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Imre Kátai and Bui Minh Phong (Budapest, Hungary)

Communicated by Karl-Heinz Indlekofer

(Received July 20, 2022; accepted August 15, 2022)

Abstract. Building on two conjectures formulated by the second author
in the 1980’s regarding characterisations of multiplicative functions and
their respective proofs by Wirsing in the late 1990’s and by Klurman in
2017, we expand on the achievements of these two authors by proving new
results.

1. Introduction

As is common, we let N, R, C stand the sets of positive integers, real and
complex numbers, respectively. Let also M (resp. M∗) stand for the set of
complex-valued multiplicative (resp. completely multiplicative) functions. We
say that f ∈ M1 (resp. M∗

1), if f ∈ M (resp. M∗) and |f(n)| = 1 for
every n ∈ N.

Let us first recall two classical conjectures due to the second author.

Conjecture 1. (Kátai [3]) If g ∈ M and

g(n+ 1)− g(n) → 0 as n → ∞,

then either g(n) → 0 as n → ∞, or g(n) = ns for some complex number s with
�s < 1.
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Conjecture 2. (Kátai [3]) If g ∈ M1 and

lim
x→∞

1

x

∑
n≤x

|g(n+ 1)− g(n)| = 0 or lim
x→∞

1

log x

∑
n≤x

|g(n+ 1)− g(n)|
n

= 0,

then there exists a real number τ for which

g(n) = niτ for all n ∈ N.

Conjecture 1 was proved by E. Wirsing in 1996. The proof is given in
Wirsing, Yuansheng and Pintsung [8] as well as in Wirsing and Zagier [9].

A particular case of Conjecture 2 was proved by O. Klurman [4] in 2017
and we state it as follows.

Theorem A. (Klurman) Conjecture 2 is true for g ∈ M∗
1.

Here, we expand on the above results of Wirsing and Klurman.

2. A generalisation of Wirsing’s result

In a recent paper [1], we proved that if f ∈ M∗
1 and if c0, c1, c2 are three

complex numbers satisfying (c0, c1, c2) �= (0, 0, 0) for which

lim
x→∞

1

x

∑
n≤x

|c0f(n) + c1f(n+ 1) + c2f(n+ 2)| = 0,

then there exists a real number τ for which f(n) = niτ for all positive integers n.

In the same paper [1], we formulated the following conjecture.

Conjecture 3. Given f ∈ M∗
1 and complex numbers c0, c1, . . . , ck such that

(c0, c1, . . . , ck) �= (0, 0, . . . , 0). Assuming that

c0f(n) + c1f(n+ 1) + · · ·+ ckf(n+ k) → 0 as n → ∞,

then there exists a real number τ for which f(n) = niτ for all positive integers n.

In [1], we also formulated the following weaker conjecture.

Conjecture 4. Given f ∈ M∗
1 and complex numbers c0, c1, . . . , ck such that

(c0, c1, . . . , ck) �= (0, 0, . . . , 0). Assuming that

1

x

∑
n≤x

|c0f(n) + c1f(n+ 1) + · · ·+ ckf(n+ k)| → 0 as x → ∞,

then c0+c1+ · · ·+ck = 0 and there exists a real number τ for which f(n) = niτ

for all positive integers n.
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Observe that in [1] we were able to prove Conjecture 4 in the particular
cases k = 1, 2. However, we were unable to prove the more general case k ≥ 3.

Now, consider the three operators E, I and Δ defined on the sequence
(xn)n∈N by

E xn = xn+1, I xn = xn, Δxn = E xn − I xn = xn+1 − xn.

We also consider iterations of Δf(n). For this, we let

Δ2f(n) := ΔΔf(n) = Δ(f(n+ 1)− f(n)) = f(n+ 2)− 2f(n+ 1) + f(n),

and for an arbitrary integer k ≥ 3, we let Δkf(n) := ΔΔk−1f(n).

Our purpose in this section and the next one is the following generalisation
of the result of Wirsing mentioned in the Introduction.

Theorem 1. Let f ∈ M∗
1, set sf (n) := Δ7f(n) and assume that lim

n→∞ sf (n) =

= 0. Then, there exists a real number τ such that f(n) = niτ for all n ∈ N.

3. Proof of Theorem 1

In our recent paper, we proved (see Theorem 10 in [2]) that, assuming that

|Δ7f(n)| ≤ K := 12− δ,

then there exists some real number t such that f(n) = nitF (n) for all n ∈ N,
where F k(n) = 1 for all n ∈ N, and |Δ7F (n)| ≤ K + ε provided n ≥ n0(ε).

As we will see, Theorem 1 is an easy consequence of our Theorem 10 in [2].
Indeed, since we assumed that sf (n) → 0 as n → ∞ and since niτ−(n+1)iτ → 0
as n → ∞, it follows that sF (n) → 0 as n → ∞. But since sF (n) can assume
only finitely many distinct values, it follows that

sF (n) = Δ7F (n) = 0 for every large n.

On the other hand, since the roots of the polynomial (x− 1)7 are ω� := e2πi�/7

(i = 0, 1, . . . , 6), we have that

(3.1) F (m+ n0) =

6∑
�=0

c�ω
m
� (m = 0, 1, 2, . . .).

