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Abstract. The problem of image retrieval from a large image dataset has
been having many challenges. Therefore, indexing and searching images
on a data structure are important requirements to improve retrieval effec-
tiveness. In this paper, an improved structure based on R-Tree, named
RS-Tree (Region Sphere Tree), is proposed to enhance the accuracy of the
content-based image retrieval on different image sets. The improvements
on RS-Tree include: (1) representing image feature vectors in the form
of spheres to optimize storage space; (2) improving operations on RS-Tree
such as adding, deleting, and splitting nodes to enhance retrieval efficiency.
The result of this processes creates the balanced clustering tree. Since
then, content-based image retrieval model is built rely on RS-Tree. On the
base of proposed theory, the experiment is performed on data-sets includ-
ing COREL, Wang, Oxford Flowers-17 with precision values of 76.29%,
73.16%, and 78.69%, respectively. The experimental results are compared
to related works on the same dataset to demonstrate the effectiveness of
the image retrieval model based on RS-Tree.

1. Introduction

The problem of the retrieving relevant images from a large image dataset is
a challenging research problem. Many models of content-based image retrieval
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(CBIR) is applied in the image retrieval systems [1, 2, 3]. Many different meth-
ods have been proposed to enhance retrieval effectiveness. There are two main
aspects to perform image retrieval included (1) extracting the visual content
of the image; (2) describing the visual content in the form of indexes [4, 5,
6]. Currently, there are many the indexing methods for multidimensional data
such as KD-Tree, Quad-Tree, M-Tree, R-Tree, etc. [6, 7, 8]; with R-Tree is the
popular structure for storing indexes based on data partition [10]. R-Tree is a
balanced multi-branched tree and the data elements is stored in the leaves of
the tree. The data is partitioned into blocks that can be nested or overlapped
(introduced by Guttman in 1984) [9]. Different variants of R-Tree include: R*-
Tree, SS-Tree, SR-Tree, X-Tree, M-Tree, etc. are effectively applied in image
retrieval systems [10, 11, 12].

The RS-Tree is an improved structure based on R-Tree to enhance image
retrieval performance. In RS-Tree, the feature vector of image is represented in
the form of spheres and stored in the leaves of tree. To enhance the effectiveness
of storage and retrieval on the RS-Tree, a threshold θ (0 < θ < 1) is proposed.
In addition, the splitting algorithm based on a measure is proposed to improve
retrieval efficiency. The result of this process is the creation of a balanced
clustering tree and clustering the data elements in the leaves to enhance the
accuracy of the retrieval system.

The main contributions of the paper included (1) improving the principle
of the building RS-Tree based on the threshold θ to cluster similar data; (2)
improving the algorithm of node splitting based on the different measures of
elements to enhance the accuracy of the retrieval system; (3) building a cluster-
ing model named RS-Tree rely on R-Tree to store similar images; (4) proposing
the content-based image retrieval model based on RS-Tree; (5) building the ex-
periment and evaluating the results of the proposed method using three image
sets including COREL, Wang, Oxford Flowers-17.

The rest of this paper is organized as follows. In section 2, we survey and
analyze related works. In section 3, we propose the clustering structure based
on R-Tree, named RS-Tree. In section 4, we present the image retrieval model
based on the RS-Tree. In section 5, we build experimental applications and
evaluates the results based on the proposed theory. Conclusion and future
works are presents in section 6.

2. Related works

In recent years, many researchers have proposed different methods to en-
hance efficiency for the image retrieval systems with specific as follows:

Milind V. Lande et al. (2014) proposed the method of extracting color,
texture, and shape features from an image dataset. Then, the authors combined
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these features to ensures higher retrieval efficiency. For extraction of color
features, images were divided into non-overlapping blocks, and the dominant
color of each block is determined using the k-means algorithm. To extract
texture features, the authors used a gray-level co-occurrence matrix (GLCM).
The work’s experiment was performed on the Wang dataset. The experimental
results show that the proposed method was effective. However, the results
also were experimented with Matlab. The authors have not proposed a data
structure to improve retrieval performance yet [13].

Haldurai et al. (2015) proposed the content-based image retrieval system
on R-Tree structure. This work used image features such as color and texture
for image retrieval. These features were extracted using fuzzy approaches and
stored in the R-Tree structure. An image retrieval process is performed on
the tree to enhance the retrieved performance. Experimental results on the
COREL image set show that the proposed method is effective [14]. Abd Aziz
et al. (2018) proposed the method to reduce the dimensionality of data by
using S-Map. The image retrieved process was performed based on R-Tree.
The experimental results on image and video datasets show that the proposed
method improves retrieval performance [15].

Vanitha et al. (2017) proposed an SR-Tree index structure to apply for
a content-based image retrieval system. In this study, features such as color,
spatiality were extracted and stored on SR-Tree. The experimental results on
the COREL image set show that SR-Tree works better than other indexing
structures [16]. However, in SR-Tree the inserting algorithm needs to update
both spheres and rectangles. Thus, creating and updating are complicated
and expensive costs. Besides, since the SR-Tree contains both spheres and
rectangles, its size is larger.

