisfies both
TolFun and TolX which we decreased to 1e-8 from their default value of 1e-4.
The maximum number of function evaluations allowed is 100*NumberOfVari-
ables. The pattern search solver stops when the mesh size and the TolX or
TolFun are smaller than 1e-6. The maximum number of function evaluations
allowed is 2000*NumberOfVariables and the maximum number of iterations is
100*NumberOfVariables. The NEWUOA and BOBYQA methods stop when
the trust region radius becomes smaller than 1e-6 or the number of function
evaluations reaches 100.

Using the FOCTOPUS method, the NumberOfSamples parameter was set
to 100. The stopping criterium was achieved when the investigated volume
of the parameter space was reduced to 1/10000 of the starting volume. It is
achieved with 100 samples when the FocusParameter = 2*NumberOfParame-
ters. We set the ForwardStep and BackwardSteps to 1 and 2, respectively. The
NumberOfFunctionEvaluation = NumberOfSamples*NumberOfIterations.

The other global optimization algorithms had many settings. In our test,
we used the default settings provided by the MATLAB Global Optimization
Toolbox, nevertheless, we list the most important ones here. The genetic al-
gorithm (GA) used a population size of 50 or 200 depending on the number of
variables. The crossover rate was 0.8 and the maximal number of generations
was 100*NumberOfVariables. The algorithm stopped if the average relative
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change in the best fitness function value over 50 generations was less than or
equal to 1e-6.

For the simulated annealing (SA) method, the maximum number of objec-
tive function evaluations was 3000*NumberOfVariables, while no limit was set
on the number of iterations. The termination tolerance on function value was
set to 1e-6.

The particle swarm optimization (PSO) algorithm, we used a swarm size
of 100 in all cases. The termination tolerance on function value was 1e-6. The
algorithm also stopped when it achieved 200*NumberOfVariables iterations.

3. Artificial test functions

Test functions are important to validate and compare the performances of
local and global optimization methods. They include artificial and real-life
problem types in which the second is obtained from applications in science,
engineering and economics. In the work of Goitom [9], several local and global
optimization methods were tested on a real-life optimization problem. However,
in the present work, only artificial test functions that have a known optimal
global minimum (or minima) are selected for the test.

In the literature, several test functions with different characterizations are
available. The characterizations that include: modality, basins, valleys, sepa-
rability, dimensionality, convexity, linearity, differentiability determine the op-
timization complexity. Convex test functions are among the easiest problems
to test any optimization methods.

A collection of several unconstrained test functions with different character-
izations from different sources were reviewed and compiled in [16]. An extended
form of some standard test functions are available in [2]. More challenging test
problems in science, engineering and economics can be found in [23]. In ref-
erences [38, 24, 16], several analytic test functions that are traditionally used
for testing local and global optimization methods are available. In the present
study, the following test functions were used for benchmarking the optimization
algorithms. For those functions, where a 2-variable variant exist, a graphical
representations of it is shown in the following figures to visualize the distribu-
tion and nature of their local minima. For the more complex test functions,
we used a low-dimensional variant, because otherwise the computational cost
would be overly high and most methods would probably fail to converge.

� The Alpine function [33] is a continuous, non-differentiable, separable
and multi-modal function, whose d-variable variant is defined by:

(3.1) f(x) =

d∑
i=1

|xisin(xi) + 0.1xi|
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subject to −10 ≤ xi ≤ 10 for all i = 1, 2, ..., d. The global minimum is
f(x∗) = 0 which is located at x∗ = (0, 0, ..., 0). In our study, we used the
20-dimensional (20D) Alpine function (i.e. d = 20).

Figure 2. Surface plot of the 2D Alpine function.

� The Ackley function [3] in d-variables is given by the equation:
(3.2)

f(x) = 20+exp(1)−20exp

⎡
⎣−1

5

��d
i=1 x

2
i

d

�0.5
⎤
⎦−exp

�
1

d

d�
i=1

cos(2πxi)

�

where x ∈ [−32.768, 32.768]
d
. This function is continuous, differentiable,

non-separable and multi-modal. It has a single global minimum at x∗ =
= (0, 0, ..., 0) with a value f(x∗) = 0. In our study, we used the 4D Ackley
function.

