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Abstract. In this article, we give heuristic approximation for the distri-
bution, and the expected value of the gain during one step of the downrun
part of the elliptic curve primality proving method.

1. Introduction

The elliptic curve primality proving method was introduced by Goldwasser
and Kilian, see article [7]. Their technique is based on the following theorem.

Theorem 1. Let n �= 1 be an integer coprime to 6, and En be an elliptic curve
over Z/nZ. Assume that we know an integer m, and a point P ∈ En satisfying
the following conditions.

1. There exists a prime divisor q of m such that q > ( 4
√
n+ 1)2 holds,

2. mP = 0En = (0 : 1 : 0),

3. and (m/q)P = (x : y : t) with t ∈ Z/nZ∗.

Then n is a prime. (It is assumed the all the computations are possible.)

Key words and phrases: Elliptic curve primality proving, elliptic curve order, primes in short
intervals, smooth numbers in short intervals, Dickman function.
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This theorem enables us to compute a probable prime q which is smaller
than our initial probable prime n. The question of how to choose the required
m is answered by the following theorem.

Theorem 2. Let n be an integer coprime to 6, En be an elliptic curve over
Z/nZ, and m := |En|. If m has a prime divisor q satisfying q > ( 4

√
n + 1)2,

then there exists a point P ∈ En such that mP = 0En
, and (m/q)P = (x : y : t)

with t ∈ Z/nZ∗.

So by selecting an elliptic curve, and by computing the number of points
on it, we get a useful m. Atkin and Morain switched the order of computation,
as they construct the elliptic curve for a previously computed curve order,
effectively rendering the method useful in practice, see article [3].

Proceeding recursively, we get a decreasing sequence of probable primes ni,
until a point, where the primality of the actual probable prime can be verified
more easily by some other method. This descent is called the “downrun”.

The number of levels is governed by the difference between lnni and lnni+1,
which essentially depends on how much time we are willing to spend on the
factorisation of a given curve cardinality. Spending too much time renders the
method slow, so an important control point of the factorisation is the applied
smoothness bound b : N → R+, which is a monotone increasing function. We
require that b(n) ∈ o(nξ) should hold for every ξ > 0.

This smoothness bound is chosen to be (lnn)α, where α is a positive con-
stant. Take note that we can still use the presented results if we can give
inequalities (lnn)α1 ≤ b(n) ≤ (lnn)α2 , where α1 < α2 are positive constants.
The authors of article [4] ask the following question.

Suppose that, applying the different factorisation methods with various pa-
rameters to find prime factors, one succeeds in factoring completely the cardi-
nality of a given elliptic curve modulo n, what is the expected value and distri-
bution of the “gain”, defined as log of the “smooth part” of the cardinality?

Concerning the distribution, we have the following heuristic proposition.

Heuristic proposition 1. Let the currently examined probable prime be n.
Assuming that we successfully find the complete factorisation of the curve or-
ders, using the above defined smoothness bound, the probability that the gain
will be λ ln2 n for positive λ ≤ λmax can be approximated with

ρ(λ/α)

lnn− λ ln2 n

(
1 +O

(
ln(λ/α+ 1)

α ln2 n

))
,

where ρ is the Dickman function.

Here lnk is the k-fold iterated logarithm. Take note that the variable λmax

is just a technicality, for more information regarding it, see Section 4, where
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we are going to demonstrate this proposition based on certain heuristics, after
describing the required tools in Section 2 and 3. (The reader can find more
information about the Dickman function in Section 3.)

Assume that we have arrived at a certain level of the downrun, and let’s
denote the currently examined probable prime as n. Taking into consideration
point 1 of theorem 1, the size of the smooth part of the cardinality is well below√
n. Based on our smoothness bound, looking for the smooth part in the size

of nλ for λ ∈ (0, 1/2) is too optimistic, and we expect a size of (lnn)λ for some
small λ > 0.

Heuristic proposition 2. The expected value of λ in Heuristic proposition 1
can be approximated with eγα+ on(1).

