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Abstract. In this article we state two conjectures, which enable us to give
a satisfying answer to the question posed by the authors of article [4] con-
cerning the expected number of curve orders for a given prime during the
application of the elliptic curve primality proving method. The presented
train of thoughts isolate the problematic aspects of this subject, and reveal
the areas which require further development.

1. Introduction

We proceed with our investigation concerning the expected number of curve
orders for a given prime during the application of the Atkin–Morain primality
test, see articles [15, 16]. First, we briefly recall the key aspects of the topic.

Definition 1. We call a negative integer D as a negative fundamental dis-
criminant if either D ≡ 1 (mod 4), and D is square-free; or D = 4k, where
k ≡ 2, 3 (mod 4), and k is square-free.

Key words and phrases: Elliptic curve primality proving, negative fundamental discriminant,
elliptic curve order, Legendre symbol, smooth number, class number, square-free number,
random walk, quadratic (non-)residue, Siegel–Walfisz theorem, number of (distinct) prime
factors, Abel’s identity.
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During the computation of the curve orders for the possible prime n, one
processes those negative fundamental discriminants D ≥ −d(n), which satisfy
the requirements

(D|n) = 1,(1.1)

∀ p ∈ P, p|D, (n|p) = 1,(1.2)

and P (D) ≤ d(n)c, for some c ∈ (0, 1). Here P (x) denotes the largest prime
factor of an integer x, with the convention that P (1) = 1; and d(n) is a poly-
logarithmic function, so d(n) ∈ o(nε) for every ε > 0.

Now we present some notations to ease the discussion. Denote the negative
fundamental discriminants, which fall into a certain interval as

Δy
x := {z ∈ Z : x ≤ |z| ≤ y, and z is a negative fundamental discriminant}

where x, and y are positive real numbers; furthermore introduce the sets, which
contain the numbers satisfy requirement (1.1), and requirement (1.2) as

Φx := {z ∈ Z : (z|x) = 1, and ∀p ∈ P, p|z, (x|p) = 1}

where x is an integer. We will say that an integer is well-structured if it can be
found in Φx.

During the computation of the curve orders for a given negative fundamental
discriminant D, the probability of success can be taken as 1/h(D), where h(D)
is the class number of D. Based on this, the expected number of curve orders
can be approximated with the following sum.

∑

D∈Δ
d(n)
3 ∩Φn

P (D)≤d(n)c

1

h(D)
(1.3)

We can take into consideration the fact that one must obtain the modular
square-root of every negative fundamental discriminant D during the compu-
tations. As one builds the modular square-root of a discriminant D from the
modular square-roots of its prime factors, the probability of success depends
on the number of distinct prime factors of D. With every prime factor, our
chances are doubled. So we can also approximate (supposedly better) the ex-
pected number of curve orders with the following sum.

∑

D∈Δ
d(n)
3 ∩Φn

P (D)≤d(n)c

2ω(|D|)

h(D)
(1.4)
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Here ω(x) denotes the number of distinct prime factors of a natural number
x, with the convention that ω(1) = 0. Concerning how well this second sum
approximates the expected number of curve orders, see the experimental results
in [10]. We are going to give lower-, and upper bounds for these two sums.

2. Class numbers

The precision of our results will depend on the applied approximation for the
class numbers, so we present a way to introduce the uncertainties as tuneable
components into the results. The most basic lower-, and upper bound for the
class number h(D) can be expressed as

|D|1/2−ε � h(D) � |D|1/2+ε

for ε > 0, see Siegel [18]. (Taking f, g ∈ R → R, by f(x) � g(x) we mean that
there exists a positive constant c, and a real constant x0, such that for every
real x > x0, we have |f(x)| ≤ cg(x).) Better, but still unconditional bounds
can be given as √|D|

ln |D| � h(D) �
√
|D| ln |D|

see section 22.4 in [9], furthermore [16], and [3]. Using the Riemann hypothesis,
one can squeeze out