Figure 3. Surface plot of the 2D Ackley function.
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� Cross-in-tray function [24] is a 2-variable test function that has several
local and four global minimum points with identical objective function
values. It is a continuous, non-differentiable, non-separable and multi-
modal function. This function is given by the formula:

(3.3) f(x) = −0.0001

�����sin(x1)sin(x2)e

∣∣∣100−(x2
1+x2

2)
0.5

/π
∣∣∣
����+ 1

�0.1
.

It is subject to −10 ≤ xi ≤ 10. The four global minimum points are
located at x∗ ≈ (±1.3494,±1.3494) with f(x∗) ≈ −2.0626.

Figure 4. Surface plot of the cross-in-tray (2D) function.

� The Hartmann 6-D function [13] is a 6-variable, continuous, differen-
tiable, non-separable and multi-modal function, defined by:

(3.4) f(x) = −
4�

i=1

ciexp

⎡
⎣−

6�
j=1

aij (xj − pij)
2

⎤
⎦ ,

and it is subject to 0 ≤ xj ≤ 1, j = {1, 2, ..., 6} with constants
ci, aij and pij are given as:

(3.5) ci =

⎛
⎜⎜⎝

1
1.2
3
3.2

⎞
⎟⎟⎠ , aij =

⎛
⎜⎜⎝

10 3 17 3.5 1.7 8
0.05 10 17 0.1 8 14
3 3.5 1.7 10 17 8
17 8 0.05 10 0.1 4

⎞
⎟⎟⎠ ,

(3.6) pij =

⎛
⎜⎜⎝
0.1312 0.1696 0.5569 0.0124 0.8283 0.5586
0.2329 0.4135 0.8307 0.3736 0.1004 0.9991
0.2348 0.1451 0.3522 0.2883 0.3047 0.6650
0.4047 0.8828 0.8732 0.5743 0.1091 0.0381

⎞
⎟⎟⎠ .
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This function has six local minima with a single global minimum value
of f(x∗) ≈ −3.32237 located at

(3.7) x∗ ≈ (0.201690, 0.150011, 0.476874, 0.275332, 0.311652, 0.657300).

� The Holder table function [24] is a 2-variable test function that has several
local and four global minimum points with identical objective function
values. It is continuous, differentiable, separable and multi-modal. This
function is given as:

(3.8) f(x) = −
∣∣∣sin(x1)cos(x2)e

|1−(x2
1+x2

2)
0.5/π|∣∣∣

subject to −10 ≤ xi ≤ 10. The four global minima points are located at
x∗ ≈ (±8.055,±9.665) with f(x∗) ≈ − 19.2085

Figure 5. Surface plot of the Holder table function (2D).

� The Rastrigin function [25] is a typical multi-modal test function, whose
d-dimensional (d = 1, 2, ...) variant is defined as:

(3.9) f(x) = 10d+

d∑
i=1

(
x2
i − 10cos (2πxi)

)

Rastrigin functions have a global minimum value of f(x∗) = 0 corre-
sponding to point x∗ = (0, 0, ..., 0). Its search domain is defined as:
−5.12 ≤ xi ≤ 5.12 (i = 1, 2, ..., d). It is a difficult test function for most
global optimization methods.

� The Rosenbrock function [35] is an uni-modal valley-shaped function de-
fined for d ≥ 2 dimensions by the following formula:

(3.10) f(x) =

d−1∑
i=1

100
[(
x2
i − xi−1

)2
+ (xi − 1)

2
]
.
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Figure 6. Surface plot of the 2D Rastrigin function.

It has a single local minimum (i.e. also global) with a value of f(x∗) = 0
located at x∗ = (1, 1, ..., 1). Its search domain is: −5 ≤ xi ≤ 10, (i =
1, 2, ..., d). It is a continuous, differentiable, non-separable, non-convex
and uni-modal function. The function is best known for having very slow
convergence in the neighborhood of the minimum point.

Figure 7. Surface plot of the 2D Rosenbrock function.

� Modified Rosenbrock function [30] is an alternative form of the standard
4D Rosenbrock function defined on the domain [0, 1]4. It’s defined as:
(3.11)

f(x) =
1

3.755× 105

3∑
i=1

[
100

(
x̄i+1 − x̄2

i

)2
+ (1− x̄i)

2 − 3.827× 105
]

where x̄i = 15xi−5 for i = 1, 2, 3, 4. This function has a global minimum
value of f(x∗) ≈ − 1.0192.
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� The Zakharov function [33] is a plate-shaped function, defined in d di-
mensions (d = 1, 2, ...) with the following formula:

(3.12) f(x) =
d∑

i=1

x2
i +

[
d∑

i=1

ixi/2

]2

+

[
d∑

i=1

ixi/2

]4

.