We will verify this proposition in Section 5. This result coincides with the
expectations of the authors of article [4], namely that the gain remains � ln b(n)
independently of the applied factorisation method. What we have sketched
here is that if the applied factorisation method can produce the complete fac-
torisation of a curve cardinality, then the properties of the curve cardinalities
supposedly won’t hinder us in reaching this gain of ln b(n).

Next to the concretisation of these observations, examining the distribution,
and the expected value while using b(n) := (lnn)α(n), with α : N → R+ being
a monotone increasing function would be another important task.

2. Primes in short intervals

Based on the prime number theorem, one would expect that for certain
functions Φ, the asymptotic relation

π(x+Φ(x))− π(x) ∼ Φ(x)

lnx
(2.1)

holds as x tends to positive infinity. When the function Φ grows fast, then this
statement certainly holds; the real question here is that how slowly increasing
Φ can be to still have this relation. We recall the concise summary of the results
of this area from [21].

It has been shown that one can choose Φ(x) = x7/12−ε(x), where ε(x) goes
to zero as x tends to positive infinity, see the article of Heath-Brown [11]. It is
briefly explained in this article that by using the Riemann hypothesis, one can
reach Φ(x) = x1/2+ε, where ε > 0.

If we are willing to throw away some numbers, then we can choose even
slower functions. Indeed, using the results from the article of Huxley [14],
relation (2.1) still holds for the functions Φ(x) = x1/6+ε for almost all x, where
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ε > 0. Selberg showed in his article [19], that by assuming the Riemann
hypothesis, relation (2.1) is true for almost all x, if Φ(x)/(lnx)2 goes to positive
infinity with x.

On the other hand, Φ should grow with a certain speed, which can be also
seen from the relation

lim sup
n→∞

pn+1 − pn
(lnn)(ln2 n)(ln4 n)/(ln3 n)2

> 0,

where pn is the nth prime, see the article of Rankin [18]. Based on probabilistic
arguments, Cramér stated in his article [6] that pn+1 − pn ∈ O((ln pn)

2) holds,
however Maier showed in his article [17] that

lim sup
x→∞

π(x+Φ(x))− π(x)

Φ(x)/ lnx
> 1, and lim inf

x→∞

π(x+Φ(x))− π(x)

Φ(x)/ lnx
< 1

for Φ(x) = (lnx)λ, where λ > 1.

3. Smooth numbers in short intervals

Extensive investigation has been made concerning the number of smooth
integers defined as

Ψ(x, y) := |{1 ≤ n ≤ x : P (n) ≤ y}|

where P (n) denotes the greatest prime divisor of n, with the convention that
P (1) = 1, see for example article [13]. It is shown that Ψ(x, y) ∼ xρ(u), where
ρ is the Dickman function, and u is defined as (lnx)/ ln y. Similarly to the
prime number theorem in Section 2, this result suggests that

Ψ(x+ z, y)−Ψ(x, y) ∼ zρ(u)

should hold at least when z is not too small. The following theorem is proved
by Hildebrand, see article [12].

Theorem 3. For any fixed ε > 0, uniformly in the range y ≥ 2,

1 ≤ u ≤ exp((ln y)3/5−ε)

and for xy−5/12 ≤ z ≤ x, we have that the equality

Ψ(x+ z, y)−Ψ(x, y) = zρ(u)

(
1 +O

(
ln(u+ 1)

ln y

))

holds.
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The Dickman function ρ is a continuously differentiable on R+ \ {1}, and
it satisfies the delay differential equation

uρ′(u) + ρ(u− 1) = 0(3.1)

for u > 1, with the initial condition ρ(u) = 1 for 0 ≤ u ≤ 1. This function
keeps to zero quite fast as u grows, namely it can be shown that the inequality
ρ(u) ≤ 1/Γ(u+ 1) holds for u ≥ 0, see theorem 5.7 in [20]. So we have

lim
u→+∞

ukρ(u) = 0(3.2)

for fixed k ∈ Z. Based on the delay differential equation (3.1), one can show
that

ρ(u) =
1

u

u∫

u−1

ρ(v) dv(3.3)

holds when u ≥ 1, see theorem 5.7 in [20]. (Take note that the 1/u part is
missing in the reference due to a typographical error.) It can be also shown
that

u∫

0

ρ(v) dv = eγ +O(e−u)(3.4)

as u → ∞, see article [5], and article [16]. Now we are going to demonstrate
the generalisation of this result.

