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Abstract. We mention some results of Professor Eduard Wirsing con-
cerning the first author’s conjectures. We also list some our results for
arithmetical functions and prove three theorems.

1. On the characterization of logn

Professor E. Wirsing gave very important results for some of our conjectures.
In this short survey paper we would like to elaborate on that.

In the following let P, N, Z, R and C denote the set of primes, positive
integers, integers, real numbers and complex numbers, respectively. An arith-
metic function f : N → R is said to be additive if (n,m) = 1 implies that
f(nm) = f(n) + f(m) and it is completely additive if this equality holds for
all positive integers n and m. Let A and A∗ denote the set of all real-valued
additive and completely additive functions, respectively. Similarly, an arith-
metic function g : N → C is said to be multiplicative if (n,m) = 1 implies that
g(nm) = g(n)g(m) and it is completely multiplicative if this equality holds for
all positive integers n and m. We denote by M and M∗ the set of all complex-
valued multiplicative and completely multiplicative functions, respectively.

The problem concerning the characterization of functions f(n) = U log n
(f = U log) as additive arithmetic functions was studied by several authors. It
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is clear that f = U log belongs to A∗. Normally log is considered as a mapping
R+ → R and in this context it is well known that continuity along with the
functional equation f(xy) = f(x) + f(y) characterizes the logarithm up to a
constant factor. Restricting the domain from R+ to N creates an interesting
question: What further properties along with (complete) additivity will ensure
that an arithmetic function f is in fact U log? Most of the sufficient conditions
that are known can be formulated in terms of their differences.

The first result is from P. Erdős [8]. Here we shall list the most important
results on this topic:

1. If f ∈ A, Δf(n) := f(n + 1) − f(n) ≥ 0 (n ∈ N), then f = U log
(P. Erdős [8])

2. If f ∈ A, Δf(n) = o(1) (n → ∞), then f = U log (P. Erdős [8])

3. If f ∈ A∗, Δf(n) = o(log n) (n → ∞), then f = U log (E. Wirsing [36])

4. If f ∈ A, Δf(n) = o(1) (n → ∞) through a set of density 1, then f =
= U log (A. Hildebrand [11]).

Since the appearance of Erdős’ paper several new characterizations of the
logarithm have been found that generalize or sharpen Erdős’ original results
in a variety of ways. I. Kátai [20], [21] proposed the problem to obtain similar
characterizations when n and n+1 are replaced by two linear forms an+ b and
cn + d, where a > 0, b, c > 0, d are integers with ad − bc �= 0. Specifically,
I. Kátai asked for a characterization of those real-valued additive functions f
which satisfy

f(an+ b)− f(cn+ d)−D → 0 as n → ∞

for a real number D. I. Kátai considered this problem with d = 0 and small
values of a and b in [20], [21]. The general case has been treated and completely
solved by P. D. T. A. Elliott [4], [5], [7]. Namely, P. D. T. A. Elliott [7],
showed that if a real-valued additive function f satisfies the above relation, then
f(n) = U log n holds for all positive integers n which are prime to ac(ad− bc).

Conjecture 1. (P. Erdős, [8]) Is it true that f ∈ A and

1

x

∑
n≤x

|f(n+ 1)− f(n)| → 0

implies that f(n) = U log n for every n ∈ N?

This has been proved independently by I. Kátai [21] and E. Wirsing [36].



In memoriam for Professor E. Wirsing 125

Later E. Wirsing gave many interesting generalizations of this assertion.
We mention the next assertion. Let xi � ∞, γ > 0. If f ∈ A and

lim
i→∞

1

xi

∑
xi<n≤(1+γ)xi

|f(n+ 1)− f(n)| = 0,

then f(n) = U log n for every n ∈ N.
On the other hand, the second author obtained in [28], [29] a complete

characterization of those functions f1 ∈ A and f2 ∈ A for which the relation

∑
n≤x

|f1(an+ b)− f2(n)−D| = o(x) as x → ∞

holds for some fixed positive integers a, b and for a real constant D. It was
proved that the above relation implies that there are a real constant U and
functions F1 ∈ A, F2 ∈ A such that

f1(n) = U log n+ F1(n), f2(n) = U log n+ F2(n)

and

F1(an+ b)− F2(n)−D + U log a = 0

hold for all positive integers n. In B. M. Phong [29] the same result has been
proved, if the relation

∑
n≤x

1

n

∣∣∣f1(an+ b)− f2(n)−D
∣∣∣ = o(log x) as x → ∞

is satisfied.