√|D|
ln ln |D| � h(D) �

√
|D| ln ln |D|

see [12], and [3]. (For a more exhaustive historical recollection, see chapter 22
of [5], especially the concluding remarks.) Thus for some monotone increasing
λ1, λ2 : N → R+, we have

√|D|
λ1(|D|) � h(D) �

√
|D|λ2(|D|)(2.1)

where the left (respectively right) hand bound holds for every negative funda-
mental discriminant D ≤ Dλ1 (respectively D ≤ Dλ2), with Dλ1 , Dλ2 ≤ −3
being fixed. The hidden constants are positive, and absolute; we are going to
denote them as cλ1

and cλ2
.

3. Well structured discriminants

The way in which we are going to handle sum (1.3) requires a good lower-,
and upper bound for the number of smooth, well structured negative funda-
mental discriminants. More precisely, we need good bounds for the number
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of d(n)c-smooth elements in Δ
d(n)
3 ∩ Φn, where c ∈ (0, 1). The upper bound

is trivially in O(d(n)), which will suffice for our needs. As for a useful lower
bound, our scarce knowledge about the number of quadratic residues in short
intervals hinders us in finding one. Nevertheless, we are going to present a
conjectured lower bound, and the accompanying train of thoughts also. As a
hint, we would want the lower bound to be in Ω(d(n)), but it turns out that
this might cannot be achieved.

Based on the structure of the negative fundamental discriminants, see def-
inition 1, we have

|Δd(n)
3 | ∈ Θ(Q(d(n)))

where Q(x) is the number of square-free integers in [1, x]. It is known that
Q(x) ∈ Θ(x), see for example theorem 2.2 in section 2.1 of [13], so we can
conclude that the count of negative fundamental discriminants doesn’t hinder
us in reaching the sought bound, so we have to turn to the smoothness, and
to the count of well structured integers. Proposition 1 from [17] suggests that
by taking a big enough n, we could still have our lower bound for arbitrary
c ∈ (0, 1) if we have enough well structured discriminants. We are going to
construct a portion of these integers depending on the residue of n modulo 4.

� When n ≡ 1 (mod 4), then take those primes p, for which p ≡ 1 (4), and
(n|p) = 1 both hold. Construct numbers of the form −4k ≥ −d(n) from
these primes, where k is square-free.

� When n ≡ 3 (mod 4), then take those primes p, for which p ≡ 3 (4), and
(n|p) = 1 both hold. Construct numbers of the form −k ≥ −d(n) from
these primes, where k is square-free with odd number of prime factors.

By construction, these numbers will be negative fundamental discriminants,
see again definition 1. Indeed, in the first case, when the numbers are of the
form −4k, we have −k = −p1 . . . pm ≡ −1 (mod 4); and in the second case,
when they are of the form −k, we have −k = −p1 . . . pm ≡ −3m ≡ −3 (mod 4)
because m is odd.

These numbers will satisfy requirement (1.2) in both cases, again by con-
struction, so we just have to show that all of them satisfy requirement (1.1)
too. In the first case we have

(−4k

n

)
=

(−1

n

)(
4

n

)(
p1
n

)
. . .

(
pm
n

)

where (−1|n) = 1, (4|n) = 1, so by using the law of quadratic reciprocity, we
get

(−1)
p1−1

2
n−1
2

(
n

p1

)
. . . (−1)

pm−1
2

n−1
2

(
n

pm

)
= 1
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because of the properties of pi. In the second case we have

(−k

n

)
=

(−1

n

)(
p1
n

)
. . .

(
pm
n

)

where (−1|n) = −1, so by using the law of quadratic reciprocity again, we get
that this is (−1)m+1, which is 1, because m is odd.