Shama, P. S. et al. (2015) proposed an image retrieval system on the
R*-Tree for plant images. The authors use the co-occurrence matrix method
and Gabor filtering to extract image features. The experiment was performed
on 300 vegetation images [17]. Alfarrarjeh et al. (2020) proposed an image
retrieval system with street image data [18]. The experimental results of these
works show that the image retrieval system based on the R*-Tree is effective.
However, in the R*-Tree, the re-insert algorithm when encountering an overflow
node, leads to reorganizing the tree, and increasing tree building costs. In
addition, the authors only performed on a small and specialized image dataset.

Payal Chhabra et al. (2020) presented a content-based image retrieval sys-
tem based on low-level features of the image. In this study, the authors used
the Oriented Fast and Rotated BRIEF (ORB) and the Scale-Invariant Feature
Transform (SIFT) method to extract image features, etc. The experimental re-
sults show that the proposed method is reliable [20]. However, the authors did
not suggest a data structure to store images to increase retrieval performance.
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Related works show that the method of image retrieval based on the in-
dexing structure is very effective. On the basis of inheriting and overcoming
limitations of related works, we propose the improved structure RS-Tree based
on R-Tree to be used for content-based image retrieval systems. The RS-Tree
is built based on partitional clustering and hierarchical clustering method, each
leaf stores similar data elements, thus improving image retrieval efficiency.
From then, the content-based image retrieval model was built based on the
RS-Tree. The experiment was performed experimented on image set Wang
(including 10,800 images, 80 classes), COREL (1000 images, 10 classes), and
Oxford Flower-17 (1360 images, 17 classes) to demonstrate the effectiveness of
the image retrieval based on the RS-Tree.

3. Cluster structure of spatial data RS-tree

3.1. R-Tree structure

In the original R-Tree structure [9], each internal node is of the form
〈MBR, p〉 that Minimum Bounding Rectangle(MBR) is the minimum rect-
angular spatial region contained sub-spatial regions inside and p is the link
point to child nodes. Each leaf is of the form 〈MBR, oid〉 that MBR the
minimum rectangular spatial regions contained the data objects and oid is the
object identifier. Each leaf in the tree which has a maximum number of el-
ements is M and a minimum number of elements is m. Each leaf is a data
cluster containing objects in multi-dimensional space.

Deleting an element from R-Tree can be rebuilt the tree. When a leaf has m
elements, removing an element from the leaf lead to the once is not existence;
therefore, the remaining elements must be redistributed on the tree. Besides,
when an element is added to R-Tree, the closest leaf is be selected by similarity
measure. In the worst case, the element is completely different from the other
elements in that leaf at the same time the number of elements in this leaf is
less than M , then the leaf is not split. Therefore, this leaf is not well-partition,
so the accuracy is reduced in searching problem.

The original R-Tree structure has two important drawbacks: (1) The ex-
ecution of a point location query in an R-tree may lead to the investigation
of several paths from the root to the leaf level. This characteristic may lead
to performance deterioration, specifically when the overlap of the MBRs is
significant; (2) A few large rectangles may increase the degree of overlap sig-
nificantly, leading to performance degradation during range query execution,
due to empty space [10].

One of the variants of R-Tree is used in the problem of image retrieval as
Similarity Search Tree (SS-Tree) structure [10]. SS-Tree is an index structure
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for multidimensional data, which is proposed by White and Jain [26]. Each
node on SS-Tree is represented in the form of a sphere including center and
radius. The center of the sphere is the centroid of the underlying point. In this
structure, the insert algorithm determines the most suitable subtree to accom-
modate the new entry by choosing a subtree whose centroid is the nearest to a
new entry. It is an improvement of the R*-Tree and enhances the performance
of nearest neighbor queries. However, the operation of re-inserting entries is
performed on SS-Tree unless reinsertion has been made at the same node or
leaf. This promotes the dynamic reorganization of the tree structure [27]. On
the other hand, SS-Tree is only performed by nearest neighbor queries, i.e. it
can not be performed the queries of spatial region. Therefore, in the paper, an
improved structure named RS-Tree is built to enhance retrieval precision by
combining nearest neighbor and spatial region queries.

3.2. RS-Tree structure

RS-Tree is built based on SS-Tree structure. The center vector of the sphere
of the leaf and node on RS-Tree is similar to SS-Tree. The improvements of
RS-Tree including (1) creating a sphere structure to store feature vector of
an image; (2) improving the node splitting process based on the difference
measure; (3) proposing a theta threshold to cluster similar data; (4) combining
nearest neighbor and spatial region queries.

RS-Tree is a balanced multi-branch tree used for similar image retrieval.
The process of data clustering is performed on each node of RS-Tree based
on the Euclidean distance and threshold θ. This process creates a balanced
multi-branch clustering tree to enhance the accuracy of the retrieval system
and reduce the retrieval time. RS-Tree is a data partition structure including
a root, a set of nodes, and a set of leaves.

The node denoted Snode is of the form �MBS, p�. Where MBS is a sphere
that has center denoted −→c node, and radius rnode, p is the link to the child
nodes. This sphere covers the spheres of nodes in each subbranch of the tree.
Each Snode has a minimum element of 2 and a maximum of N .

The leaf denoted Sleaf is of the form �MBS, element�. Where MBS is
a sphere that has center denoted −→c leaf and radius rleaf contains a set of
elements. Each element spED is of the form �MBS, oid�. Where MBS is a
sphere that has center denoted −→c sp, and radius rsp, contains the object space,

oid is identifier
−→
f = (v1, v2, ..., vd). Each leaf Sleaf has the maximum number

of elements M and the minimum m(1 < m < M/2).