With a little modification of [28], [29] the second author improved in [32]
some results mentioned above. It was proved that if a, b, c ∈ N, D ∈ R and
f1, f2 ∈ A satisfy the condition

lim inf
x→∞

1

log x

∑
n≤x

1

n

∣∣∣f1(an+ b)− f2(cn)−D
∣∣∣ = 0,

then there are a real constant U and functions F1 ∈ A, F2 ∈ A such that

f1(n) = U log n+ F1(n), f2(n) = U log n+ F2(n)

and

F1(an+ b)− F2(cn)−D + U log
(a
c

)
= 0

hold for all positive integers n.
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2. Sets of uniqueness

Conjecture 2. (I. Kátai, [19]) If f ∈ A∗ and f(p + 1) = 0 for every p ∈ P,
then f(n) = 0 for every n ∈ N.

Definition 1. (Set of uniqueness for completely additive functions) We say
that A ⊆ N is a set of uniqueness for completely additive functions if f ∈ A∗,
f(a) = 0 for every a ∈ A implies that f(n) = 0 for all n ∈ N.

Definition 2. (Set of uniqueness for completely additive functions (mod 1))
We say that B ⊆ N is a set of uniqueness for completely additive functions
(mod 1) if f ∈ A∗, f(b)≡0 (mod 1) for all b ∈ B implies that f(n)≡0 (mod 1)
for every n ∈ N.

D. Wolke [40] proved that A is a set of uniqueness if and only if every n ∈ N
can be written as n =

∏k
i=1 a

ri
i , where ai ∈ A and ri ∈ Q.

K.-H. Indlekofer [15, 16], P. Hoffman [14], F. Dress and B. Volkmann [2]
proved independently that B is a set of uniqueness for completely additive
functions (mod 1) if and only if every n ∈ N can be written as

n =

k∏
j=1

b
�j
j ,where �j ∈ Z, bj ∈ B.

I. Kátai [18, 19] formulated the conjecture in 1969 that

P+1 = {p+ 1|p ∈ P}
is a set of uniqueness for additive functions, and proved that there exists such
a finite set Q of primes for which P+1 ∪ Q is a set of uniqueness (mod 1).
P.D.T.A. Elliott [3] proved that Q = {p|p ≤ 10387, p ∈ P} is an appropriate
choice, that is every n ∈ N can be written as

n = t ·
k∏

i=1

(pi + 1)�i , �i ∈ {−1, 1},

and t is such a rational number the largest prime factor of which does not
exceed 10387.

Furthermore, in [6] P.D.T.A. Elliott proved that for every rational number
r, one can find such primes p1, . . . , pk and �j ∈ {−1, 1} (j = 1, 2, . . . , k), for
which

rg =

k∏
i=1

(pi + 1)�i .

Here g is a constant, g ∈ {1, 2, 3}.
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A direct consequence of this assertion is the following result: Let f ∈ M∗,
f(p+ 1) = p+ 1 (∀p ∈ P). Then

f(n) = nH(n), H ∈ M∗, H(n)g = 1 for every n ∈ N.

Especially, if f(n) is a positive real number for every n ∈ N, then

f(n) = n for every n ∈ N.

T. Csajbók, A. Járai and J. Kasza [1] proved that every integer n ∈ [2, 1014]
can be written as p+1

q+1 (p, q ∈ P).

In [34] E. Wirsing proved:

(1) There are constants A,B such that for any additive function f and all
n ∈ N the inequality

|f(n)| ≤ A max
n≤p+1≤nB

|f(p+ 1)|

holds.

(2) There are constants c1, c2 such that for every n ∈ N there is a represen-
tation

na =

b∏
i=1

(pi + 1)�i , pi ∈ P,

where a ≤ c1, b ≤ c1, �i ∈ {−1, 1}, n ≤ pi + 1 ≤ nc2 .

As a corollary he mentioned that:

•If f ∈ A∗ and f(p + 1) = 0 for every prime p, then f(n) = 0 for every
n ∈ N.