From these we can deduce that what we essentially have to know, is the
count of those primes p ≤ d(n), which residue is either 1, or 3 modulo 4; and
which satisfy (n|p) = 1. Formally, this is

∑
p≤d(n)

p≡q(4)

(n|p)=1

1 =
1

2

∑
p≤d(n)

p≡q(4)

(
1 +

(
n

p

))
=

π(d(n); 4, q)

2
+

1

2

∑
p≤d(n)

p≡q(4)

(
n

p

)

where π(x; 4, q) is the count of primes p ≤ x, which are congruent to q modulo
4, with q being either 1, or 3; and the sum on the right hand side is equal to

±1

2

∑
p≤d(n)

p≡q(4)

(
p

n

)

based on the residue of p, and n modulo 4. The problem here is that for
slowly growing d, the behaviour of this sum is not fully understood, so we
cannot guarantee that it won’t change the order of the term π(d(n); 4, q)/2 too
much. Treating the Legendre symbol with fixed modulus as a variable with
Rademacher distribution, the sum becomes a one-dimensional random walk,
so for faster growing d(n) we expect that its value will be in O(

√
d(n)), see

article [16]. As the Legendre symbol is not purely a variable with the mentioned
distribution, this is only an approximation. However, based on the properties
of the least quadratic non-residues, see article [11], it is probable that the sum
starts to behave as a one-dimensional random walk when d(n) ∈ Ω(lnδ n) for
δ > 1. So using the Siegel–Walfisz theorem, see for example corollary 5.29 in
section 5.9 of [9], we expect that the number of appropriate primes will be in
Ω(π(d(n))).

Now we construct square-free numbers from these prime numbers. Taking
only small primes, we can select even all of them to form square-free numbers,
which aren’t greater than d(n). Then by the binomial theorem we have that the
number of these products grow exponentially as the number of primes grow. So
we expect that a logarithmic number of small primes should suffice to construct
enough square-free numbers. As there are infinitely many primes n, which
primes’ least quadratic non-residue is in Ω(lnn), see article [11], it seems that
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the count of our square-free numbers could reach the order of d(n). However,
as we cannot guarantee that there are enough primes, which are quadratic
residues to n, it can happen that the number of our square-free numbers stay
in Ω(π(d(n))).

So at the end of the day, we expect that the number of well structured
discriminants will fall in Ω(π(d(n))), and also in O(d(n)). Take note that with
this lower bound we cannot satisfy the requirements of the proposition from
[17], so improvements would be required in the handling of the smoothness too.

Based on all of this, now we state our first conjecture.

Conjecture 1. Let d(n) ∈ Ω(lnδ n), where δ > 1; D0 ≥ 3 be an integer; and
c ∈ (0, 1). Then we have

d(n)

ln d(n)
�

∑

D∈Δ
d(n)
D0

∩Φn

P (D)≤d(n)c

1 � d(n)

for every prime n ≥ n0, with n0 depending on δ, D0, and c.

To handle sum (1.4) we state a similar, but stronger conjecture, in which
we incorporate the number of distinct prime factors of the examined negative
fundamental discriminants. The distribution of natural numbers below x with
k > 0 (distinct) prime factors can be approximated using the Poisson law with
parameter ln lnx, see section 6.1 in part 2 of [19], furthermore [14], and [8]. So
using the function

fk(x) :=
1

lnx

(ln lnx)k−1

(k − 1)!
(3.1)

the number of positive integers below x having k > 0 (distinct) prime factors
can be approximated as xfk(x). We expect that the distribution of well struc-
tured negative fundamental discriminants below d(n) with k > 0 distinct prime
factors follows this trend.

Conjecture 2. Let d(n) ∈ Ω(lnδ n), where δ > 1; D0 ≥ 3 be an integer;
c ∈ (0, 1); and k > 0. Then we have

d(n)fk(d(n))

ln d(n)
�

∑

D∈Δ
d(n)
D0

∩Φn

P (D)≤d(n)c

ω(|D|)=k

1 � d(n)fk(d(n))

for every prime n ≥ n0, with n0 depending on δ, D0, c, and k.
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Take note that conjecture 1 follows from conjecture 2, as the integers in

Δ
d(n)
D0

have at most a finite m number of distinct prime factors, one just has
to accumulate the values of the sum in conjuncture 2 for 1 ≤ k ≤ m, see the
proof of proposition 2, and the proof of lemma 2.