Lemma 1. Let k be a non-negative integer. Then we have that the equality

u∫

0

vkρ(v) dv = cke
γ +O(e−u)

holds as u → ∞, where c0 := 1, and

ck :=
1

k

k−1∑
l=0

(
k

l

)
cl

for k > 0.

Proof. We are going to prove our statement by using induction. Equality
(3.4) covers the case k = 0. Assuming that our equality holds until k− 1, with
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k being positive, we are going to show that it holds for k also. Integrating by
parts, we get the equality

(k + 1)

u∫

0

vkρ(v) dv =
[
vk+1ρ(v)

]u
0
−

u∫

0

vk+1ρ′(v) dv.(3.5)

By using equality (3.1), we get

uk+1ρ(u) +

u∫

1

vkρ(v − 1) dv = uk+1ρ(u) +

u−1∫

0

(t+ 1)kρ(t) dt

where we substituted t = v − 1. Looking only at the integral alone, we can
apply the binomial theorem to get

u−1∫

0

ρ(t)

k−1∑
l=0

(
k

l

)
tl dt+

u−1∫

0

tkρ(t) dt,

where we can write the last integral as

u−1∫

0

tkρ(t) dt =

u∫

0

tkρ(t) dt−
u∫

u−1

tkρ(t) dt.

Looking at our initial expression on the left hand side of equality (3.5), by
joining the terms computed so far, and by doing some rearrangements, we get
the equality

u∫

0

vkρ(v) dv =
1

k

k−1∑
l=0

(
k

l

) u−1∫

0

vlρ(v) dv +
uk+1

k
ρ(u)− 1

k

u∫

u−1

vkρ(v) dv,

where by using equality (3.3), and (3.2), we can show that the last two terms
on the right hand side keep to zero, and based on the rate of decrease of the
Dickman function, they do it much faster than e−u does. Substituting the
asymptotic for the integrals inside the sum, we get our statement.

One last thing that needs to be considered is the accumulating error term

1

k

k−1∑
l=0

(
k

l

)
O(e−u) = O(e−u)

2k − 1

k

but for a fixed k, these stay in O(e−u) as u tends to positive infinity. �
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Take note that one could prove this statement also by using

t∫

0

τkρ(τ) dτ = L−1

{
1

s
L{τkρ(τ)}(s)

}
(t)

as the Laplace transform of the Dickman function is known, see Theorem 5.10
in [20], and it behaves well under differentiation, but this path is a bit more
complicated.

Using the constants ck defined for k ≥ 0 in lemma 1, introduce

Cr(x) :=
r∑

k=0

ckx
k,

where r is a non-negative integer.

Lemma 2. Let r be a positive integer. Then for x ≥ 0 we have

Cr(x) = 1− ln(1− x) +Rr(x),

where
lim

x→0+
Rr(x) = 0

holds.

What is important for us here is actually the logarithmic part of Cr(x), as
it will help us in the cancellation of certain terms later.

Proof. By using the definition of ck from lemma 1, we get

Cr(x)− 1 =
r∑

k=1

ckx
k =

r∑
k=1

k−1∑
l=0

(
k

l

)
cl
xk

k
=

r−1∑
l=0

cl

r∑
k=l+1

(
k

l

)
xk

k
,

where we have switched the order of summation. By shifting the index of the
innermost sum, we get

r−1∑
l=0

clx
l+1

r−l−1∑
k=0

(
k + l + 1

l

)
xk

k + l + 1
=

r−1∑
l=0

clx
l+1

r−l−1∑
k=0

(
k + l

l

)
xk

k + 1

because of the properties of the binomial coefficients. Separating the case l = 0
from the sum, we get

x
r−1∑
k=0

xk

k + 1
+

r−1∑
l=1

clx
l+1

r−l−1∑
k=0

(
k + l

l

)
xk

k + 1
,
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where the first sum is equal to

x∫

0

r−1∑
k=0

uk du =

x∫

0

1− ur

1− u
du = − ln(1− x)−

x∫

0

ur(1− u)−1 du.