•If f ∈ A∗ and f(p + 1) = o(log(p + 1)) for every p ∈ P, then f(n) =
= o(log n), consequently f(n) = 0 for every n ∈ N.

J. Mehta, G.K. Viswanadham [27] proved that the set P[i] + 1 is a set of
uniqueness for additive functions over the set of Gaussian integers, where P[i]
denotes the set of all Gaussian primes.

3. Some conjectures concerning multiplicative functions

A function g is said to be unimodular if g satisfies the condition |g(n)| =
= 1 for all positive integers n. In the following we shall denote by M1 and
M∗

1 the class of all unimodular functions g ∈ M and g ∈ M∗, respectively.
The classes M1 and M∗

1 are very important subclasses in M and M∗.
For each real-valued additive function f the function g(n) = e2πif(n) (n ∈ N)
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belongs to M1, and so the results for unimodular multiplicative functions can
be used to obtain information for the distribution of additive functions.

The functions of the form g(n) = ns (n ∈ N) belong to M∗ for all fixed
complex numbers s. These functions play a similar exceptional role among
multiplicative functions as the functions U log among additive functions. This
raises the question: Can one characterize the functions of the type g(n) = ns

as multiplicative functions by imposing suitable regularity conditions on g? It
turns out that this leads to problems that are much more difficult than those
arising in the case of additive functions.

More than 41 years ago I. Kátai [22] stated conjectures concerning multi-
plicative functions. For M1, the conjectures of I. Kátai are:

Conjecture 3. (I. Kátai, [22]) If g ∈ M1 and

g(n+ 1)− g(n) = o(1) as n → ∞,

then g(n) = niτ (∀n ∈ N) for some real number τ .

I. Kátai mentioned this conjecture in his talk in Ooty (India) in a confer-
ence celebrating the 75th anniversary of Professor P. Erdős. Some weeks later
E. Wirsing wrote him a letter, giving the proof of this conjecture. Several years
later Tang Yuansheng and Shao Pintsung proved independently the conjecture.
The three authors published a joint paper [38] containing two proofs. The proof
of Conjecture 3 also was given in [33, 39].

It is not hard to deduce from this result that if f, g ∈ M1, g(n+1)−f(n) =
= o(1) as n → ∞, then f(n) = g(n) = niτ (n ∈ N).

Conjecture 4. (I. Kátai [22]) If g ∈ M1 satisfies

(∗)
∑
n≤x

|g(n+ 1)− g(n)| = o(1) as x → ∞,

or if

(∗∗) 1

log x

∑
n≤x

|g(n+ 1)− g(n)|
n

= o(1) as x → ∞,

then g(n) = niτ (∀n ∈ N) for some real number τ .

I. Kátai considered functions g ∈ M under the conditions that g(n+1)−g(n)
tends to zero in some sense. For example, it follows from Theorem 3 of I. Kátai
[23] that a function g ∈ M1 satisfying the condition

∞∑
n=1

1

n
|g(n+ 1)− g(n)| < ∞

must be of the form g(n) = niτ for some τ ∈ R.
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Finally, O. Klurman [26] proved that Conjecture 4 is true.

Hence we can deduce the following

Theorem 1. Assume that f ∈ A, Δf(n) = f(n+1)−f(n), and that for every
ε > 0

(3.1)
1

x
�{n ≤ x| �Δf(n)� > ε} → 0 as x → ∞

or if

(3.2)
1

log x

∑
n≤x

�Δf(n)�>ε

1

n
→ 0 as x → ∞,

where �x� is the distance of the real number x from a nearest integer.

Then f(n) = λ log n+E(n), where λ ∈ R, E ∈ A, E(n) ∈ Z for every n ∈ N.

Proof. Let e(n) := e2πin and let g(n) := e(f(n)). Then g(n + 1)g(n) =
= e(Δf(n)).

Consequently, if {Δf(n)} < c · ε, then |g(n + 1)g(n) − 1| � ε, while if
1− c · ε < {Δf(n)}, then the same is true.

From the condition (3.1) or (3.2) we obtain that (∗) or (∗∗) holds, conse-
quently

g(n) = eiτ logn = e
( τ

2π
log n

)
= e(f(n)).

Let E(n) := f(n)− τ
2π log n. Then E ∈ A and E(n) ∈ Z for every n ∈ N.