4. Results

Using conjecture 1, first we present our bounds for the sum (1.3). Concern-
ing the functions λ1, and λ2, see expression (2.1).

Proposition 1. Let d(n) ∈ Ω(lnδ n), where δ > 1; and c ∈ (0, 1). Then based
on conjecture 1, we have√

d(n)

λ2(d(n)) ln d(n)
�

∑

D∈Δ
d(n)
3 ∩Φn

P (D)≤d(n)c

1

h(D)
�

√
d(n)λ1(d(n))(4.1)

for every prime n ≥ n0, with n0 depending on δ, and c.

Take note that the right hand side bound is unconditional, so it doesn’t
actually depend on our conjecture. Now using conjecture 2, the bounds for the
sum (1.4) can be given as follows.

Proposition 2. Let d(n) ∈ Ω(lnδ n), where δ > 1; and c ∈ (0, 1). Then based
on conjecture 2, we have√

d(n)

λ2(d(n))
�

∑

D∈Δ
d(n)
3 ∩Φn

P (D)≤d(n)c

2ω(|D|)

h(D)
�

√
d(n)λ1(d(n)) ln d(n)(4.2)

for every prime n ≥ n0, with n0 depending on δ, and c.

5. Remarks

The following probabilistic viewpoint for the expected number of curve or-
ders is based on the observations in article [4]. The probability that requirement
(1.1), and requirement (1.2) are both satisfied for a discriminant D can be ap-
proximated with 2−ω(|D|), as we have a 50% chance to successfully compute a
modular square root. Based on the theorem from Erdős and Kac, see article [7],
we have

lim
x→∞

1

x

∣∣∣∣
{
n ≤ x : a ≤ ω(n)− ln lnn√

ln lnn
≤ b

}∣∣∣∣ =
1√
2π

b∫

a

e−t2/2 dt



64 G. Román

so we can expect the above probability to be around ln− ln 2 d(n). From this, we
can argue that the expected number of well-structured discriminants should be
around d(n) ln− ln 2 d(n). Thus it seems possible that we can state the analog
of proposition 1 as

√
d(n)

λ2(d(n)) ln
ln 2 d(n)

�
∑

D∈Δ
d(n)
3 ∩Φn

P (D)≤d(n)c

1

h(D)
�

√
d(n)

lnln 2 d(n)
λ1(d(n))

and the analog of proposition 2 as

√
d(n)

λ2(d(n))

(
ln lnn

ln d(n)

)ln 2

�
∑

D∈Δ
d(n)
3 ∩Φn

P (D)≤d(n)c

2ω(|D|)

h(D)
�

√
d(n)λ1(d(n))

(
ln lnn

ln d(n)

)ln 2

respectively for every big enough prime n. As we choose d(n) to be logarithmic
in n, the latter bounds suggest that the expected number of curve orders will be
around

√
d(n) as desired, disturbed only by λ1(d(n)), and λ2(d(n)). So it seems

beneficial to include among the requirements that the selected discriminants
must have at least around ln lnn number of prime factors. (Another huge
motivation would be that the running time of the proof construction during
the test can be made faster by selecting discriminants with high prime factor
count. For more details, see the Weber polynomials in section 7.3 of article
[2].) Additional investigation is needed in the direction of this refinement.

6. Proofs

Our proof of proposition 1 is the following.

Proof.

