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Abstract. We establish an explicit inequality for the number of divisors of
an integer n. It uses the size of n and its number of distinct prime divisors.

1. Introduction and notation

Let τ(n) and ω(n) be respectively the number of divisors and the number
of distinct prime factors of n. In [2], the author and De Koninck have studied
a variety of inequalities for the τ function. Among many helpful comments
and suggestions, the anonymous referee of the said paper asked to justify and
clarify some preliminary statements concerning the quality of our inequalities
when compared to the well-known inequality of Wigert [7]

τ(n) ≤ 2
log n

log log n (1+o(1)) (n → ∞).

The present author has therefore reworked some of his results to get to a nice
statement which is also inspired by Théorème 2 of [1] and by [3]. Let us define
ϑ := ϑ(n) implicitly by ω(n) = ϑ log n

log log n for each n ≥ 16. Then,

τ(n) ≤ exp

(
ϑ log

(
1 +

1

ϑ

)
log n

log log n

(
1 +O

(
log log log n

log log n

)))
.

In this paper, we make this result explicit and the best possible constant, here
implicit, is found. A more precise result, not mentioned in [2], is also obtained
in Theorem 1.2.
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Let us define the function

(1.1) ρ(n) :=

(
log τ(n)

ω(n) log
(
1 + 1

ϑ(n)

) − 1

)
log log n

log log log n
.

Theorem 1.1. For each integer n ≥ 17,

ρ(n) ≤ ρ(226316) = 2.00080128 . . .

The inequality is strict unless n = 226316.

Let K be the convex hull of the set
{(

1
s ,

log(s+1)
s

)
: s ∈ N

}
∪ {(0, 0)}. We

thus consider the function f : [0, 1] → R defined by

f(ξ) := sup
(
{(ξ, z) : z ∈ R} ∩ K

)
.

Theorem 1.2. Let ξ ∈ (0, 1] be fixed. Let J be the ordered sequence of integers
n satisfying

(1.2)
∣∣∣ω(n)− ξ log n

log logn

∣∣∣ < log n

(log logn)3/2
.

We have

lim sup
n→∞
n∈J

log τ(n) log log n

log n
= f(ξ).

For each integer k ≥ 0 we define nk by nk = p1 · · · pk (so that n0 = 1) where
pk is the k-th prime number. We say that an integer is primary if it can be
written as

n = pα1
1 · · · pαk

k α1 ≥ · · · ≥ αk

for some k ≥ 0.

2. Preliminary lemmas

A well-known consequence of the prime number theorem is that

max
n≤z

ω(n) =
log z

log log z
+O

(
log z

(log log z)2

)
.

We need an explicit upper bound for our result.

Lemma 2.1. For each integer n ≥ 3 we have

ω(n) ≤ κ
log n

log log n

where κ = 1.3840127 . . . The inequality is strict unless n = n9.
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Proof. See [5]. It is also a consequence of (2.5) below along with some com-
putations. �

Lemma 2.2. We have

k∑
j=1

log log pj ≥ k log log k (k ≥ 44),(2.1)

log nk ≤ 2k log k (k ≥ 2),(2.2)

log log nk ≥ log k (k ≥ 3),(2.3)

log nk ≤ k log log nk (k ≥ 3).(2.4)

Proof. Inequalities (2.1) and (2.2) are simple consequences of Lemma 4.8
of [2] in (4.22) and (4.20) respectively. Inequality (2.3) can easily be obtained
by induction. For (2.4), we first establish the inequality

(2.5) log nk ≥ k(log k + log log k − 5/4) (k ≥ 2)

with induction by using the fact that pk ≥ k log k from [6]. So, we get a lower
bound for k log log nk with (2.5) and an upper bound for lognk with (4.20)
from Lemma 4.8 of [2]. We leave the details to the reader. �

Lemma 2.3. For each fixed k ∈ N and c ∈ R>0, the function

(2.6) log

(
1 +

exp(x)

kx

)(
1 +

c log x

x

)

is strictly increasing for x ≥ 1.

Proof. The derivative of (2.6) with respect to x is

−c(log x− 1)(1 + θ) log(1 + 1
θ ) + (x− 1)(c log x+ x)

x2(1 + θ)
,

where we write θ = kx
exp(x) to simplify. We want to show that the numerator is

positive for x ≥ 1. We will show that the function

−(log x− 1)(1 + θ) log
(
1 +

1

θ

)
+ (x− 1) log x

is positive for x ≥ 1. It is the derivative of the numerator with respect to c.
We observe that it implies the desired result for each fixed c > 0 and x ≥ 1.