Substituting as u = xt, we get

xr+1

1∫

0

tr(1− xt)−1 dt =
xr+1

r + 1
2F1(1, r + 1; r + 2;x),

where we have used the integral representation of the Gauss hypergeometric
function, see equation 15.3.1 in [1]. Now we can define

Rr(x) := − xr+1

r + 1
2F1(1, r + 1; r + 2;x) +

r−1∑
l=1

clx
l+1

r−l−1∑
k=0

(
k + l

l

)
xk

k + 1

which keeps to zero as x tends to zero from the right, as the hypergeometric
function is continuous for |x| < 1, and it is equal to 1 when x = 0, furthermore
all the other parts keep to zero. �

4. The distribution

Let’s assume that we’ve succeeded in factoring completely the cardinality
of a given elliptic curve modulo a prime n, into the form fq, where f should
be b(n)-smooth, and q should be a prime of the right size. Now we are going
to look at the probability of these events separately.

First we look at the probability of finding a b(n)-smooth f in a small interval
around (lnn)λ. When 0 ≤ λ ≤ α, then this probability is one, which coincides
with ρ(λ/α) for such λ, otherwise we can use theorem 3 to have

Ψ((lnn)λ + z, (lnn)α)−Ψ((lnn)λ, (lnn)α)

z
= ρ(λ/α)

(
1+O

(
ln(λ/α+ 1)

α ln2 n

))
,

when
1 < λ/α ≤ τ(n) < e(α ln2 n)3/5−ε

for fixed ε > 0, and where z can be chosen conveniently according the condi-
tions presented in Theorem 3. Take note that the asymptotic error term here
disappears as n goes to infinity. The threshold τ : N → R+ should be a strictly
monotone increasing function, however one should choose it in a manner so
that f remains in o(nξ) for ξ > 0.
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For such b(n)-smooth f , we have to choose a big enough prime q. Taking
Theorem 2 into consideration, we have to recall an important result from the
theory of elliptic curves. The following theorem is conjectured by Artin, see
article [2], and proven by Hasse, see articles [8, 9, 10].

Theorem 4. Let p > 3 be a prime. Then for the order m of an elliptic curve
over Z/pZ we have that the inequality

|p− (m+ 1)| ≤ 2
√
p

holds.

Lenstra showed, see proposition (1.9) in [15], that for any prime p > 3,
the probability that the order m of an elliptic curve over Z/pZ will satisfy the
inequality |p− (m+ 1)| ≤ √

p is in O(1/ ln p). Note that this can be improved
to O(1/ ln2 p) if we assume that the Riemann hypothesis holds. So we can
suppose that the curve orders will be distributed uniformly in the interval in
Theorem 4, or at least in the middle of the interval.

Based on these, for a given f , we have to choose uniformly a prime q from
the interval [(n− 2

√
n+1)/f, (n+2

√
n+1)/f ]. Taking into consideration the

maximal size of f , this interval is not empty, and a prime from it will satisfy
point 1. of Theorem 1. Using the results concerning the number of primes in
short intervals presented in Section 2, we can approximate the probability of
success as

1

ln(n/f)
≈ 1

lnn− λ ln2 n
.

The event of finding a smooth number, and the event of finding a prime in a
given interval can be treated as independent events, so after multiplying the
two probabilities, we get our Heuristic proposition 1.

