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Abstract. To estimate the locally unique solutions of nonlinear systems
in Banach spaces, the local convergence analysis of an optimal eighth or-
der iterative technique is accomplished in this paper. The convergence
analysis was carried out, in earlier studies, using the Taylor series expan-
sions involving derivatives up to the ninth order. But, due to the fact that
such higher order derivatives may not exist always, or laborious to evaluate
for larger systems, the applicability of this technique remains limited. In
this regard, we provide the convergence analysis using different approach
which utilizes derivatives and divided differences only up to first order.
The applicability of method is extended by computing upper bounds on
the convergence region and prescribing set of conditions on the existence
of unique solution in that region. Numerical examples are provided for the
verification of theoretical results.

1. Introduction

Most of the problems, in applied mathematics, occur naturally as systems of
nonlinear equations. To represent this system mathematically, let us consider
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spaces.
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X and Y as Banach spaces, and Ω as an open convex subset of X. Further,
suppose F : Ω ⊂ X → Y is a Fréchet-differentiable mapping [12], then the
aforesaid problem can be expressed as,

(1.1) F (x) = 0.

Obtaining the closed form solution of nonlinear equations is rather complicated
(see [5, 10]), but the iterative techniques provide the estimate of solution up
to the desired accuracy, provided the initial estimate is sufficiently close to the
solution. In the extensively available literature (see for example [5, 8, 13, 15, 16],
and references therein), numerous iterative techniques have been presented in
the given context.

The usual approach to estimate the convergence order of an iterative tech-
nique includes Taylor series expansions, which involve higher order derivatives
(F (i), i = 1, 2, ...) and some set of assumption on F (i). But, such assump-
tions limit the applicability of techniques, since most of these involve only
first order derivatives. As a matter of fact, we consider a real valued function
F : Ω ⊆ R → R, Ω =

[− 5
2 , 2

]
, defined by

F (x) =

{
x3 log(π2x2) + x5 sin

(
1
x

)
, x �= 0

0, x = 0.

Consequently, we have

F ′(x) = 2x2 − x3 cos

(
1

x

)
+ 3x2 log(π2x2) + 5x4 sin

(
1

x

)
,

F ′′(x) = − 8x2 cos

(
1

x

)
+ 2x(5 + 3 log(π2x2)) + x(20x2 − 1) sin

(
1

x

)
,

and

F ′′′(x) =
1

x

[
(1− 36x2) cos

(
1

x

)
+ x

[
22 + 6 log(π2x2) + (60x2 − 9) sin

(
1

x

)]]
.

We note here that, F ′′′(x) is unbounded in the given interval Ω, and there-
fore, Taylor series expansion might not be appropriate approach for the con-
vergence analysis of an iterative technique.

In addition, the choice of initial estimate significantly affects the rate of
convergence as well as the error approximations, and in that sense, the conver-
gence analysis of iterative techniques should include the measure of closeness
of initial estimate to the solution. Many authors (see [1, 2, 3, 4, 6, 7, 9, 11, 14])
have adopted a suitable methodology to establish the local (or semilocal) con-
vergence analysis by considering the hypothesis of Lipschitz-continuity on the
first order derivatives only, and moreover, the upper bounds on errors and
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convergence radius be computed by defining some set of real parameters and
functions. From this perspective, we shall study the local convergence analysis
of an eighth order iterative technique, developed in [15], and which is described
as follows,

yn = xn − F �(xn)
−1F (xn),

zn = ψ(xn, yn),

xn+1 =zn − T−1
n [zn, yn;F ][zn, xn;F ]−1F (zn),(1.2)

where ‘ψ’ is a 4th order iteration operator, and Tn = 2[zn, yn;F ]− [zn, xn;F ].
For any x ∈ Ω ⊆ Rm, F �(x) : Ω → Rm is the first Fréchet derivative [12], and
[·, ·;F ] : Ω×Ω → L(X, Y ) is a divided difference operator of order one, where
L(X, Y ) stands for the set of bounded linear mappings from X = Rm into
Y = Rm.