� First we look at the lower bound in expression (4.1). As d(n) is strictly
monotone increasing, d(n) > |Dλ2 | will hold for larger n, so for these n
we can split our sum in expression (4.1) as

∑

D∈Δ
d(n)
3 ∩Φn

P (D)≤d(n)c

1

h(D)
=

∑

D∈Δ
d(n)
Dλ2

∩Φn

P (D)≤d(n)c

1

h(D)
+

∑

D∈Δ
Dλ2
3 ∩Φn

P (D)≤d(n)c

1

h(D)

where the second sum is smaller than a positive constant. Using the
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upper bound from expression (2.1), the first sum is greater than

cλ2

∑

D∈Δ
d(n)
Dλ2

∩Φn

P (D)≤d(n)c

1√|D|λ2(|D|) � 1

λ2(d(n))

∑

D∈Δ
d(n)
Dλ2

∩Φn

P (D)≤d(n)c

1√|D|(6.1)

because d(n), and λ2(d(n)) are monotone increasing. Let

A(x) :=
∑
m≤x

a(m)

where define a(m) as 1 if −m ∈ Δ
d(n)
Dλ2

∩Φn, and P (m) ≤ d(n)c; otherwise

define a(m) as 0. Using Abel’s identity, see theorem 4.2 in section 4.3
of [1], we have that the sum on the right hand side of expression (6.1) is
equal to

∑
|Dλ2

|−1<m≤d(n)

a(m)√
m

=
A(d(n))√

d(n)
+

1

2

d(n)∫

|Dλ2
|−1

A(t)

t3/2
dt+O(1) �

√
d(n)

ln d(n)

because of the bound for A(d(n)), see conjecture 1; and because the
integral is positive.

� Now we look at the upper bound in expression (4.1). Similarly as in the
previous case, d(n) > |Dλ1 | will hold for larger n, so for these n we can
split our sum in expression (4.1) as

∑

D∈Δ
d(n)
3 ∩Φn

P (D)≤d(n)c

1

h(D)
=

∑

D∈Δ
d(n)
Dλ1

∩Φn

P (D)≤d(n)c

1

h(D)
+

∑

D∈Δ
Dλ1
3 ∩Φn

P (D)≤d(n)c

1

h(D)

where the second sum is smaller than a positive constant. Using the lower
bound from expression (2.1), the first sum is less than

cλ1

∑

D∈Δ
d(n)
Dλ1

∩Φn

P (D)≤d(n)c

λ1(|D|)√|D| � λ1(d(n))

d(n)∫

|Dλ1
|

1√
t
dt �

√
d(n)λ1(d(n))

because d(n), and λ1(d(n)) are monotone increasing. �

Before we present our proof for proposition 2, we prove two lemmas. Con-
cerning the functions fk, see definition (3.1).
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Lemma 1. Let d(n) ∈ Ω(lnδ n), where δ > 1; c ∈ (0, 1); and k > 0. Then
based on Conjecture 2, we have

√
d(n)fk(d(n))

λ2(d(n)) ln d(n)
�

∑

D∈Δ
d(n)
3 ∩Φn

P (D)≤d(n)c

ω(|D|)=k

1

h(D)
�

√
d(n)λ1(d(n))fk(d(n))(6.2)

for every prime n ≥ n0, with n0 depending on δ, c, and k.

Proof. The proof will be very similar to the proof of proposition 1.

� First we look at the lower bound in expression (6.2). For those n, for
which d(n) > |Dλ2

|, we can split the sum in expression (6.2) as

∑

D∈Δ
d(n)
3 ∩Φn

P (D)≤d(n)c

ω(|D|)=k

1

h(D)
=

∑

D∈Δ
d(n)
Dλ2

∩Φn

P (D)≤d(n)c

ω(|D|)=k

1

h(D)
+

∑

D∈Δ
Dλ2
3 ∩Φn

P (D)≤d(n)c

ω(|D|)=k

1

h(D)

where the second sum is a positive constant. Using the upper bound from
expression (2.1), we get that the first sum is greater than

cλ2

∑

D∈Δ
d(n)
Dλ2

∩Φn

P (D)≤d(n)c

ω(|D|)=k

1√|D|λ2(|D|) � 1

λ2(d(n))

∑

D∈Δ
d(n)
Dλ2

∩Φn

P (D)≤d(n)c

ω(|D|)=k

1√|D|(6.3)

because d(n), and λ2(d(n)) are monotone increasing. Let

BD(x) :=
∑

D≤m≤x

bD(m)

where define bD(m) as 1 if −m ∈ Δ
d(n)
D ∩Φn, P (m) ≤ d(n)c, furthermore

ω(m) = k; otherwise define bD(m) as 0. Using Abel’s identity, we get
that the sum on the right hand side of expression (6.3) is equal to