An image I with feature vector
−→
fI = (vI1, vI2, ..., vId), each sphere MBS of

the element spED illustrated in Figure 1 is the sphere that contains identifier−→
fI with the center vector −→c sp and the radius rsp is described as follows:
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1) The sphere center of the element:
−→c sp = (cI1, cI2, ..., cId)

with:
cIj = Maxj=1..d{0, vIj − aIj}
aI1 = vI1

k , aI2 = vI2
k , ..., aId = vId

k , k is a parameter,k ≥ 2

2) The sphere radius of the element:

(3.1) rsp =

√√√√√
d∑

j=1

(cIj − vIj)
2

d

Figure 1. Description of the spherical structure of the data element

Figure 1a describes how to determine the center −→c sp = (c1, c2) and the
radius rsp of the feature vector f(a, b) in 2D space. Where, c1 = a − a

k ,

c2 = b − b
k and the radius rsp = dE(

−→c ,−→f ), with k ≥ 2. Figure 1b describes
the center −→c sp, the radius rsp of feature vector f .

A sphere MBS of the leaf Sleaf illustrated in Figure 2 is the minimal sphere
that covers all sphere elements included the center vector −→c leaf and the radius
rleaf described as follows:

1) The sphere center of the leaf Sleaf :

(3.2) −→c leaf =
1

k

k∑
i=1

spi.
−→c i

Where sp1, sp2, sp3, ..., spk are sphere elements inside the Sleaf and spi.
−→c is

the center vector of the sphere spi, with 1 < i < k.
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2) The sphere radius of the leaf Sleaf :

(3.3) rleaf = Maxi=1..d{dE(−→c leaf , spi.
−→ci ) + spi.ri},

Where dE(
−→c leaf , spi.

−→ci ) is the Euclidean distance from the center vector of
the leaf node Sleaf to the center vector of the ith sphere element and spi.ri is
the radius of the ith sphere element.

Figure 2. Description of the leaf on RS-Tree

A sphere MBS of the node Snode is illustrated in Figure 3 is the minimal
sphere that covers all spheres of the nodes in the subbranch of the tree included
a center vector −→c node = (c1, c2, ..., cd) and a radius rnode described as follows:

1) The center sphere of the internal node Snode:

(3.4) ci =

k∑
j=1

Sj .
−→c j .xi × Sj .w

k∑
j=1

Sj .w

, i = 1..d,

where S1, S2, ..., Sk are the children nodes of the node Snode; d is the dimen-
sionality of feature vectors; −→c j .xi is the ith feature of the center vector −→c j ;
Sj .w is the number of elements of the node Sj .

2) The radius sphere of the internal node Snode:

(3.5) rnode = Maxj=1..k{dE(−→c node, Sj .
−→cj ) + Sj .rj}.
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Figure 3. Description of the node on RS-Tree

Theorem 1. The sphere Sleaf is created from the center −→c leaf and the radius
rleaf is the smallest sphere containing the spheres of the current leaf.

Proof. i) This sphere containing the spheres of the current leaf. Since

rleaf = Maxi=1..d{dE(−→c leaf , spi.
−→ci ) + spi.ri},

infer
rleaf ≥ dE(

−→c leaf , spi.
−→ci ) + spi.ri, ∀ i = 1..d.

Therefore, this sphere contains all spheres of the current leaf.

ii) This sphere is the smallest sphere. Suppose exist a sphere S′
leaf has center

−→c leaf , and has a radius r′leaf < rleaf containing the spheres of the current leaf.

Since rleaf = Maxi=1..d{dE(−→c leaf , spi.
−→ci ) + spi.ri}, i.e.

∃spk ∈ Sleaf�dE(−→c leaf , spk.
−→c k) + spk.rk = rleaf ,

infer sphere S′
leaf can not contain the element spk. Therefore, the sphere Sleaf

which has center −→c leaf with radius rleaf is the smallest sphere. �

Theorem 2. Let
−→
fI = (vI1, ..., vId),

−→c
sp

= (cI1, ..., cId) be two vectors of the
data object and the center of the sphere in Rd space, respectively. Then

(i) Two vectors
−→
fI and −→c sp are parallel and have the same direction.

(ii) The terminal point of the vector −→c
sp

lies on the line pass through initial

point and the terminal point of the vector
−→
fI in the Rd space.

(iii) The terminal point of the vector
−→
fI lies on the circle with center

c
sp
(cI1, ..., cId) of radius rsp in Rd space.

Proof. (i) Since vector
−→
fI is normalized in [0, 1]. So, ∀vIi ∈ −→

fI , vIi ≥ 0,
i = 1..d; ∀cIi ∈ −→c

sp
, cIi = Maxi=1..d{0, vIi − aIi}; with aIi = vIi

k , k ≥ 2,
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then Max{0, vIi − aIi} = Max{0, vIi − vIi
k } = (vIi − vIi

k ). Therefore, ∀cIi ∈
∈ −→c

sp
, cIi = (vIi − vIi

k ) = (1 − 1
k )vIi. Let t = (1 − 1

k ), t > 0 and t < 1, infer
−→c

sp
= t(vI1, ..., vId) = t

−→
fI . Therefore, two vectors

−→
fI and −→c

sp
are parallel and

have the same direction.