Clearly, technique (1.2) involves derivatives or divided differences of order
not more than one, but the eighth order of convergence is proven in [15] using
the derivatives up to order nine. Our objective is to weaken the conditions of
[15] and to estimate the bounds on the convergence radius, which undoubtedly
extend the applicability of the considered technique.

In what follows, analysis is developed in section 2, which includes the
computation of bounds on convergence radius and defining the conditions for
uniqueness of solution. Some numerical applications are given in Section 3.
Section 4 contains the concluding remarks.

2. Analysis

To establish the local convergence analysis of technique (1.2), we first de-
fine some real parameters and functions. For Q = [0,∞), let the following
suppositions (i–vi) hold.

(i) Equation:
v0(t)− 1 = 0,

has a minimal root ρ0 ∈ Q−{0} for some continuous and non-decreasing
function v0 : Q → Q. Set Q0 = [0, ρ0).

(ii) Equation:
h1(t)− 1 = 0,

has a minimal root R1 ∈ Q0 − {0}, where h1 : Q0 → Q is defined by

h1(t) =

∫ 1

0
v((1− θ)t)dθ

1− v0(t)
,

for some continuous and non-decreasing function v : Q0 → Q.
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(iii) Equation:
h2(t, h1(t)t)− 1 = 0,

has a minimal root R2 ∈ Q0−{0}, for some continuous and non-decreasing
function h2 : Q0 ×Q0 → Q.

(iv) Equation:
w0(h2(t, h1(t)t) t, t)− 1 = 0,

has a minimal root ρ1 ∈ Q0−{0}, for some continuous and non-decreasing
function w0 : Q0 ×Q0 → Q.

(v) Equation:
p(t)− 1 = 0,

has a minimal root ρ2 ∈ Q0 − {0}, where p : Q0 → Q is defined as,

p(t) = w0(h2(t, h1(t)t)t, h1(t)t) + w1(t, h1(t)t, h2(t, h1(t)t)t),

for some continuous and non-decreasing function w1 : Q0×Q0×Q0 → Q.

Set Q1 = [0, ρ), where ρ = min{ρ0, ρ1, ρ2}.
(vi) Equation:

h3(t)− 1 = 0,

has a minimal root R3 ∈ Q1 − {0}, where h3 : Q1 → Q is defined as

h3(t) =

[
w(h2(t, h1(t)t)t, t)

1− w0(h2(t, h1(t)t)t, t)
+
w1(t, h1(t)t, h2(t, h1(t)t)t)

(1− w0(h2(t, h1(t)t)t, t))
×

× w2(h2(t, h1(t)t)t)

(1− p(t))

]
h2(t, h1(t)t)

for some continuous and non-decreasing functions w : Q1 ×Q1 → Q and
w2 : Q1 → Q.

We shall aim to prove that:

(2.1) R = min{R1, R2, R3},

is the convergence radius for technique (1.2). Setting G = [0, R), and by the
definition of R, we have for all t ∈ G,

0 ≤ v0(t) < 1,(2.2)

0 ≤ w0(h2(t, h1(t)t)t, t) < 1,(2.3)

0 ≤ p(t) < 1,(2.4)
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and

(2.5) 0 ≤ h1(t) < 1, 0 ≤ h2(t, h1(t)t) < 1, and 0 ≤ h3(t) < 1.

By taking ‘α’ as center, we denote B(α,R) as a closure of the open ball
B(α,R) having radius equal to ‘R’. For the further analysis, ‘α’ is taken as the
simple solution of (1.1). Before we proceed to the main result, it is required
that the following conditions (C1 − C5) hold.

C1 : For each x ∈ Ω,

�F �(α)−1(F �(x)− F �(α))� ≤ v0(�x− α�).

Set Ω0 = Ω ∩B(α, ρ0) .

C2 : For each x, y ∈ Ω0,

�F �(α)−1(F �(y)− F �(x))� ≤ v(�y − x�),

and

�ψ(x, y)− α� ≤ h2(�x− α�, �y − α�)max{�x− α�, �y − α�}.