∑
|Dλ2

|−1<m≤d(n)

bDλ2
(m)√
m

=
BDλ2

(d(n))√
d(n)

+
1

2

d(n)∫

|Dλ2
|−1

BDλ2
(t)

t3/2
dt+O(1)

from where we get our lower bound by using conjecture 2, and the fact
that the integral is positive.
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� Finally, we look at the upper bound in expression (6.2). For those n, for
which d(n) > |Dλ1

|, we can split the sum in expression (6.2) as

∑

D∈Δ
d(n)
3 ∩Φn

P (D)≤d(n)c

ω(|D|)=k

1

h(D)
=

∑

D∈Δ
d(n)
Dλ1

∩Φn

P (D)≤d(n)c

ω(|D|)=k

1

h(D)
+

∑

D∈Δ
Dλ1
3 ∩Φn

P (D)≤d(n)c

ω(|D|)=k

1

h(D)

where the second sum is a positive constant again. Using the lower bound
from expression (2.1), the first sum is less than

cλ1

∑

D∈Δ
d(n)
Dλ1

∩Φn

P (D)≤d(n)c

ω(|D|)=k

λ1(|D|)√|D| � λ1(d(n))
∑

D∈Δ
d(n)
Dλ1

∩Φn

P (D)≤d(n)c

ω(|D|)=k

1√|D|

because d(n), and λ1(d(n)) are monotone increasing. Applying Abel’s
identity again, we get that the sum on the right hand side is equal to

∑
|Dλ1

|−1<m≤d(n)

bDλ1
(m)√
m

=
BDλ1

(d(n))√
d(n)

+
1

2

d(n)∫

|Dλ1
|−1

BDλ1
(t)

t3/2
dt+O(1)

from where we get our upper bound as in the previous case. �

Lemma 2. Take a function m ∈ R → R+, for which

lim
x→+∞

m(x)

ln lnx
= ∞

holds. Then we have
�m(x)�∑
k=1

2kfk(x) ∈ Θ(lnx).

Proof. Substitute fk into the sum to get

1

lnx

�m(x)�∑
k=1

2k
(ln lnx)k−1

(k − 1)!
=

2

lnx

�m(x)�−1∑
k=0

(2 ln lnx)k

k!

where we can use the results for the truncated exponential series, see section
9.2.1 of [6], to get

2
Γ(�m(x)�, 2 ln lnx)

Γ(�m(x)�) lnx ∈ Θ(lnx)

based on the required property of m. �
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Our proof for proposition 2 is the following.

Proof. The integers in Δ
d(n)
3 can only have at most finite m(d(n)) number of

distinct prime factors, where m ∈ R → R+ is a function, which can be defined
for example as

m(x) := 2
lnx

ln lnx

see section 5.3 in part 1 of [19]. Using this function, we can can write the sum
in expression (4.2) as

∑

D∈Δ
d(n)
3 ∩Φn

P (D)≤d(n)c

2ω(|D|)

h(D)
=

�m(d(n))�∑
k=1

2k
∑

D∈Δ
d(n)
3 ∩Φn

P (D)≤d(n)c

ω(|D|)=k

1

h(D)

Now we can use lemma 1 to bound the value of the inner sum.

� Using the lower bound from lemma 1, we get that the inner sum is
bounded from below by

√
d(n)

λ2(d(n)) ln d(n)

�m(d(n))�∑
k=1

2kfk(d(n))

where the value of the sum cancels out the logarithmic part of the de-
nominator, see lemma 2.

� Using the upper bound from lemma 1, we get that the inner sum is
bounded from above by

√
d(n)λ1(d(n))

�m(d(n))�∑
k=1

2kfk(d(n))

from where we get our result by using lemma 2 again. �
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