(ii) In Rd space, the vector
−→
fI has a initial point of origin O and an terminal

point of fI(vI1, ..., vId). The vector −→c
sp

has the initial point of origin O and

the terminal point of cI(cI1, ..., vId). So two vectors
−→
fI ,

−→c
sp

have the same
initial point and the same direction, infer the terminal point of the vector −→c

sp

lies on the line pass through initial point and the terminal point of the vector−→
fI in the Rd space.

(iii) In Rd space, take the terminal point of the vector −→c
sp

as the center
of a circle with radius rsp. In which, rsp is the Euclidean distance between
cI(cI1, ..., vId) and fI(vI1, ..., vId). Therefore, the terminal point of the vector−→
fI lies on the circle with center cI(cI1, ..., vId) of radius rsp. �

The process of creating spheres for image feature vectors improve the re-
trieving precision because of two reasons as follows: (1) In the process of build-
ing RS-Tree, a data sphere is added to choose a leaf with the smallest extended
spatial region, so the leaf contains the most similar elements; (2) In the query
process, with an input data sphere, a leaf sphere with the largest intersec-
tion spatial region and closest center is found, thus finding the most similar
elements.

3.3. The principles of the operations on the tree

To ensure the storage of image data objects increasing from time to time,
and enhance the performance of image retrieval systems, the RS-Tree structure
must satisfy the following two requirements: (1) having the ability to grow with
the height of the tree; (2) having the ability to partition and cluster similar
data. Based on these needs, adding spED elements to the RS-Tree must be
done from the root node with the following principles:

Principle 1: If root = null

Making a root is rootLeaf , putting in the sphere spED at rootLeaf , up-
dating the center and radius of the sphere.

Principle 2: If root �= null and root is leaf

The Euclidean distance-based measuring:
dist = dE(spED.−→c sp,rootLeaf.

−→c leaf ) + spED.rsp

• If dist ≤ θ

+ If root.count < M :
Putting spED into rootLeaf , updating the center and radius of the sphere

rootLeaf .
+ If root.count = M , performing node splitting.
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• If dist > θ

Making a NewLeaf to store spED and a new root called rootIn linked
to rootLeaf and NewLeaf .

Principle 3: If root �= null and root is not leaf
Choosing the path from the current node to node that the nearest branch

based on similar measure to go until seeing the leaf denoted leafcrt.
Measuring dist = dE(spED.−→c sp, leafcrt.

−→c leaf ) + spED.rsp

• If dist ≤ θ

+ If leafcrt.count < M . Putting spED into the current leaf, update the
center, radius of the current leaf and then update back to the root.

+ If leafcrt.count = M . Choosing the sphere element with Euclidean
distance-based measure dist = Max{dE(spEDk.

−→c sp, leafcrt.
−→c leaf )+spEDk.r�

k = 1..leafcrt.count+1}. Then, choosing the neighbor node denoted SleafNN of
leafcrt to meet conditions: SleafNN .parent = leafcrt.parent, SleafNN .count <
< M and distmin(dE(SleafNN .−→c leaf , spEDk.

−→c sp) + spEDk.r) < θ. Adding
the element spED into SleafNN . If there is no neighbor node that satisfies
these conditions, split the node.

• If dist > θ

Making new leaf node denoted Newleaf store the element spED, up-
dating the center and radius of the sphere from the current leaf along to the
root node.

The process of adding the element spED into the tree illustrated in Figure 4.
The element spED follows the branch Snode with the smallest distance measure
dmin{dE(Snode.

−→c node, spED.−→c sp)}. When meeting the node near the leaf,
choosing the suitable leaf Sleaf based on the criteria for finding the optimal
spatial region is presented in Section 3.4.

Figure 4. The illustration on the process of adding an element to RS-Tree
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3.4. Improve the operations on RS-Tree structure

3.4.1. The operations of choosing the suitable leaf

To choose a suitable spatial region to add element spED into the leaf with
the following criteria satisfied:

Criteria 1. Choosing the leaf on the minimum extended spatial region.

When the element spED is added, supposedly two leaves Sleaf1, Sleaf2 are
illustrated in Figure 5a. Because the extended spatial region of the leaf Sleaf1

denoted IncreaseArea(Sleaf1, spED), is smaller than of the leaf Sleaf2 denoted
IncreaseArea(Sleaf2, spED). Therefore, Sleaf1 is selected.

Criteria 2. Choosing the leaf with smaller spatial region.

When the element spED is added, such as IncreaseArea(Sleaf1, spED) =
= IncreaseArea(Sleaf1, spED) illustrated in Figure 5b. At this time, the
spatial region of the leaf node Sleaf1, denoted Area(Sleaf1), is smaller than of
the leaf Sleaf2, denoted Area(Sleaf2). Therefore, spED is added into Sleaf1.

Criteria 3. Choosing the leaf with the shortest distance from the center
to the element added.

When the element spED is added, such as IncreaseArea(Sleaf1, spED) =
= IncreaseArea(Sleaf2, spED) ∧ Area(Sleaf1, spED) = Area(Sleaf2, spED)
illustrated in Figure 5c. At this time, we have dE(Sleaf1.