Set Ω1 = Ω ∩B(α, ρ) .

C3 : For each x, y, z ∈ Ω1,

�F �(α)−1([z, x;F ]− F �(α))� ≤ w0(�z − α�, �x− α�),
�F �(α)−1([z, x;F ]− [z, α;F ])� ≤ w(�z − α�, �x− α�),
�F �(α)−1([z, y;F ]− [z, x;F ])� ≤ w1(�x− α�, �y − α�, �z − α�),

and

�F �(α)−1[x, α;F ]� ≤ w2(�x− α�).

C4 : B(α, R) ⊂ Ω.

C5 : There exists R∗ ≥ R, such that

1∫

0

v0(τR
∗)dτ < 1.

Set Ω2 = Ω ∩B(α,R∗).
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Next, Conditions (C1 −C5) are used in the main theorem presented below.

Theorem 2.1. Under the conditions (C1 − C5) and further choosing x0 ∈
∈ B(α, R) − {α}, the iterations {xn}, given by technique (1.2), exist and
remain in B(α, R) for all n = 1, 2, . . ., with limn→∞ xn = α, such that

�yn − α� ≤ h1(�xn − α�) �xn − α� < �xn − α� < R,(2.6)

�zn − α� ≤ h2(�xn − α�, �yn − α�) �xn − α� < �xn − α�,(2.7)

and �xn+1 − α� ≤ h3(�xn − α�) �xn − α� < �xn − α�,(2.8)

where the functions h1, h2 and h3 are defined previously, and R is defined in
(2.1). Moreover, the limit point α is the only solution of equation F (x) = 0 in
the domain Ω2 given in (C5).

Proof. Inequalities (2.6)–(2.8) shall be shown using mathematical induction
on ‘n’. Let u ∈ B(α, R)− {α} be arbitrary. In view of (2.1), (2.2), and (C1),
we have in turn that

(2.9) �F �(α)−1(F �(u)− F �(α))� ≤ v0(�u− α�) < v0(R) < 1.

The existence of invertible mappings in Banach spaces (see [12]), together
with (2.9), imply that F �(u)−1 ∈ L(Y,X), so that

(2.10) ||F �(u)−1F �(α)|| ≤ 1

1− v0(||u− α||) .

Consequently, y0 exists by (2.10) for u = x0, and is well defined by the first
sub-step of technique (1.2) for n = 0. Then, we get

y0 − α = x0 − α− F �(x0)
−1F (x0) =

= F �(x0)
−1F �(α)

1∫

0

F �(α)−1 [F �(x0)− F �(α+ τ(x0 − α))] (x0 − α)dτ.

(2.11)

Using (2.1), (2.5), (C2), (2.10) (for u = x0), and (2.11), we obtain the estimate
as,

�y0 − α� ≤
∫ 1

0
v((1− τ)�x0 − α�) dτ
1− v0(�x0 − α�) �x0 − α� =

= h1(�x0 − α�)�x0 − α� < �x0 − α� < R,(2.12)

which proves y0 ∈ B(α, R) ⊆ Ω and (2.6) for n = 0. Further, using the second
sub-step of (1.2) for n = 0, we have

(2.13) z0 − α = ψ(x0, y0)− α.
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Then, by (2.1), (2.5), (C2), (2.12), and (2.13), we get

�z0 − α� = �ψ(x0, y0)− α� ≤
≤ h2(�x0 − α�, �y0 − α�)max{�x0 − α�, �y0 − α�} ≤
≤ h2(�x0 − α�, h1(�x0 − α�)�x0 − α�)�x0 − α� <

< �x0 − α�,(2.14)

which proves z0 ∈ B(α, R) ⊆ Ω and (2.7) for n = 0.