This result clearly holds when x ∈ [1, exp(1)]. For x > exp(1), since the
function z �→ (1 + z) log

(
1 + 1

z

)
is strictly decreasing for z > 0, it is enough
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to prove the result in the particular case k = 1. We then use the inequality

log
(
1 + exp(x)

x

)
≤ log exp(x+1)

x to deduce that it is enough to prove that

(2.7) − (log x− 1)
(
1 +

x

exp(x)

)
(x+ 1− log x) + (x− 1) log x ≥ 0

for x > exp(1). We observe that the left hand side of (2.7) can be written as

(x+ 1− 3 log x) +
(
log2 x− (x+ 1)2 log x

exp(x)

)
+

x2 + x+ x log2 x+ log x

exp(x)

and the result follows from the fact that each of the above three terms is positive
for x > exp(1). �

Let γ(n) stand for the product of the distinct prime factors of n.

Lemma 2.4. For each integer n ≥ 2,

(2.8) τ(n) ≤
∏
p|n

( log nγ(n)

ω(n) log p

)
.

Proof. This is a famous inequality due to Ramanujan [4]. One can find a
proof in Corollary 4.5 of [2] as well. �

Lemma 2.5. Let k := ω(n) ≥ 74. Then,

τ(n) <
(
1 +

log n

k log k

)k

.

Proof. This is Theorem 3.4 from [2]. In this paper we are using this result
only for k ≥ 95, which requires substantially fewer computations. �

Lemma 2.6. Let δ > 0 and [α, β] ⊆ [a, b] be fixed. Let also h ∈ C([a, b])
satisfying maxx∈[α,β] |h′(x)| ≤ M1. Assume that

max
i∈Z

µ+iδ∈[a,b]

h(µ+ iδ) ≤ M

for some µ ∈ [α, β]. Then,

max
x∈[α,β]

h(x) < M + δM1.

Proof. Let z ∈ [α, β] be fixed. There is a j ∈ Z with |µ + jδ − z| < δ. The
result follows from

h(z) = h(µ+ jδ) +

z∫

µ+jδ

h′(t)dt.

�
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3. Proof of Theorem 1.1

Throughout this proof, we often write x = log log n to simplify the notation.
Also, x is sometimes considered as a real variable when arguments from calculus
have to be used. Furthermore, it is always assumed that k = ω(n) is fixed.
Lemma 2.3 allows us to assume that n is primary when ω(n) = k ≥ 3. We
used PARI/GP to verify that ρ(n) < 2 for each 17 ≤ n ≤ 109. In particular,
this verification along with Lemma 2.3 leave us with only primary integers to
verify in the case where k = 1, 2 as well.

3.1. The case k ≥ 11000

In this section, we will establish that ρ(n) < 2 for all the integers with at
least 11000 distinct prime factors. Our main tool is Lemma 2.5. Recalling the
definition of ϑ given in Section 1, we write

1 +
exp(x)

k log k
= 1 +

1

ϑ
+
(exp(x)
k log k

− 1

ϑ

)

where the term in parenthesis is positive if and only if x ≥ log k. If it is
negative, then the result follows directly from Lemma 2.5. In the case where it
is positive, we use the mean value theorem to get to

log
(
1 +

exp(x)

k log k

)
= log

(
1 +

1

ϑ
+
(exp(x)
k log k

− 1

ϑ

))
≤

≤ log
(
1 +

1

ϑ

)
+

1

1 + 1
ϑ

(exp(x)
k log k

− 1

ϑ

)
=

= log
(
1 +

1

ϑ

)(
1 +

1

(ϑ+ 1) log(1 + 1
ϑ )

x− log k

log k

)
.

Now, since (ϑ+1) log(1+ 1
ϑ ) ≥ log( 1ϑ ) =: t and t = x− log x− log k, we deduce

that ρ(n) < 2 holds if

(3.1)
log x+ t

t(x− log x− t)
<

2 log x

x

which is the case if 1 ≤ t ≤ x
2 when x ≥ 11.66. Indeed, by expanding, we

find a parabola in t so that it is enough to verify (3.1) at t = 1 and at t = x
2 .

From there, it is an easy exercise that uses calculus. The details are left to the
reader.
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In the case where t > x
2 , we use the fact that τ(n) < ( 2 logn

k log k )
k < ( log n

k )k

(since 2k ≤ τ(n) < (1 + log n
k log k )

k) from Lemma 2.5. Thus, since we have

log
(
1 +

1

ϑ

)(
1 +

2 log x

x

)
> log

( 1

ϑ

)(
1 +

2 log x

x

)
=

= (x− log x− log k)
(
1 +

2 log x

x

)
=

= (x− log x− log k) + t
2 log x

x
>

> x− log k,

the result follows.