−→c l1, spED.−→c sp) <
< dE(Sleaf2.

−→c l2, spED.−→c sp). Therefore, Sleaf1 is selected.

Criteria 4. Choosing the leaf with the smaller number of elements.

When the element spED is added, such as IncreaseArea(Sleaf1, spED) =
= IncreaseArea(Sleaf2, spED)∧Area(Sleaf1, spED) = Area(Sleaf2, spED)∧
∧dE(Sleaf1.

−→c l1, spED.−→c sp) = dE(Sleaf2.
−→c l2, spED.−→c sp) illustrated in Fig-

ure 5d. At this time, the leaf node Sleaf2 has the number of elements less than
the leaf Sleaf1. Therefore, spED is added into Sleaf2.

Figure 5. Description of the criteria to select the element distribution
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The appropriate leaf is selected to cluster similar elements based on the
criteria 1, 2, 3, 4 as above. On that basis, the suitable leaf choosing algorithm
is presented as Algorithm 1.

Algorithm 1: SBLRST

1 Input:The leaf set SL, spED
2 Output: SL[k] is the suitable leaf selected, k ∈ [1, count{SL}]
3 Function: SelectBestLeaf (SL,spED)
4 begin
5 pos = argmin(IncreaseArea(SL[i], spED));
6 USk = {SL[k]|SL [k] ∈ {SL}, IncreaseArea(SL[k], spED) =

IncreaseArea(SL[pos], spED)};
7 if USk.size == 1 then
8 return SL[pos];
9 else

10 pos = argmin {SL[j].area};
11 USt = {SL[t]|SL [t] ∈ USk, SL[t].area = SL[pos].area};
12 if USt.size == 1 then
13 return SL[pos];
14 else
15 pos = argmin{dE(spED.−→c , SL[m].−→c )};
16 USm = {SL[m]|SL[m] ∈ USt, dE(spED.−→c , SL[m].−→c ) =

dE(spED.−→c , SL[pos].
−→c )};

17 if USm.size == 1 then
18 return SL[pos];
19 else
20 pos = argmin{SL[r].size};
21 return SL[pos];

22 end

23 end

24 end

25 end

Call M is the maximum amount of elements of a node on RS-Tree. In the
worst case, Algorithm SBLRST must be browsed M leaves. Therefore, the
complexity of the Algorithm SBLRST is O(M).

3.4.2. The operation of updating the center and radius

The process of adding, deleting, and splitting nodes on RS-Tree leads to
the storage space is changed to cover all the sub-space. Therefore, updating
the center and radius of the nodes on RS-Tree is performed. Let Ssp be a node
on the RS-Tree structure. In case Ssp is a leaf, let Ssp.spED[i] be a sphere
containing the data of the ith child node of leaf Ssp, otherwise let Ssp.spEC[i]
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be the sphere of the ith child node of node Ssp. The algorithm of updating the
center and radius presented as Algorithm 2.

Algorithm 2: USPCR

1 Input:SNode,R
S-Tree.

2 Output: RS-Tree after updated
3 Function: UpdateSphere(SNode)
4 begin
5 Stack == null;
6 Push(SNode, Stack);
7 while !Empty(Stack) do
8 Ssp = Pop(Stack);
9 if Ssp.root == true then

10 return RS-Tree;
11 end
12 if Ssp.leaf == true then
13 Ssp.

−→c sp = avg(Ssp.SpED[i].−→c spDi|i = 1..Ssp.size);
14 Ssp.rsp =

Max{dE(Ssp.
−→c leaf , Ssp.SpED[i].−→c spDi) + Ssp.SpED[i].rspDi};

15 else
16 Ssp.

−→c sp = avg(Ssp.SpEC[i].−→c spCi × Ssp.SpEC[i].w|i =
1..Ssp.size);

17 Ssp.rsp =
Max{dE(Ssp.

−→c leaf , Ssp.SpEC[i].
−→c spCi) + Ssp.SpEC[i].rspCi};

18 end
19 if Ssp.parent �= null then
20 Ssp = Ssp.parent;
21 Push(Ssp, Stack);

22 end

23 end

24 end

Call n is the size of dataset. In RS-Tree, each internal node of the tree
stores up to N elements, each leaf node up to M and RS-Tree with the height
h. Because the data elements are only stored at the leaf layer of RS-Tree, so
we have n ≤ M ×Nh. If M ≈ N , the height of the tree is h ≈ logn−1

M . In the
worst case, the Algorithm USPCR must update the cluster center from leaf to
root and at each node browsing up to M element. Therefore, the complexity
of the algorithm is O(M × lognM ), with lognM = log2M .logn2 . M is constant infer
log2M is also constant, n � 2. So, the complexity of the algorithm is O(logn).
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3.4.3. Node splitting algorithm

In the leaf splitting process, choosing element spED to distribute into one
of two new leaves is performed based on the different measure denoted dDif ,
illustrated in Figure 6.

Figure 6. Description of the different measure of the element spEDi

In Figure 6, spEDk and spEDt is two elements selected to be the center
of two new leaves. spEDi is a element in remainder set of splitting leaf.
The different measure dDif of the element spEDi compared with spEDk and
spEDt, denoted SL1 and SL2 measured like dDif = |d1 − d2|, where d1 =
= dE(spEDi.