For the existence of iterate x1, we shall first establish that T−1
0 , [z0, x0;F ]−1 ∈

∈ L(Y,X). Using (2.1), (2.3), (2.4), and (C3), we have

�F �(α)−1(T0 − F �(α))� ≤
≤ �F �(α)−1([z0, y0;F ]− F �(α))�+

+ �F �(α)−1([z0, y0;F ]− [z0, x0;F ])� ≤
≤ w0(�z0 − α�, �y0 − α�) + w1(�x0 − α�, �y0 − α�, �z0 − α�) ≤
≤ p(�x0 − α�) < p(R) < 1(2.15)

and

�F �(α)−1([z0, x0;F ]− F �(α))� ≤
≤ w0(�z0 − α�, �x0 − α�) ≤
≤ w0(h2(�x0 − α�, h1(�x0 − α�)�x0 − α�)�x0 − α�, �x0 − α�) <
< w0(h2(R, h1(R)R)R,R) < 1.(2.16)

Consequently, both T−1
0 and [z0, x0;F ]−1 exist by (2.15) and (2.16), respec-

tively, and moreover

�T−1
0 F �(α)� ≤ 1

1− p(�x0 − α�) ,(2.17)

and

�[z0, x0;F ]−1F �(α)� ≤
≤ 1

1− w0(h2(�x0 − α�, h1(�x0 − α�)�x0 − α�)�x0 − α�, �x0 − α�) .(2.18)

Thus, x1 exists, and is well defined by the third sub-step of (1.2) for n = 0.
Further,

x1 − α = z0 − α− [z0, x0;F ]−1F (z0)+

+ T−1
0 (T0 − [z0, y0;F ])[z0, x0;F ]−1F (z0) =

= [z0, x0;F ]−1 ([z0, x0;F ]− [z0, α;F ]) (z0 − α)+

+ T−1
0 ([z0, y0;F ]− [z0, x0;F ]) [z0, x0;F ]−1F (z0).(2.19)
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Then, using (2.1), (2.5), (C2), (2.14), and (2.17)–(2.19), we obtain that

�x1 − α� ≤
[

w(�z0 − α�, �x0 − α�)
1− w0(�z0 − α�, �x0 − α�)+

+
w1(�x0 − α�, �y0 − α�, �z0 − α�)w2(�z0 − α�)
(1− w0(�z0 − α�, �x0 − α�))(1− p(�x0 − α�))

]
�z0 − α� ≤

≤ h3(�x0 − α�)�x0 − α� < �x0 − α� < R,(2.20)

which proves x1 ∈ B(α, R) and (2.8) for n = 0. The induction process on ‘n’,
for the inequalities (2.6)–(2.8), is terminated if x0, y0, z0 and x1 are replaced
by xn, yn, zn and xn+1 respectively. In view of this, the estimate

(2.21) �xn+1 − α� < β�xn − α� < R,

where β = h3(||x0 − α||) ∈ [0, 1), eventually proves that xn+1 ∈ B(α, R) and
limn→∞ xn = α.

Further, we claim that the solution ‘α’ is unique in the domain Ω2 = Ω ∩
∩B(α,R∗), as defined in (C5). For this, consider u ∈ Ω2 such that F (u) = 0.

Then, by (C1) and (C5), and for M =
∫ 1

0
F �(α− τ(u− α))dτ, we get

�F �(α)−1(M − F �(α))� ≤
1∫

0

v0(τ�u− α�)dτ ≤

≤
1∫

0

v0(τR
∗)dτ < 1.

This proves the existence of M−1, and ultimately u = α is obtained as,

0 = F (u)− F (α) = M(u− α). �

Special case: To extend the above analysis, and further, for the purpose of
numerical testing, we study a particular case by considering the fourth order
iteration, developed in [8], at the second step of technique (1.2) as

ψ(xn, yn) = yn − (
2[yn, xn;F ]−1 − F �(xn)

−1
)
F (yn).