The remaining case is when t < 1, i.e. when 1
exp(1) < ϑ < 1.39 (see

Lemma 2.1). We then have

1

(ϑ+ 1) log(1 + 1
ϑ )

x− log k

log k
≤ log x+ 1

1.25(x− log x− 1)
<

2 log x

x

for x ≥ 11.66. Since log log n11000 > 11.66, the result follows.

3.2. The case 44 ≤ k ≤ 10999

We use inequality (2.8) into the definition of ρ (1.1) to get to

ρ(n) ≤
( log(exp(x) + log nk)− log k − 1

k

∑k
j=1 log log pj

log(1 + 1
ϑ
)

− 1
) x

log x
=(3.2)

=
x log( exp(x)+lognk

exp(x)+kx
) + x log x− x

k

∑k
j=1 log log pj

log x log(1 + exp(x)
kx

)
.(3.3)

Since x ≥ log log nk and from inequality (2.4), we deduce that the first
term in the numerator in (3.3) is negative. Thus, from inequality (2.1) and

log(1 + exp(x)
kx ) > x− log x− log k, we find that ρ(n) < 2 if

(3.4) x log x+ x log log k − 2 log x(log x+ log k) > 0

which is the case when x ≥ 1.8 log k. To prove this fact, we first write x =
= z log k. We then show that the derivative with respect to z of the left hand
side of (3.4) is positive and also that it is positive at z = 1.8 for each k ≥ 44.
Then, in light of (2.3), we have x ≥ log log nk > log k. We can now assume
that x ∈ [log k, 1.8 log k].

It remains to verify that ρ(n) < 2 for each x ∈ [log lognk, 1.8 log k] and each
fixed value of k with a limited number of computations. To do so, we will work
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with the function

(3.5) hk(x) :=
( log(exp(x) + log nk)− log k − 1

k

∑k
j=1 log log pj

log(1 + exp(x)
kx )

− 1
) x

log x
,

which is the right hand side of (3.2), and use Lemma 2.6.

Let us first establish that

(3.6) max
x∈[log log nk,1.8 log k]

|h′
k(x)| ≤

400

81

log2 k

log log k
+

130

27

log k

log log k
.

We have
(3.7)

h′
k(x) =

( 1

log x
− 1

log2 x

)(W
�

− 1
)
+

x

log x

( exp(x)

�(exp(x) + lognk)
− W

�2

1
ϑ − 1

xϑ

1 + 1
ϑ

)
,

where we wrote � := log(1 + 1
ϑ ) and W := log(exp(x) + lognk) − log k −

− 1
k

∑k
j=1 log log pj to simplify. Clearly,

(3.8) |h′
k(x)| ≤

1

log x

∣∣∣W
�

− 1
∣∣∣+ x

log x

(1
�
+

W

�2

)
(x ≥ exp(1)).

From there, we use the fact that ϑ ≤ 1.39, i.e. � > 27
50 , and we establish that

W < 0.8 log k uniformly for x ∈ [log lognk, 1.8 log k]. It allows us to conclude

that (3.6) holds since −1 < W
� −1 < W

� given that log 2 ≤ log τ(n)
k ≤ W so that∣∣∣W� − 1

∣∣∣ < 50
27W . Now, from (2.1) and (2.2),

W < log(k1.8 + 2k log k)− log k − log log k =

= log(
k0.8

log k
+ 2) ≤ 0.8 log k

and the desired inequality follows.

We verify that the right hand side of (3.6) is an increasing function of k
on the interval [44, 10999]. Thus it is less than M1 = 215. For this reason,
we set δ = 0.002 and we thus have δM1 = 0.43. Using Maple, we evaluate
hk(x) at each increment of 0.002 in the interval x ∈ [log k, 1.8 log k] for each
k ∈ [44, 10999]. This verification finishes the proof that ρ(n) < 2 for each such
value of k.

3.3. The case 1 ≤ k ≤ 43

In this section, we complete the proof of Theorem 1.1. We will see that
only the case k = 2 has some values of n for which ρ(n) ≥ 2. The general idea
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is the same as in the previous section. We now set up what is needed to use
Lemma 2.6 on the function hk(x).