Observe that the right-hand side of (3.1) is periodic mod 7, that is, F (n1) =
= F (n2) if n1 ≡ n2 (mod 7) with n1, n2 ≥ n0. From this, it follows that
F (7n) = F (7(n + 1)), and since F (7) �= 0, this implies that F (n) = 1 for all
positive integers n, thereby completing the proof of Theorem 1. �

In concluding this topic, we formulate yet another conjecture.
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Conjecture 5. Let f ∈ M∗
1 and assume that

lim
x→∞

1

x

∑
n≤x

∣∣Δ7f(n)
∣∣ = 0.

Then, there exists a real number τ for which f(n) = niτ for every n ∈ N.

4. Consequences of Klurman’s theorem

We now move to some interesting consequences of Klurman’s theorem,
namely by establishing four new results.

Theorem 2. Assume that a, b, c ∈ N and d ∈ C \ {0}. Then functions
g1 ∈ M1 and g2 ∈ M1 satisfy the condition

lim
x→∞

1

log x

∑
n≤x

|g1(an+ b)− dg2(cn)|
n

= 0

if and only if there are functions G1, G2 ∈ M1 and a number τ ∈ R such that

g1(n) = niτG1(n), g2(n) = niτG2(n)

and

G1(an+ b)− d
( c

a

)iτ

G2(cn) = 0

are satisfied for every n ∈ N.

Theorem 3. Assume that a, b, c ∈ N and d ∈ C \ {0}. Then functions
g1 ∈ M1 and g2 ∈ M1 satisfy the condition

lim
x→∞

1

x

∑
n≤x

|g1(an+ b)− dg2(cn)| = 0

if and only if there are functions G1, G2 ∈ M1 and a number τ ∈ R such that

g1(n) = niτG1(n), g2(n) = niτG2(n)

and

G1(an+ b)− d
( c

a

)iτ

G2(cn) = 0

are satisfied for every n ∈ N.
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Theorem 4. Assume that a > 0, b, A > 0, B ∈ N are integers with (a,A) =
= 1, Δ = Ab− aB �= 0 and C ∈ C \ {0}. If g ∈ M∗

1 satisfies the condition

lim
x→∞

1

log x

∑
n≤x

|g(an+ b)− Cg(An+B)|
n

= 0,

then there is a real number τ such that g(n) = niτ for every n ∈ N.

Theorem 5. Assume that a > 0, b, A > 0, B ∈ N are integers with (a,A) =
= 1, Δ = Ab− aB �= 0 and C ∈ C \ {0}. If g ∈ M∗

1 satisfies the condition

lim
x→∞

1

x

∑
n≤x

|g(an+ b)− Cg(An+B)| = 0,

then there is a real number τ such that g(n) = niτ for every n ∈ N.

5. Proofs of Theorems 2 through 5

For the proofs of Theorems 2 and 3, we will be using the following result.

Theorem B. (Phong [6], Theorems 1 and 2) Assume that a, b, c ∈ N and
d ∈ C \ {0}. Then functions g1 ∈ M1 and g2 ∈ M1 satisfy the condition either

lim
x→∞

1

log x

∑
n≤x

|g1(an+ b)− dg2(cn)|
n

= 0

or

lim
x→∞

1

x

∑
n≤x

|g1(an+ b)− dg2(cn)| = 0

if and only if there are functions g∗ ∈ M∗
1 and G1, G2 ∈ M1 such that

g1(n) = g∗(n)G1(n), g2(n) = g∗(n)G2(n),

G1(an+ b)− d

(
g∗(c)
g∗(a)

)
G2(cn) = 0

and either

(5.1) lim
x→∞

1

log x

∑
n≤x

|g∗(n+ 1)− g∗(n)|
n

= 0

or

(5.2) lim
x→∞

1

x

∑
n≤x

|g∗(n+ 1)− g∗(n)| = 0

are satisfied for every n ∈ N.
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Now, we infer from Theorem A that the conditions (5.1)–(5.2) imply that
there is a number τ ∈ R such that g∗(n) = niτ for every n ∈ N.

Hence, Theorems 2 and 3 are proved.

In similar way, we prove Theorem 4. This time, we will be using the fol-
lowing result.

Theorem C. (Phong [7], Theorem 1) Assume that a > 0, b, A > 0, B ∈ N be
integers with (a,A) = 1, Δ = Ab − aB �= 0 and C ∈ C \ {0}. If g ∈ M∗

1

satisfies the condition

lim
x→∞

1

log x

∑
n≤x

|g(an+ b)− Cg(An+B)|
n

= 0

then

(5.3) lim
x→∞

1

log x

∑
n≤x

|g(n+ 1)− g(n)|
n

= 0.

We also infer from Theorem A that the condition (5.3) implies that there
is a number τ ∈ R such that g(n) = niτ for every n ∈ N, thereby completing
the proof of Theorem 4.

We now move to the proof of Theorem 5. By adopting the method used in
the proof of Theorem 1 in [7], we have the following result.

Theorem D. Assume that a > 0, b, A > 0, B ∈ N be integers with (a,A) = 1,
Δ = Ab− aB �= 0 and C ∈ C \ {0}. If g ∈ M∗

1 satisfies the condition

lim
x→∞

1

x

∑
n≤x

|g(an+ b)− Cg(An+B)| = 0,

then

(5.4) lim
x→∞

1

x

∑
n≤x

|g(n+ 1)− g(n)| = 0.

The condition (5.4) with Theorem A implies the proof of Theorem 5.
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