The proof of Theorem 1 is thus complete. �

Theorem 2. Assume that f ∈ A and that for every ε > 0 either

(3.3)
1

x
�{n ≤ x| |Δf(n)| > ε} → 0 as x → ∞

or

(3.4)
1

log x

∑
n≤x

|Δf(n)|>ε

1

n
→ 0 as x → ∞.

Then f(n) = c log n for some real number c.

Proof. From Theorem 1 we obtain that if (3.3) or (3.4) is satisfied, then

f(n) = c log n+ E(n)
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and that

(3.5)
1

x
♯{n ≤ x| E(n) ̸= E(n+ 1)} → 0 as x → ∞

or

(3.6)
1

log x

∑
n≤x

E(n)̸=E(n+1)

1

n
→ 0 as x → ∞.

Assume that E(n) ̸= 0 for at least one n. Let

gλ(n) := e2πiλE(n),

where λ is an irrational number. Since

gλ(n+ 1)gλ(n) = 1 if E(n+ 1) = E(n)

and so for some exceptional set of n we have

1

log x

∑
n≤x

E(n)̸=E(n+1)

1

n
→ 0 as x → ∞,

we obtain that

λE(n) = τ(λ) log n+ V (n), V (n) ∈ Z for every n ∈ N.

If τ(λ) = 0 and there is a number M ∈ N for which E(M) ̸= 0, then λ = V (M)
E(M)

would be a rational number, which contradicts our assumption.

Assume that τ(λ) ̸= 0. Since

λ∆E(n)−∆V (n) = τ(λ) log(1 + 1
n ),

and ∆E(n) = 0, ∆V (n) = 0 for almost all n ∈ N, the left-hand side of the
above equality is 0, the right-hand side being τ(λ) log(1 + 1

n ) ̸= 0. This is a
contradiction.

The proof of Theorem 2 is thus complete. ■

4. A conjecture of Kátai and Subbarao

For any function f ∈ M∗
1 let the quotient operator Sf be defined by

Sf (n) := f(n+ 1)f(n)

and let Af be the set of limit points of Sf (n). Let Uk be the set of all k-th
roots of unity, i.e. Uk = {ω ∈ C| ωk = 1}.
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I. Kátai and M. V. Subbarao in their papers [24] and [25] formulated three
conjectures, two of which are:

Conjecture 5. Let f ∈ M∗
1 and Af = {α1, · · · , αk}. Then Af = Uk. and

f(n) = niτF (n) with some τ ∈ R, where F (n)k = 1 for all n ∈ N.

Conjecture 6. If f ∈ M∗
1 and F (N) = Uk, then AF = Uk. In other words:

SF (n) attains every ω ∈ Uk infinitely often.

We note that Conjecture 5 for Af = {1} has been proposed by the first
author, and solved by E. Wirsing in 1984.

In [24], I. Kátai and M. V. Subbarao proved Conjecture 5 for k ∈ {1, 2, 3}.
For the case k = 4, they proved in [25] the following

Theorem A. (I. Kátai and M. V. Subbarao [25]) If f ∈ M∗
1 and |Af | = 4,

then there is some constant τ ∈ R such that f(n) = niτF (n) and either Af =
U4, F (n) ∈ U4 for every n ∈ N or Af = U5, F (n) ∈ U5 for every n ∈ N
and F (n+ 1)F (n) ∈ Af for every large n ∈ N.

Recently E. Wirsing [37], using the results and methods of [35], [38] and
[39], proved the following two results:

Theorem B. (E. Wirsing [37]) If f ∈ M∗
1 and Af is finite, then there are

constants τ ∈ R and � ∈ N such that f �(n) = niτ .

Theorem C. (E. Wirsing [37]) Conjecture 6 implies Conjecture 5.

Theorem B is a weak version of Conjecture 5.

For each function F ∈ M∗
1 let

BF = {F (n+ 1)F (n)| n ∈ N}.

A weaker form of Conjecture 6 can be formulated as follows.

Conjecture 7. If F ∈ M∗
1 and F (N) = U�, then BF = U�.

The second author proved in [30] the following result:

Theorem D. (B. M. Phong [30]) Conjecture 7 is true for � ≤ 5, i.e. if F ∈
M∗

1 and F (N) = U�, then BF = U� for every � ≤ 5.

Now we prove that if f ∈ M∗
1 and |Af | < ∞, then 1 ∈ Af .