It is defined in the search domain −5 ≤ xi ≤ 10; (i = 1, 2, ..., d) and it
has a single minimum f(x∗) = 0 located at x∗ = (0, 0, ..., 0).

Figure 8. Surface plot of the 2D Zakharov function.

� A typical multi-modal test function [24] is a 2-dimensional non-convex
function defined by:

(3.13) f(x) = −cos(x1)cos(x2)exp

(
−1

4

√
x2
1 + x2

2

)
.

This function has a global minimum value of f(x∗) = −1, located at
x∗ = (0, 0).

Figure 9. Surface plot of the 2D multi-modal function.
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4. Benchmark of the optimization methods

In this section, the performance of the discussed numerical optimization
methods on the artificial functions is compared. In each case (i.e. method and
function combination), function minimization runs were carried out starting
from 50 randomly selected initial points in the search space of the test function.
The comparisons were carried on the following metrics: average and median
function value (f), mean CPU time, average number of function evaluation
(feval) and the success rate of the 50 optimizations. For each test function, the
metrics obtained for the 11 optimization methods are summarized in Tables 1–
10. An optimization starting from a given set of initial conditions is considered
to be successfully convergent to the global optimum if |f(x)− f(x∗)| ≤ 10−4

where f(x∗) and f(x) are the known exact global minimum and lowest found
value of the objective function, respectively. Otherwise, the optimization is
considered to be unsuccessful. For fully unsuccessful cases (i.e. success rate is
0%), the average feval is not reported.

4.1. Results

Table 1 shows the results obtained for the 20D Alpine function. In this
test, the pattern search and the PSO methods always converged to the global
minimum, the GA and the quasi-Newton algorithms converged in 90% and 74%,
respectively, the interior-point and CMA-ES had very low success rates and
finally, the simplex, NEWUOA, BOBYQA, FOCTOPUS and the SA methods
always failed to converge.

Table 1. Result statistics of 50 minimization runs of the 20D Alpine function
obtained for the different numerical methods

Method
Mean CPU
time (sec)

Mean
feval

Mean f
Median

f
Success
rate (%)

Interior-point 0.27 3846 0.058 0.0085 14
Quasi-Newton 1.2E-4 5019 0.11 3.6E-5 74
Simplex 0.034 - 13 12 0
Pattern search 0.34 10785 2.2E-4 2.2E-4 100
NEWUOA 0.32 - 5.1 3.5 0
BOBYQA 0.11 - 11 10 0
FOCTOPUS 0.32 - 0.54 0.48 0
GA 0.68 28907 4.2E-4 2.9E-4 90
SA 3.0 - 11 11 0
PSO 0.15 16063 4.7E-6 5.5E-7 100
CMA-ES 2.9 36085 0.077 0.0027 28

Table 2 shows the results obtained for the 4D Ackley function. The pattern
search and the GA methods had converged successfully to the global optimum,
whereas the interior-point, the quasi-Newton, the simplex and the SA methods
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failed to converge in all runs. The FOCTOPUS, the PSO and the CMA-
ES methods converged in 88%, 98% and 68% of the total runs, respectively,
whereas the NEWUOA and BOBYQA methods had very low success rates.

Table 2. Result statistics of 50 minimization runs of the 4D Ackley function
obtained for the different numerical methods

Method
Mean CPU
time (sec)

Mean
feval

Mean f
Median

f
Success
rate (%)

Interior-point 0.039 - 19 19 0
Quasi-Newton 0.0094 - 19 20 0
Simplex 0.0052 - 19 20 0
Pattern search 0.044 627 7.2E-5 6.9E-5 100
NEWUOA 0.0016 201 12 19 20
BOBYQA 0.0015 222 15 19 8
FOCTOPUS 0.090 42301 0.22 2.9E-5 88
GA 0.14 6340 3.2E-6 2.9E-6 100
SA 0.50 - 5.4 5.5 0
PSO 0.042 5396 0.037 2.2E-8 98
CMA-ES 0.91 1701 4.4 3.4E-11 76

Table 3 shows the results obtained for the Cross-in-tray 2D function. The
pattern search, the FOCTOPUS, the GA and the PSO methods converged
successfully in all runs. The CMA-ES and SA converged in 94% and 74% of
the total runs, and the remaining methods converged with a very low success
rate.