For the existence of the iterate zn for n = 0, it is required to establish that
the operator [y0, x0;F ]−1 exists. In this regard, using (2.1), (2.3), (2.5), and
(C3), we have

�F �(α)−1([y0, x0;F ]− F �(α))� ≤ w0(�y0 − α�, �x0 − α�) ≤
≤ w0(h1(�x0 − α�)�x0 − α�, �x0 − α�) <
< w0(h1(R)R,R) < 1,(2.22)



Convergence analysis 117

which implies that [y0, x0;F ]−1 exists, and

(2.23) �[y0, x0;F ]−1F �(α)� ≤ 1

1− w0(�y0 − α�, �x0 − α�) .

Further, we need to establish the definition of function h2 : Q0 × Q0 → Q
which should satisfy the inequality (2.14), where Q0 and Q are defined already.
Using the equations (2.10) and (2.23) along with the conditions (C1) and (C3),
we obtain

�z0 − α� = �ψ(x0, y0)− α� =

= �y0 − α− (
2[y0, x0;F ]−1 − F �(x0)

−1
)
F (y0)� ≤

≤ [
1 + �[y0, x0;F ]−1F �(α)��F �(α)−1(2F �(x0)− [y0, x0;F ])�×
× �F �(x0)

−1F �(α)��F �(α)−1[y0, α;F ]�] �y0 − α� ≤

≤
[
1 +

(1 + 2v0(�x0 − α�) + w0(�y0 − α�, �x0 − α�))w2(�y0 − α�)
(1− w0(�y0 − α�, �x0 − α�))(1− v0(�x0 − α�))

]
×

× �y0 − α� ≤

≤ h2(�x0 − α�, �y0 − α�)�x0 − α� < �x0 − α� < R,
(2.24)

where,

h2(t, s) =

[
1 +

(1 + 2v0(t) + w0(s, t))w2(s)

(1− w0(s, t))(1− v0(t))

]
h1(t).

Remark 2.1. To claim the eighth order of convergence for the technique (1.2),
instead of using Taylor series expansions, the term computational order of
convergence (COC) [6] is defined as

COC = ln

∥∥∥∥
xr+2 − α

xr+1 − α

∥∥∥∥
/
ln

∥∥∥∥
xr+1 − α

xr − α

∥∥∥∥ , for each r = 0, 1, 2, . . . .

Notice that, to compute COC, the knowledge of exact solution (α) is re-
quired, but that may not always be known explicitly. In that case, the conver-
gence order can be determined using the approximated computational order of
convergence (ACOC) [6] as defined below,

ACOC = ln

∥∥∥∥
xr+2 − xr+1

xr+1 − xr

∥∥∥∥
/
ln

∥∥∥∥
xr+1 − xr

xr − xr−1

∥∥∥∥ , for each r = 1, 2, . . . .

Apparently, no calculation of derivative is involved to determine the order
of convergence of an iterative technique, either by using COC, or ACOC.
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Remark 2.2. To demonstrate the numerical testing in the next section, we
shall use the approximation:

[y, x;F ] =
1

2
(F �(x) + F �(y)), or [y, x;F ] =

1∫

0

F �(x+ θ(y − x))dθ.

3. Numerical results

In coherence with the theoretical deductions, we provide here the parame-
ters and the estimated radius of convergence, as defined in Section 2, for each
of the following numerical examples.

Example 3.1. Initially, we take a look at the example given in the introduction
section. Note that α = 1/π is zero of this function. In this particular problem,
we can choose

v0(t) = v(t) = Lt, w0(s, t) = w(s, t) =
L

2
(s+ t),

w1(r, s, t) = w0(r, t) + w0(s, t), and w2(t) = 2,

provided L = 2
2π+1 [80 + 16π + (11 + 12 log 2)π2].

Then, we obtain the estimates as

R1 = 7.565×10−3, R2 = 2.807×10−3, R3 = 2.428×10−3, andR = 2.428×10−3.