Theorem 3. If f ∈ M∗
1 and |Af | < ∞, then 1 ∈ Af .

Proof. Assume f ∈ M∗
1 and Af = {α1, · · · , αk}, where k ∈ N. Let

δ = mini�=j |αi − αj |. For every large n (n > N0, say), there is exactly one
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α ∈ Af for which |f(n + 1)f(n) − α| < δ. Let C(n) := α, i.e. C(n) is that
element of Af which is the closest to f(n+ 1)f(n).

First we infer from the fact f ∈ M∗
1 that

(4.1) If k|n(n+ 1) and n, k ∈ N, n > N0, then C(n)C(n+ k) ∈ Af .

Indeed, if positive integers k, n ∈ N, n > N0 satisfy the condition k|n(n+1),
then k|n(n+ k + 1) and

f(n+ 1)

f(n)

f(n+ k)

f(n+ k + 1)
=

f
[
(n+ 1)(n+ k)

]

f
[
n(n+ k + 1)

] =
f
[
n(n+k+1)

k + 1
]

f
[
n(n+k+1)

k

] ,

which proves that

C(n)C(n+ k) = C
[n(n+ k + 1)

k

]
∈ Af .

Consequently, the relation (4.1) is true.

We note from (4.1) that

(4.2) If (m− n)|n(n+ 1) and m > n > N0, then C(n)C(m) ∈ Af .

A key element in the proof of Theorem 3 is played by (4.2) and by the sets
{n1 < n2 < · · · < nr} of positive integers having the property

(4.3) nj − ni = (ni, nj) for every 1 ≤ i < j ≤ r

The existence of such integers for every r ≥ 2 has been first proved by Heath-
Brown [9], a simple construction is given in [10]. For generalizations and ap-
plications of such sets we refer to works of Hildebrand [12] and [13].

Now we prove that 1 ∈ Af . Assume by contradiction that 1 �∈ Af . Then
we choose a positive integer r > |Af | and a sequence n1 < n2 < · · · < nr of
positive integers satisfying (4.3) and n1 > N0. Hence

nj − ni = (ni, nj) and (nj − ni)|ni(nj + 1) for every 1 ≤ i < j ≤ r,

consequently we get from (4.2) that C(ni)C(nj) ∈ Af , which implies

C(ni)C(nj) �= 1, i. e. C(ni) �= C(nj) for every 1 ≤ i < j ≤ r.

This is impossible, because C(ni) ∈ Af (i = 1, 2, · · · , r) and |Af | < r.

Hence 1 ∈ Af and the proof of Theorem 3 is complete. �
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For an arbitrary, multiplicatively written commutative group G let M(G),
resp. M∗(G) denote the classes of multiplicative, resp. completely multiplica-
tive functions. A function f : N → G belongs to M(G) if f(mn) = f(m)f(n)
holds for each pair of coprime m,n, and it belongs to M∗(G) if the above
equation holds for all m,n ∈ N.

In [31] the second author proved the following results.

Theorem E. (B. M. Phong [31]) Assume that G is any commutative multi-
plicative group and F1, F2 ∈ M∗(G). If

B(F1, F2, A,B) := {F1(An+B)(F2(An))−1 | n ∈ N}
is a finite set, then there are finite subgroups G1 and G2 of G such that G2 ⊆ G1

and Fi(N) is a subgroup of Gi (i = 1, 2).

The proof of Theorem E is based on the similar result concerning the case
when F1 = F2.

Theorem F. (B. M. Phong [31]) Assume that G is any commutative multi-
plicative group and F ∈ M∗(G). If

B(F, F,A,B) := {F (An+B)(F (An))−1 | n ∈ N}
is a finite set, then there is a finite subgroup G0 of G such that F (N) is a
subgroup of G0.
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[25] Kátai, I. and M.V. Subbarao, On the multiplicative function nit, Stu-
dia Sci. Math. Hungar., 34 (1998), 211–218.

[26] Klurman, O., Correlations of multiplicative functions and applications,
Compositio Mathematica, 153(8), 1622–1657.



In memoriam for Professor E. Wirsing 135

[27] Mehta, J. and G.K. Viswanadham, Set of uniqueness of shifted Gaus-
sian primes, Functiones et Approximatio, 53(1) (2015), 123–133.
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