Table 3. Result statistics of 50 minimization runs of the Cross-in-tray 2D
function obtained for the different numerical methods

Method
Mean CPU
time (sec)

Mean
feval

Mean f
Median

f
Success
rate (%)

Interior-point 0.028 49 -1.7459 -1.7155 14
Quasi-Newton 0.0098 36 -1.7427 -1.7155 12
Simplex 0.0033 133 -1.7202 -1.7155 12
Pattern search 0.028 207 -2.0626 -2.0626 100
NEWUOA 6.1E-4 36 -1.7938 -1.7155 24
BOBYQA 0.0018 35 -1.7990 -1.7155 22
FOCTOPUS 0.16 136201 -2.0626 -2.0626 100
GA 0.073 2709 -2.0626 -2.0626 100
SA 0.24 1766 -2.0611 -2.0625 74
PSO 0.020 2076 -2.0626 -2.0626 100
CMA-ES 0.58 541 -2.0433 -2.0626 94

Table 4 shows the results of obtained for the Hartman-6D function. In this
test, all the local methods and the CMA-ES had a good success rate, but the
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PSO and the FOCTOPUS methods converged only in 36% and 14%, whereas
the GA and SA methods failed to converge in all runs.

Table 4. Result statistics of 50 minimization runs of the Hartmann-6D function
obtained for the different numerical methods

Method
Mean CPU
time (sec)

Mean
feval

Mean f
Median

f
Success
rate (%)

Interior-point 0.050 291 -3.2914 -3.3224 74
Quasi-Newton 0.027 266 -3.2914 -3.3224 74
Simplex 0.021 824 -3.2914 -3.3224 74
Pattern search 0.10 1307 -3.2961 -3.3224 78
NEWUOA 0.0051 120 -3.2914 -3.3224 74
BOBYQA 0.0082 208 -3.2890 -3.3224 72
FOCTOPUS 1.4 97741 -3.1920 -3.2009 14
GA 0.12 - -2.6484 -2.8122 0
SA 0.88 - -3.2939 -3.2977 0
PSO 0.13 6606 -3.2461 -3.2032 36
CMA-ES 0.95 1641 -3.2842 -3.3224 68

Table 5 shows the results obtained for the Holder table 2D function. In
this calculation, the GA and the PSO converged successfully in all runs, but
the FOCTOPUS failed to converge in all runs. The SA and the pattern search
methods converged respectively in 98% and 72%, the CMA-ES converged in
half of the cases, whereas the other remaining methods converged with very
low success rates.

Table 5. Result statistics of 50 minimization runs of the Holder table 2D
function obtained for the different numerical methods

Method
Mean CPU
time (sec)

Mean
feval

Mean f
Median

f
Success
rate (%)

Interior-point 0.032 46 -8.3672 -8.0951 10
Quasi-Newton 0.0074 15 -7.2838 -4.7125 12
Simplex 0.0031 122 -7.6160 -4.7125 14
Pattern search 0.027 191 -16.0777 -19.2085 72
NEWUOA 0.0014 33 -12.1372 -9.5047 14
BOBYQA 0.0022 51 -13.8551 -16.2678 28
FOCTOPUS 0.18 - -1.9797 -1.7330 0
GA 0.079 2936 -19.2085 -19.2085 100
SA 0.26 1969 -19.2084 -19.2085 98
PSO 0.020 2150 -19.2085 -19.2085 100
CMA-ES 0.69 646 -17.6479 -19.2085 52

Table 6 shows the results obtained for the 5D Rastrigin function. The
pattern search and the GA methods successfully converged to the global opti-
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mum in all runs. However, the PSO converged only in 20%, whereas all other
methods failed to converge to the global optimum in all runs.

Table 6. Result statistics of 50 minimization runs of the 5D Rastrigin function
obtained for the different numerical methods

Method
Mean CPU
time (sec)

Mean
feval

Mean f
Median

f
Success
rate (%)

Interior-point 0.059 - 44 39 0
Quasi-Newton 0.012 - 43 37 0
Simplex 0.0053 - 45 41 0
Pattern search 0.057 975 4.7E-9 4.6E-9 100
NEWUOA 0.0012 - 39 37 0
BOBYQA 0.0018 - 39 37 0
FOCTOPUS 0.10 - 5.2 5.0 0
GA 0.14 6613 2.4E-7 9.5E-8 100
SA 0.63 - 4.7 5.0 0
PSO 0.054 7670 1.6 1.0 20
CMA-ES 1.9 - 6.5 6.0 0

Table 7 shows results obtained for the 5D Rosenbrock function. The GA
method had the highest success rate (96%) followed by the CMA-ES, quasi-
Newton, simplex, NEWUOA, BOBYQA, the interior-point and the FOCTO-
PUS (in the order of 94%,88%, 78%, 76%, 72%, 72% and 56%). However, the
SA method converged only in 2% of the calculations, the PSO and pattern
search methods had also fairly low success rates.