Example 3.2. Consider the domain Rm, for any integer m ≥ 2, equipped with
the max-norm �x� = max1≤i≤m |xi| for each x = (x1, . . . , xm)T ∈ Rm. The

corresponding matrix norm is given by �A� = max1≤i≤m

∑j=m
j=1 |aij | for any

A = (aij)1≤i,j≤m ∈ L(Rm). Now consider the following two-point boundary
value problem defined on the closed interval [0, 1] as,

u�� + u2 = 0,(3.1)

u(0) = u(1) = 0.

To transform the Eq. (3.1) into a finite dimensional problem, the following
divided difference approximations are used:

u��
i ≈ ui+1 − 2ui + ui−1

h2
, for each i = 1, 2, . . . , k − 1,

where ui = u(xi), xi = 0+ih, and h = 1/k. Note that the boundary conditions
are considered as u0 = uk = 0. Therefore, Eq. (3.1) is transformed into the
system of nonlinear equations, F : Rk−1 → Rk−1, which is given by

ui+1 − 2ui + h2u2
i + ui−1 = 0, i = 1, 2, . . . , k − 1.
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The Fréchet derivative at any point u = (u1, . . . , uk−1)
T is given by

F �(u) =

⎡
⎢⎢⎢⎢⎢⎣

2h2u1 − 2 1 0 · · · 0
1 2h2u2 − 2 1 · · · 0
0 1 2h2u3 − 2 · · · 0
...

...
...

...
...

0 0 0 · · · 2h2uk−1 − 2

⎤
⎥⎥⎥⎥⎥⎦
.

Taking k = 11 in particular, the above system reduces to 10 nonlinear equations
for which the solution is given as, α = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0)T . Consequently,
we can obtain that

�F �(α)−1(F �(u)− F �(v))� ≤ 30

121
�u− v�,

for any u, v in the given region.

So, we can choose

v0(t) = v(t) =
30

121
t, w0(s, t) = w(s, t) =

15

121
(s+ t),

w1(r, s, t) = w0(r, t) + w0(s, t), and w2(t) = 2,

and consequently, we obtain

R1 = 2.6889, R2 = 0.9975, R3 = 0.8630, and R = 0.8630.

Example 3.3. Consider the Hammerstein equation:

(3.2) x(s) =

1�

0

G(s, t)

�
x(t)3/2 +

x(t)2

2

�
dt,

where

G(s, t) =

�
(1− s)t, t ≤ s

s(1− t), s ≤ t,

is the Green’s function, defined as a kernel of (3.2), in the domain [0, 1]× [0, 1].
In particular, we observe that

������

1�

0

G(s, t)dt

������
≤ 1

8
.

Clearly, α(s) = 0 is the solution of (3.2). By defining F : D ⊆ C[0, 1] →
→ C[0, 1], where D = B(0, 1), as

F (x)(s) = x(s)−
1�

0

G(s, t)

�
x(t)3/2 +

x(t)2

2

�
dt,
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we simply have

F �(x)y(s) = y(s)−
1∫

0

G(s, t)

(
3

2
x(t)1/2 + x(t)

)
y(t)dt.

But with F �(α(s)) = I, we get in turn that

�F �(α)−1(F �(x)− F �(y))� ≤ 1

8

(
3

2
�x− y�1/2 + �x− y�

)
,

therefore we can choose

v0(t) = v(t) =
1

8

(
3

2
t1/2 + t

)
,

w0(s, t) = w(s, t) =
1

16

(
3

2
t1/2 +

3

2
s1/2 + s+ t

)
,

w1(r, s, t) = w0(r, t) + w0(s, t), and w2(t) = 2.

Finally, we obtain

R1 = 2.6303, R2 = 0.6027, R3 = 0.4797, and R = 0.4797.

4. Conclusions

An optimal eighth order iterative technique is comprehensively analyzed
to establish its local convergence in Banach spaces. Contrary to the usual
approach using Taylor series expansions, to study the convergence analysis,
we developed here the generalized results using the assumptions only on first
order derivatives or divided differences. Effectively, the applicability of given
technique is extended to a wider section of the problems. Further, estima-
tion of the bounds on convergence radius, both theoretically and numerically,
satisfactorily favor our analysis.
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