Obviously we have x ≥ log log nk and our main objective is to find an upper
bound for an x that would realize ρ(n) ≥ 2. To do so, we start from (3.2) and
write

ρ(n) ≤
( log(exp(x) + log nk)− log k − 1

k

∑k
j=1 log log pj

log(1 + 1
ϑ
)

− 1
) x

log x

≤
( log(2 exp(x))− log k − 1

k

∑k
j=1 log log pj

x− log x− log k
− 1

) x

log x

=
x log 2x− x

k

∑k
j=1 log log pj

(x− log x− log k) log x
.(3.9)

We then show that (3.9) is strictly less than 2 for x ≥ 9.36 for each k ∈ [1, 43].
Now that we have the desired upper bound for x, we are ready for the final
verification. From a previous verification, we know that x ≥ log log 109. We
need an upper bound for |h′

k(x)| with x ∈ [log logmax(109, nk), 9.36] and for
that we use (3.8). We still have � ≥ 27

50 and we get an upper bound for W
directly from the fact that x ≤ 9.36. We find that

max
x∈[log logmax(109,nk),9.36]

|h′
k(x)| ≤ 165 =: M1.

For this reason, we choose δ = 0.00004 so that δM1 = 0.0066. We verify with a
computer at each increment of 0.00004 in [log logmax(109, nk), 9.36] for k = 1
and k ∈ [3, 43] and call the maximum M . We find that M + δM1 < 2. Finally,
for k = 2, we verify that maxx∈[4,9.36] h2(x) < 2 using the same method. For

x ≤ 4, it is enough to check the numbers of the shape 2a · 3b with a ≤ 77 and
b ≤ 49 that are larger than 109. We find that the maximum is only reached at
n = 226 · 316. The proof is complete.

4. Proof of Theorem 1.2

Let us fix ξ ∈ (0, 1] and choose an ε satisfying ξ
100 ≥ ε > 0. We can assume

that ξ ∈ (1/(s+ 1), 1/s] for some positive integer s.

We start with the lower bound. We choose a large z and we construct an
integer m = ms+1

1 ms
2 such that

m1 =
∏

j≤(1−sξ) log z
log log z

pj and m2 =
∏

j≤ξ log z
log log z

p�m1

pj .
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We verify that m = z exp
(
O
(
log z log log log z

log log z

))
, so that inequality (1.2) holds

and

(4.1)
log τ(m) log logm

logm
≥ f(ξ)(1 + o(1)) (m → ∞).

We now turn to the upper bound. It is enough to prove the result for
primary integers. We consider the ordered set Hε of primary integers n for
which

ω(n) <
(ξ + ε) log n

log log n
.

We define the constant

µ := lim sup
n→∞
n∈Hε

log τ(n) log log n

log n
.

Let

H∗
ε := {n ∈ Hε ∩ R>x0 :

∣∣∣ log τ(n) log log n
log n

− µ
∣∣∣ ≤ ε2}

where x0(= x0(ε)) is chosen large enough so that log τ(n) log log n
log n ≥ µ+ ε2 does

not hold in Hε. From Theorem 1.1, the integers u for which ω(u) ≤ 1/(s+1) log u
log log u

satisfy log τ(u) log log u
log u ≤ f(1/(s+ 1)) + ε2. Thus, in view of (4.1), H∗

ε contains

only integers u such that ω(u) > 1/(s+1) log u
log log u .

Each primary integer u can be written uniquely as u := u∗∗·u∗·u(s+1) · · ·u(1)

where
u(j) :=

∏
p|u
pj‖u

pj (j = 1, . . . , s+ 1)

and where u∗∗ is the divisor of u formed of the (at most) �εω(u)� first prime
numbers. Let us assume, for a contradiction, that for some n ∈ H∗

ε large enough
we have ω(n∗) ≥ �εω(n)�. We will then find a primary integer n′ satisfying

ω(n′) <
(ξ + ε) log n′

log log n′ ,

n ≤ n′ ≤ n exp
(
ε log(c1/ε)

log n

log log n
(1 + o(1))

)
,

for some constant c1, and for which τ(n′) ≥ (1+ 1
8s2 )

�εω(n)� · τ(n). In this case,
we will have

(4.2) exp
(
(µ+ c2ε)

log n

log log n

)
≤ τ(n′) ≤ exp

(
(µ+ ε2)

log n′

log log n′

)
,
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where c2 is a constant depending only on ξ, from which we find a contradiction
for ε small enough when n is large enough. This means that in fact ω(n∗) <
< εω(n) and we have established that, for n large enough, n := n′′·n(s+1) · · ·n(1)

where n′′ is made of at most the first 2εω(n) prime numbers.