−→c spi, spEDk.
−→c spk), d1 = dE(spEDi.

−→c spi, spEDk.
−→c spt). The

bigger the difference measure is, the higher the probability of identifying the
element belongs to either node.

RS-Tree is a dynamically balanced tree structure growing from leaf to root.
The overflowed node SL is handled by creating two nodes SL1 and SL2 same
level with SL. M + 1 elements is distributed into the two nodes. This process
can spread to the root, when the root is full, other root will be created and
RS-Tree grown up. The leaf splitting algorithm is presented as Algorithm 3.

Call n is size of the dataset, M is the maximum amount of the element in
a node on RS-Tree. When performing splitting the node, in the worst case,
algorithm SBLRST must be performed from the leaf to the root. Each time
of splitting, algorithm SpLRST must perform M comparison operations. On
the other hand, every time a splitting node is performed, in the worst case,
algorithm SpLRST must be called from the leaf to the root. M is constant.
Therefore, the complexity of the algorithm SpLRST is O((logn)2).
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Algorithm 3: SpLRST

1 Input:Leaf SL.

2 Output: RS-Tree after splitting
3 Function: SplitLeafRST(SL)
4 begin
5 CreateNewLeaf(SL1);
6 CreateNewLeaf(SL2);
7 spED1, spED2 = SelectedspEDs(SL);
8 Use function AddspED() to add a element into a node.
9 SL1.AddspED(spED1);

10 SL2.AddspED(spED2);
11 SL = SL\{spED1, spED2};
12 Use function SortListSpED() to arrange remainer elements follow

different measure.
13 SortListSpED(SL, spED1, spED2);
14 SLpr = SL.parent;
15 if SLpr! = null then
16 Delete(SL);
17 SL1.parent = SLpr;
18 SL2.parent = SLpr;
19 if SLpr.size < N then
20 UpdateSphere(SLpr);
21 else
22 Function SlpitNodeSRT() is used to split internal node.
23 SlpitNodeSRT(SLpr);

24 end

25 else
26 CreateRootInNode(SNr);
27 SL1.parent = SNr;
28 SL1.parent = SNr);
29 UpdateSphere(SNr);

30 end

31 end

3.4.4. The operation of adding an element

When the element spED =< MBS(�csp, rsp); f > is added in RS-Tree,
the insertion is done from the root, browsing all children nodes of the root
and following the nearest branch based on similar measure until finding a
node denoted SNodek next to leaf. After that, the element spED is dis-
tributed on one of the child nodes of the current node with the condition
dE(spED.−→c sp, Sleaf .

−→c leaf ) + spED.rsp < θ in Algorithm 1. SBLRST, oth-
erwise, a new leaf Snewleaf is created to store the element spED. The algorithm
added elements is presented as Algorithm 4.
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Algorithm 4: IspEDRST

1 Input:Leaf node SL,threshold M , element spED.

2 Output: RS-Tree after adding the element
3 Function: InsertspEDintoRST(SL, spED,M)
4 begin
5 if SL.leaf == true then
6 if SN .size < M then
7 d = dE(spED.−→c , SN .−→c ) + spED.r;
8 if d < θ then
9 SN .AddSpED(spED);

10 else
11 CreateNewLeaf(SL);
12 SL.AddSpED(spED);

13 end

14 else
15 SplitLeafRST (SL);
16 end

17 else
18 if SL.Child.leaf == false then
19 Use function SelectBestBranch to select the best branch follow

similar measure
20 Sk = SelectBestBranch(SN , spED);
21 InsertspEDintoRST (Sk, spED);

22 else
23 Sleafk = SelectBestLeaf(SL, spED);
24 if Sleafk.size < M then
25 d = dE(spED.−→c , Sleafk.

−→c ) + spED.r;
26 if d < θ then
27 Sleafk.AddSpED(spED);
28 else
29 CreateNewLeaf(SL);
30 SL.AddSpED(spED);

31 end

32 else
33 SplitLeafRST (SL);
34 end

35 end

36 end

37 end

Call n is the size of dataset, M is the maximum number of the in the
node of RS-Tree. Algorithm IspEDRST performed browsing from root to leaf,
each time to browse M element, and algorithm IspEDRST perform the center
updating and node splitting from the leaf to the root, M is constant. Therefore,
algorithm IspEDRST with the complexity is O(logn)

3
.



A improverment of R-Tree for image retrieval 45

4. Similar image retrieval model in RS-tree structure

4.1. The proposed model of CBIR-RST

An query image I is extracted the feature vector and retrieved on RS-Tree.
The process of retrieving is performed on RS-Tree until meeting the leaf, then
the set of all data elements in the leaf is called a similar image set of the queried
image. Content-based image retrieval model on RS-Tree illustrated in Figure 7.

Figure 7. Model of content-based image retrieval of CBIR-RST on RS-Tree

The image retrieval process is performed in two phases: the first phase
performs clustering and stores the image data in RS-Tree, the second phase
performs to retrieval for similar images set from the queried image. The pro-
cess is described as follows:
Build clustering tree. The process of building a clustered RS-Tree based on
the feature vector of the image dataset comprises the following steps:

Step 1. Extract the feature vectors of the image dataset.
Step 2. Represent the feature vector of image dataset in the form of sphere.
Step 3. Indexing clustered structure named RS-Tree is trained based on

the proposed similar measure and k-Mean clustering method. Each leaf of the
tree is a set of the sphere element containing the vectors fi to describe the
visual features of the image.