Table 7. Result statistics of 50 minimization runs of the 5D Rosenbrock function
obtained for the different numerical methods

Method
Mean CPU
time (sec)

Mean
feval

Mean f
Median

f
Success
rate (%)

Interior-point 0.079 390 1.1 1.4E-11 72
Quasi-Newton 0.020 558 0.47 3.7E-10 88
Simplex 0.0091 1169 0.86 4.2E-17 78
Pattern search 1.7 35427 1.8 0.098 42
NEWUOA 0.0064 575 1.1 3.7E-12 72
BOBYQA 0.010 997 0.86 1.7E-11 76
FOCTOPUS 1.5 967941 1.7 4.2E-5 56
GA 6.9 376053 0.0020 1.9E-5 96
SA 1.1 7900 1.8 0.97 2
PSO 1.6 295290 0.19 0.0020 40
CMA-ES 1.1 2942 0.39 5.3E-16 90

Table 8 shows the results obtained for the 4D modified Rosenbrock func-
tion. All the methods successfully converged to the global minimum except the
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GA, which converged in 94% of the runs. The FOCTOPUS method required
high number of function evaluations, whereas the local methods converged very
quickly with a very low number of function evaluations.

Table 8. Result statistics of 50 minimization runs of the 4D modified Rosen-
brock function obtained for the different numerical methods

Method
Mean CPU
time (sec)

Mean
feval

Mean f
Median

f
Success
rate (%)

Interior-point 0.094 492 -1.0192 -1.0192 100
Quasi-Newton 0.025 415 -1.0192 -1.0192 100
Simplex 0.0089 629 -1.0192 -1.0192 100
Pattern search 1.7 30911 -1.0192 -1.0192 100
NEWUOA 0.0053 345 -1.0192 -1.0192 100
BOBYQA 0.0063 447 -1.0192 -1.0192 100
GA 0.12 2818 -1.0192 -1.0192 94
FOCTOPUS 0.44 99961 -1.0191 -1.0192 100
SA 0.55 3855 -1.0192 -1.0192 100
PSO 0.036 2516 -1.0192 -1.0192 100
CMA-ES 1.6 1838 -1.0192 -1.0192 100

Table 9 shows the results obtained for the 20D Zakharov function. The
interior-point, the NEWUOA, the FOCTOPUS and the GA methods success-
fully converged to the global optimum in all the runs. The simplex, the pattern
search and the SA methods failed to converge in all runs, whereas the other
remaining methods had very low success rates.

Table 9. Result statistics of 50 minimization runs of the 20D Zakharov function
obtained for the different numerical methods

Method
Mean CPU
time (sec)

Mean
feval

Mean f
Median

f
Success
rate (%)

Interior-point 8.5E-2 1170 1.9E-14 5.0E-15 100
Quasi-Newton 0.020 987 141 7.2E-2 20
Simplex 0.34 - 52 19 0
Pattern search 1.2 - 105 98 0
NEWUOA 0.14 4526 4.0E-9 2.2E-9 100
BOBYQA 0.49 8978 40 15 18
FOCTOPUS 0.11 358861 1.6E-8 1.5E-8 100
GA 1.1 46817 9.4E-5 8.5E-5 100
SA 3.7 - 4.4 3.8 0
PSO 0.18 18115 49 5.2E-2 44
CMA-ES 1.2 5006 1.9E-2 8.1E-3 10
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Table 10 shows the results obtained for a typical multi-modal 2D function.
This is a highly multi-modal function where, most of the methods failed to con-
verge in all runs. However, the FOCTOPUS and the PSO methods converged
successfully in all runs followed by the GA which converged in 80% of the total
runs. The CMA-ES and the pattern search methods converged only in 14%
and 6% of the runs, respectively.