We are thus ready to define this integer n′. We verify that the transforma-
tion of n which consists in replacing the largest prime factor q1 of n∗ by the
smallest prime factor q2 of n(j) (for the smallest j ∈ {1, . . . , s} available), i.e.
n �→ q2n

q1
, increases the value of τ by a factor ≥ 1+ 1

8s2 , increases the integer by

a factor � 1/ε and transforms n into a new primary integer. Since ξ > 1
s+1 ,

it is possible to iterate this transformation �εω(n)� times for ε small enough
and n large enough. By doing so, starting with n, we end with an integer n′

satisfying the 3 announced properties.

Now, from Theorem 1.1 we have

τ(n′′) ≤ exp
(
c3ε log(1/ε)

log n

log log n

)

for some constant c3. We deduce that τ(n′′) is small when compared to τ(n).
We can thus consider the integer m := n/n′′ = n(1) · · ·n(s+1) and optimize the
value of τ(m) under the condition

ω(m) =
(ζ +O(ε)) log n

log log n

for some ζ ≤ ξ.

By writing k1 + · · ·+ ks+1 = ω(m) =: k, i.e. kj := ω(n(j)), we find

log(τ(m)) = k1 log(2) + · · ·+ ks+1 log(s+ 2)

so that τ(m) is maximal when most of the kj with j small are zero. For this
reason, we will assume that k1, . . . , ks−1 = 0 and that only ks and ks+1 may
be nonzero. We write ks = αk, so that ks+1 = (1− α) · k. From there, we can
assume that m = n(s) · n(s+1) and now the problem is reduced to maximizing

(4.3) log(τ(m)) =
(
α log(s+ 1) + (1− α) log(s+ 2)

)
· k

for m ≤ n which can be written as

log n ≥ s
∑
p|n(s)

log p+ (s+ 1)
∑

p|n(s+1)

log p =

=
(
sαk log(αk) + (s+ 1)(1− α)k log((1− α)k)

)
(1 + o(1)) =

=
(
sα+ (s+ 1)(1− α)

)
· (k log k) · (1 + o(1)) =

=
(
sα+ (s+ 1)(1− α)

)
· (ζ +O(ε)) · (logn) · (1 + o(1))
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as n → ∞. We deduce that α ≥ s+1−1/ζ+O(ε) and by using this inequality
in (4.3) we get

log(τ(m)) ≤
(
(ζ(s+ 1)− 1) · log(s+ 1) + (1− sζ) · log(s+ 2) +O(ε)

)
· log n

log log n
=

=
(
f(ζ) +O(ε)

)
· log n

log log n

so that

log(τ(n)) ≤
(
f(ζ) +O(ε log(1/ε))

)
· log n

log log n
≤

≤
(
f(ξ) +O(ε log(1/ε))

)
· log n

log logn
.

This is the desired upper bound. The proof is complete.

5. Concluding remarks

We have seen that ρ(n) < 2 given ω(n) �= 2. One can wonder if it is a
good inequality. We can see directly from (3.3) that lim sup n→∞

ω(n)=k
ρ(n) ≤ 1.

Let us show that we have in fact equality. Indeed, let (zi)i≥1 be a strictly
increasing sequence of sufficiently large integers. There are β1, . . . , βk satisfying
maxj |βj | < 1/2 such that

k∏
j=1

( log zink

k log pj
+ βj

)
=:

k∏
j=1

(αj + 1) = τ(mi)

which defines the integer mi := pα1
1 · · · pαk

k . We verify that

log τ(mi) = k log(exp(xi) + log nk)− k log k −
k∑

j=1

log log pj +O
(k log nk

exp(xi)

)
,

where xi := log logmi. Thus, by using this value of log τ(mi) in (1.1) (as we
did to obtain (3.2)) we deduce as above that lim sup n→∞

ω(n)=k
ρ(n) ≥ 1.

Let us now prove that

(5.1) lim sup
n→∞

ρ(n) = 1.

We already have the lower bound for each single value of k ≥ 1. For the upper
bound we use the main argument of Section 3.1. Precisely, for each fixed ε > 0
we have

log x+ t

t(x− log x− t)
≤ log x

x
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for t ≤ (1 − ε)x when x is large enough. In the case where t > (1 − ε)x, we
use inequality (3.3) to find lim supn→∞ ρ(n) ≤ 1

1−ε , from which (5.1) follows
immediately.
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