Image retrieval. The retrieval phase include the following steps:
Step 1. From a query image Iq, the feature vector is extracted and convert

into a spatial sphere.
Step 2. Perform similar image retrieval based on indexed clustering struc-

ture RS-Tree.
Step 3. Arrange similar images by similarity measure of query image.
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4.2. Image retrieval based on RS-Tree

From indexing clustered structure RS-Tree created, an algorithm for con-
tent-based similar images retrieval on RS-Tree is proposed. The process of
similar image retrieval on RS-Tree is described as Algorithm 5.

Algorithm 5: RSIR

1 Input:element spED of the image retrieval, RS-Tree.
2 Output: the similar image set SI
3 Function: RSIR(SNr, spED)
4 begin
5 SNode = SNr;
6 if SNode == null then
7 return null;
8 else
9 if SN .Child.leaf == false then

10 SNk = SelectBestBranch(SNode,spED);
11 RSIR(SNk,spED);

12 else
13 SI = SNode.Child.spEC[i].ListSpED|i = 1..SNode.size;
14 end

15 end
16 return SI;

17 end

Call n is size of the dataset, M is the maximum number of the element in a
node of RS-Tree. Algorithm RSIR browses from the root to the leaf. Each time
of browsing, algorithm RSIR must be compared with M element of a node, M
is constant. Therefore, the complexity of the algorithm RSIR is O(logn).

5. Experiments and discussions

5.1. Extracting the Feature Vector

In this paper, feature of image were extracted including MPEG7 color fea-
ture, shape feature, texture feature, Laplacian of Gaussian for detecting object,
object recognition based on boundary and surface with Sobel filter, enhancing
pixel intensity with Gaussian filtering [29]. Experiment of feature extraction
process 049.jpg image in Daffodil folder, Oxford Flowers 17 dataset is illustrated
by Figure 8. In which (a) original image; (b) object mask image (ForeGround);
(c) object image; (d) original photo wallpaper; (e) feature contour image by
Laplace filter for feature mask image; (f) object contour image and object sur-
face texture according to Sobel filter; (g) Contour image of the original image
according to Laplace and Gaussian filters; (h) high-pass filter image for orig-
inal image and feature vector consisting of 81 components. To extract image
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features, firstly, each input image is segmented into many small regions. Sec-
ondly, the methods of extracting color, shape, and texture features [30] are
performed. The image feature vector is extracted and inherited from the work
[29, 30]. Then, the vectors are represented into the spatial sphere and stored
on the RS-Tree.

Figure 8. An example of the low-level feature extraction of the image

5.2. Experimental environment

The build clustering tree phase is performed on PC CPU 2.3GHz 8-core
9th-generation Intel Core i9, 16GB 2666MHz memory, 1TB flash storage. The
image retrieval phase is examined on PC CPU Intel Core i7-6500U CPU @
2.50GHz, 8.0GB RAM, the operating system of Windows 10 Pro 64 bit.

In this paper, we experiment on three image sets including COREL, Wang,
Oxford Flowers 17. Where COREL has 1000 images divided into 10 classes [23],
Wang has 10.800 images divided into 80 classes [24], Oxford Flowers 17 has 1360
images divided into 17 classes [25]. Experimental application is illustrated in
Figures 9 and 10.

Figure 9. Image retrieval interface based on RS-Tree
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Figure 10. A result of image retrieval in RS-Tree

5.3. Experimental evaluation

In this paper, the parameters M , m, N , θ are uesed in the process of
building RS-Tree to improve the retrieval precision. Experimental processing
is conducted as follows: Let nMaxinclass be the maximum number of elements
in a class. We choose M ∈ [nMaxinclass − α, nMaxinclass + α], α is constant;
N ∈ [2,M ]. Threshold θ to evaluate the similarity of elements belonging to a
cluster. The number elements of each classifier estimates approximately 10%
of the dataset. In the experiments of this paper, we experiment with the values
θ ∈ [0.1−μ, 0.1+μ], μ ∈ [0, 0.05] to cluster the data depending on the dataset.
Optimal parameters in the experimental process, the Top of retrieved elements
and RS-tree build time are presented in Table 1.

Parameter COREL Wang Oxford Flowers 17
M 120 100 80
m 1 1 1
N 20 30 20
θ 0.095 0.065 0.08

Topk 80 65 45
RS-Tree building time (hours) 0.50 3.57 0.65

Table 1. Description of experimental parameters

To evaluate the effectiveness of proposed method, we used the following as
evaluation metrics: precision, recall and F-measure. The experimental results
are shown in Figures 11–14. Each curve on the graph describes retrieval results
from the image class in the dataset of COREL, Wang, Oxford Flowers 17. In
addition, the corresponding curve in the ROC graph shows the ratio of true and
false retrieval results, that is, the area under this curve evaluates the correctness
of retrieval results.
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Figure 11. The average value of Precision, Recall, F-measure

Figure 12. Precision-Recall and curving ROC of WANG dataset

Figure 13. Precision-Recall and curving ROC of COREL dataset
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Figure 14. Precision-Recall and curving ROC of Oxford Flowers 17 dataset

The retrieval performance of proposed algorithm based on RS-Tree is de-
scribed in Table 2, Table 3, Table 4. To evaluate the performance of the
proposed model, we compare with the results of previous related works on the
same dataset described in Table 5.