Table 10. Result statistics of 50 minimization runs of a typical multi-modal 2D
function obtained for the different numerical methods

Method
Mean CPU
time (sec)

Mean
feval

Mean f
Median

f
Success
rate (%)

Interior-point 0.042 - -9.1E-4 -8.1E-11 0
Quasi-Newton 0.019 - -9.1E-4 -8.1E-11 0
Simplex 0.0029 - -9.1E-4 -2.0E-9 0
Pattern search 0.026 213 -0.15 -0.020 6
NEWUOA 5.3E-4 - -2.5E-3 -9.7E-9 0
BOBYQA 7.0E-4 - -9.1E-3 -9.7E-9 0
FOCTOPUS 0.030 22621 -1.0 -1.0 100
GA 0.085 3469 -0.86 -1.0 80
SA 0.22 - -0.24 -0.18 0
PSO 0.031 3509 -1.0 -1.0 100
CMA-ES 0.62 947 -0.23 -0.0036 18

4.2. Discussions

Altogether 6 local and 5 global optimization methods were benchmarked
on 10 test functions. The corresponding results were summarized in Tables
1 to 10. From the tabular results, significant differences can be observed in
the metrics of success rate and number of function evaluations of the various
optimization methods.

In comparison with the benchmark study in ref. [4], the conclusions of
the present work are different regarding the performances of the simplex and
NEWUOA methods for the common test function of the same dimensionality
(e.g. Hartmann-6D, Rosenbrock 5D). In the case of the Ackley and Rastrigin
functions, different dimensions (5D vs. 4D) were used in the two studies, hence,
the results cannot be compared.

In the present paper, it was observed that, the local optimization methods
had high failure rates on the highly multi-modal and high-dimensional test
functions. Exceptions to this were the pattern search method which had a high
success rate on the 20D Alpine, the 5D Rastrigin and the 4D Ackley functions,
furthermore, the quasi-Newton method which had a high success rate on the
20D Alpine function, and also the NEWUOA method which had a high success
rate on the 20D Zakharov function.
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In the case of the global methods, the PSO and GA methods had high failure
rates for the Hartmann-6D function, whereas the CMA-ES method had high
success rates on the Hartmann-6D and valley-shaped Rosenbrock functions.
The SA method converged successfully on most of the low-dimensional test
functions, however, it failed in all runs on the 2D multi-modal function. The
FOCTOPUS method failed to converge on some multi-modal functions and it
required very high number of function evaluations on most functions. The GA,
the PSO and the pattern search methods also had a high number of function
evaluations for the valley-shaped Rosenbrock function.

5. Conclusion

In overall, the pattern search method converged well to the global optimum
in all the functions except for the Zakharov (20D, valley-shaped) function and
it had a low success rate on the 5D Rosenbrock (plate-shaped) function and the
typical 2D multi-modal functions. The other local optimization methods either
failed or had very low success rates on the multi-modal and high-dimensional
test functions. The only exception is the NEWUOA method which converged
successfully for the 20D Zakharov function.

The genetic algorithm (GA) usually had a high success rate on all the test
functions except for the Hartmann-6D function. The particle swarm optimiza-
tion (PSO) method had a low success rate on the Rastrigin and Hartmann-6D
functions, a fairly good success rate on the Zakharov and Rosenbrock functions
and always converged on the rest of the test functions. The SA converged suc-
cessfully only on the low-dimensional (2D) test functions, whereas the CMA-ES
method had good success rates only on the Rosenbrock and Hartmann-6D func-
tions. The FOCTOPUS method failed to converge for the Alpine, Holder table
and Rastrigin functions and had a low success rate for the Hartmann-6D func-
tion, an acceptable success rate for the Rosenbrock function, and successfully
converged on the rest of the test functions. In terms of the function evaluation
and run time, the FOCTOPUS method required high number of function eval-
uations and the largest amount of CPU time. Furthermore, the convergence of
the GA method was also very slow on average. The PSO method had a posi-
tive success rate in all the benchmarks and it had a higher convergence speed
than the other global methods in almost all benchmarks. This investigation
made it clear that the FOCTOPUS method while being tailored for and proved
to be a robust method for combustion kinetic problems, fails to converge ef-
ficiently to the global minimum value for several artificial test functions, thus
its application cannot be recommended in general.
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[40] Varga, T., I.G. Zsély, T. Turányi, T. Bentz and M. Olzmann, Ki-
netic analysis of ethyl iodide pyrolysis based on shock tube measurements.
International Journal Of Chemical Kinetics, 46 (2014), 295–304.



Testing various numerical optimization methods 199

[41] Varga, T., C. Olm, T. Nagy, I.G. Zsély, É. Valkó, R. Pálvölgyi,
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