5. The expected value

Now we demonstrate Heuristic proposition 2 by approximating the expected
value of λ in Heuristic proposition 1 with the integrals

τ(n)∫

0

λρ(λ/α)

lnn− λ ln2 n
dλ+

c

α ln2 n

τ(n)∫

α

λρ(λ/α) ln(λ/α+ 1)

lnn− λ ln2 n
dλ,

where c is some real constant. We are going to look at the integrals separately.

� First we look at the first integral. Substituting as λ = αu, we get

τ(n)∫

0

λρ(λ/α)

lnn− λ ln2 n
dλ =

α2

lnn

τ(n)/α∫

0

uρ(u)

1− uα ln2 n
lnn

du.
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Now we subtract and add back the integral

α2

lnn

τ(n)/α∫

0

uρ(u)
(uα ln2 n

lnn )r

1− uα ln2 n
lnn

du

for some fixed positive integer r, to get on the one hand

α2

lnn

τ(n)/α∫

0

uρ(u)
1− (uα ln2 n

lnn )r

1− uα ln2 n
lnn

du

and on the other hand

αr+2(ln2 n)
r

(lnn)r+1

τ(n)/α∫

0

ur+1ρ(u)

1− uα ln2 n
lnn

du.

Now we are going to look at the two terms separately.

– Using the formula for the sum of the geometric progression, and
switching the order of integration and summation, we get that the
first term is

α2

lnn

r−1∑
k=0

(
α ln2 n

lnn

)k
τ(n)/α∫

0

uk+1ρ(u) du.

Using Lemma 1, we get

eγ
α2

lnn

r−1∑
k=0

ck+1

(
α ln2 n

lnn

)k

+
α2

lnn
O(e−τ(n)/α)

r−1∑
k=0

(
α ln2 n

lnn

)k

where the second part goes to zero as n tends to positive infinity.
The first part however is equal to

eγ
α

ln2 n

r−1∑
k=0

ck+1

(
α ln2 n

lnn

)k+1

= eγ
α

ln2 n

(
Cr

(
α ln2 n

lnn

)
− 1

)
,

where we can use Lemma 2 to have

eγ
α

ln2 n
ln

1

1− α ln2 n
lnn

+ eγ
α

ln2 n
Rr

(
α ln2 n

lnn

)

which is equal to eγα+ on(1).
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– As for the second term, by using integration by parts, we get

−αr+1(ln2 n)
r−1

(lnn)r

[
ln

(
1− u

α ln2 n

lnn

)
ur+1ρ(u)

]τ(n)/α
0

which is in on(1), and

αr+1(ln2 n)
r−1

(lnn)r

τ(n)/α∫

0

ln

(
1− u

α ln2 n

lnn

)
d

du
ur+1ρ(u) du.

The absolute value of this expression is smaller than

3αr+2(ln2 n)
r

2(lnn)r+1

τ(n)/α∫

0

u
d

du
ur+1ρ(u) du

for large enough n, see inequality 4.1.35 in [1]. Integrating by parts
again, we get

3αr+2(ln2 n)
r

2(lnn)r+1

(
[ur+2ρ(u)]

τ(n)/α
0 −

τ(n)/α∫

0

ur+1ρ(u) du

)

where both terms are in on(1).

� Now we turn to the second integral. The logarithmic part of the numer-
ator is positive and we have

ln(λ/α+ 1) < lnλ− lnα+
α

λ
(5.1)

because λ/α ≥ 1, so at the end of the day, we only have to deal with the
expression

c

α ln2 n

τ(n)∫

α

λρ(λ/α) lnλ

lnn− λ ln2 n
dλ

because the integrals containing the terms other than lnλ at the right
hand side of the inequality (5.1) will be in on(1) based on the previous
computations. By substituting exp((α ln2 n)

3/5−ε) inside the logarithmic
part of the integrand for some fixed ε > 0, we do an overestimation. As

(α ln2 n)
3/5−ε

ln2 n

goes to zero as n tends to positive infinity, we get that this last expression
does too, yet again based on the previously computed integrals.

Collecting all the terms we have calculated, we get our Heuristic proposition 2.
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