Folders Avg.recall Avg.precision Avg.F-measure Avg.time (ms)
00-10 68.75% 76.29% 72.32% 14.39

Table 2. Performance of image retrieval of CBIR-RST on COREL dataset

Folders Avg.recall Avg.precision Avg.F-measure Avg.time (ms)
00-20 63.55% 69.94% 66.59% 56.21
21-40 64.54% 71.86% 68.00% 45.61
41-60 66.17% 73.98% 69.86% 65.41
61-80 67.18% 76.84% 71.70% 69.71
AVG 65.36% 73.16% 69.04% 59.23

Table 3. Performance of image retrieval of CBIR-RST on Wang dataset

Folders Avg.recall Avg.precision Avg.F-measure Avg.time (ms)
00-09 74.99% 81.99% 78.34% 10.78
10-17 67.98% 74.98% 71.30% 12.11
AVG 71.69% 78.69% 75.03% 11.45

Table 4. Performance of image retrieval of CBIR-RST on
Oxford Flowers 17 dataset

The experimental result tables show that the performance of the proposed
method is quite high, because of the following reasons: (1) the RS-Tree is built
rely on feature vectors in the form of spheres to optimize storage space; (2)
a threshold θ (0 < θ < 1) is proposed to cluster similar image; (3) the node
splitting algorithm is improved to enhance retrieval efficiency.



A improverment of R-Tree for image retrieval 51

Methods MAP(%) Dataset
L. Haldurai, 2015 [14] 73.88 COREL
Ahmed, 2019 [19] 72.10 COREL
CBIR-RST 76.29 COREL
Lande, Milind V, 2014 [13] 61.00 Wang
J. Vanitha, 2017 [16] 75.80 Wang
P. Chhabra, 2020 [20] 63.20 Wang
CBIR-RST 73.16 Wang
Ahmed, 2019 [19] 77.10 Oxford Flowers 17
S. Gao, 2014 [22] 73.43 Oxford Flowers 17
CBIR-RST 78.69 Oxford Flowers 17

Table 5. Comparison mean average precision (MAP) of methods on dataset

Table 5 shows the retrieval accuracy of the method proposed is quite effec-
tive. In work [14] used R-Tree to store image data. However, the node splitting
process in R-Tree can have similar elements, but it still splits into two nodes.
In the worst case, these elements are in two distant branches. In addition, R-
Tree is stored in rectangular blocks, so it wastes the storage space and complex
computation time. In work [19], the authors extracted color features from RGB
images and used the gray level image for local features. However, in this study,
the authors only performed indexing on a subjective basis and did not propose
a data indexing structure to improve retrieval performance. In this work, the
authors took the top 10 images with the precision of value 87,1% (COREL)
and 95,5% (Oxford Flowers 17). However, with the top 40 images, precision is
72.1% (COREL) and 77,1% (Oxford Flowers 17). In work [20] used the meth-
ods ORB and SIFT to extract image features of eight length the accuracy is
86.2% but the coverage was not high because the author took the top 20 images.
In addition, these two methods require huge storage space and computational.
In work [13] used co-occurrence matrix and Fourier transform to extract image
features. The studies used k-Mean clustering to partition the data and did
not propose a storage structure to improve retrieval effectiveness. In work [16]
used SR-Tree to store image data. However, the process of inserting on SR-tree
needs to update both spheres and rectangles bounding. Thus, it is relatively
complicated and expensive to create and update. The accuracy is 75.8% but
the coverage was not high (16%). In [22], the authors have combined dictionary
structure and the Support Vector Machine technique. However, this method
is costly in training time, and the authors only focused on local features, did
not combine advanced features to enhance image classification performance. In
this paper, the improvement study proposed the threshold to cluster similar
elements, and RS-Tree stores the image elements by the sphere. In addition,
the node splitting algorithm is improved based on a different measure. There-
fore, retrieval results of the proposed method have higher accuracy and faster
retrieval time.



52 L.T.V. Thanh, V.T. Thanh and L.M. Thanh

6. Conclusions

In this paper, an improved RS-Tree structure is built based on R-Tree and
applied to the image retrieval systems. This structure ensures a large storage
capacity since feature vectors are represented in the form of spheres. In addi-
tion, RS-Tree is built based on partitional clustering and hierarchical clustering
method, each leaf stores similar data elements, thus improving image retrieval
efficiency. From then, a content-based image retrieval system, CBIR RST ,
was built based on the RS-Tree. The experiment was performed on COREL,
Wang, Oxford Flowers-17 image dataset with the precision value of 76.29%,
73.16%, and 78.69%, respectively. To evaluate the proposed methods, the
experimental results were compared with other methods on the same image
dataset. The comparison results indicate that the CBIR RST system is effec-
tive. In the future work, we will build a Graph Convolution Network (GCN)
from the leaves in RS-Tree to optimize the algorithm of image retrieval based
on similar clusters and create neighboring clusters on GCN graph.
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