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(Received April 27, 2021; accepted July 29, 2021)

Abstract. Polynomial-like Boolean functions form a class of the Boolean
functions invariant with respect to a special transform of the linear space
of the two-valued logical functions. Another special set of the Boolean-
functions are the set of the symmetric functions. In earlier articles we in-
troduced the class of the symmetric polynomial-like Boolean functions, in-
vestigated some elementary properties of such functions and dealt with the
special case of the homogeneous symmetric polynomial-like Boolean func-
tions. One of our results determined the integers n for a given nonnegat́ıve
integer k so that the Boolean function belonging to p(n;k) is polynomial-
like. Now we continue the investigation of the homogeneous symmetric
polynomial-like Boolean functions, and among others we deal with the
reverse problem, that is, we determine the number of the homogeneous
symmetric, n-indeterminate polynomials for which the Boolean functions
are polynomial-like.

In this article disjunction and logical sum, conjunction and logical product,
exclusive or and modulo two sum, as well as complementation and negation
are used in the same sense and they are denoted respectively by ∨, ∧, ⊕ and .
The elements of the field with two elements and the elements of the Boolean
algebra with two elements are denoted by the same signs, namely by 0 and 1;
N denotes the non-negative integers, and N+ the positive ones.

Key words and phrases: Boolean function, normal form, Zhegalkin polynomial, polynomial-
like Boolean function, symmetric polynomial, symmetric function, homogeneous polynomial.
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1. Introduction

Logical functions and especially the two-valued ones have important role in
our everyday life, so it is easy to understand why they are widely investigated.
A scope of the investigations is the representations of these functions and the
transforms from one representation to another ([3], [4], [5]). Another area of
the examinations is the search of special classes of the set of these functions.
Post determined the closed classes of the switching functions [12], but there
are a lot of other classes of the Boolean functions invariant with respect to
some property. Such properties can be for example linear transforms. In [6]
the author of the present paper introduced a class of the Boolean functions
invariant under a special linear transform. The functions of that class are
called polynomial-like Boolean functions. An important subclass in this class
is the set of the symmetric functions, and within this, as a narrower subset, the
collection of the homogeneous symmetric polynomial-like Boolean functions.
In general, we dealt with the symmetric polynomial-like Boolean functions in
[8] and then with the homogeneous case in [9]. In that article Theorem 2.4. has
given the integers n for which p(n,k) is polynomial with the given nonnegative
integer k. Further results on homogeneous functions are presented in this
paper. One of our present results gives for a given nonnegative integers n the
number of the n-indeterminate homogeneous symmetric polynomials belonging
to polynomial-like Boolean functions.

1.1. Represantations of a Boolean function

It is well-known that an arbitrary two-valued logical function of n variables
can be written in the uniquely determined canonical disjunctive normal form,
i.e. as a logical sum whose members are pairwise distinct logical products of
n factors, where each of such logical products contains every logical variable
exactly once, either negated or not negated exclusively. Clearly, there exist
exactly 2n such products. Supposing that the variables are indexed by the
integers 0 ≤ j < n and the variable indexed by j is denoted by xj , these
products can be numbered by the numbers 0 ≤ i < 2n in such a way that we
consider the non-negative integer containing 0 in the j-th position of its binary
expansion if the j-th variable of the given product is negated, and 1 in the other
case. Of course, this is a one to one correspondence between the 2n distinct

products and the integers of the interval [0..2n − 1], and if i =
∑n−1

j=0 a
(i)
j 2j ,

where a
(i)
j is either 0 or 1, then the product corresponding to it is

(1.1) m
(n)
i =

2n−1
∧

j=0
x

(
a
(i)
j

)

j ,
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where x(0) = x = 0⊕x and x(1) = x = 1⊕x. Such a product is called minterm
(of n variables).

With the numbering given above we numbered the Boolean functions of n
variables, too. A Boolean function is uniquely determined by the minterms
contained in its canonical disjunctive normal form, so a Boolean function is
uniquely determined by a 2n long sequence of 0-s and 1-s, where a 0 in the j-th

position (now 0 ≤ j < 2n) means that m
(n)
j doesn’t occur in that function, and

1 means that the canonical disjunctive normal form of the function contains
the minterm of the index j (this sequence is the spectrum of the canonical
disjunctive normal form of the function, and similarly will be defined the spectra

with respect to other representations of the function), i.e. for l =
∑2n−1

i=0 α
(l)
i 2i

with α
(l)
i ∈ {0, 1}

(1.2) f
(n)
l =

2n−1
∨
i=0

(
α
(l)
i ∧m

(n)
i

)
.

Now f
(n)
l denotes the l-th Boolean function of n variables.

Another possibility for giving a Boolean function is the so-called Zhegalkin-

polynomial. Let S
(n)
i = ∧n−1

j=0 x
a
(i)
j

j , where x0 = 1 = 0 ∨ x, x1 = x = 1 ∨ x

and i =
∑n−1

j=0 a
(i)
j 2j again. This product contains only non-negated variables,

and the j-th variable is contained in it if and only if the j-th digit is 1 in the
binary expansion of i. There exist exactly 2n such products which are pairwise
distinct. Now any Boolean function of n variables can be written as a modulo
two sum of such terms, and the members occurring in the sum are uniquely
determined by the function. That means that we can give the function by a
2n-long 0 - 1 sequence, and if the i-th member of such a sequence is ki then

(1.3) f (n) =
2n−1
⊕
i=0

(
ki ∧ S

(n)
i

)
.

But this polynomial can be considered as a polynomial over the field of two
elements, and in this case we write the polynomial in the following form:

(1.4) f (n) =
2n−1∑
i=0

kiS
(n)
i .

where now S
(n)
i =

∏n−1
j=0 x

a
(i)
j

j , and the sum, the product and the exponentiation
are the operations of the field.

Between the first and the second representation of the same Boolean func-
tion there is a very simple linear algebraic transform. Considering the coef-
ficients of the canonical disjunctive normal form of a Boolean function of n
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variables and the coefficients of the Zhegalkin polynomial of a function of n
variables, respectively, as the components of an element of a 2n-dimensional
linear space over the field of two elements, denoted by F2, the relation between
the vectors belonging to the two representations of the same Boolean function
of n variables can be given by k = A(n)α. Here k is the vector containing
the components of the Zhegalkin polynomial, α is the vector, composed of the
coefficients of the disjunctive representation of the given function, and A(n) is
the matrix of the transform in the natural basis.

For the matrix of the transform it is true that

(1.5) A(n) =




(1) if n = 0

(
A(n−1) 0(n−1)

A(n−1) A(n−1)

)
if n ∈ N+

(this form of the matrix shows that for every n ∈ N, A(n) is the n-th power

of the two-order

(
1 0
1 1

)
regular quadratic matrix, if the operation is the

Kronecker-product).

From the previous results immediately follows that

(
A(n+1)

)2

=

(
A(n) 0(n)

A(n) A(n)

)(
A(n) 0(n)

A(n) A(n)

)
=

=

( (
A(n)

)2
0(n)

0(n)
(
A(n)

)2
)

(1.6)

and as
(
A(0)

)2
= (1), so we get by induction that

(1.7)
(
A(n+1)

)2

= I(n+1),

where I(n) denotes the n-order identity matrix.

1.2. Polynomial-like Boolean functions

Let us consider again the transform between the canonical disjunctive nor-
mal form and the Zhegalkin polynomial of the same function. If α is the
spectrum of the canonical disjunctive normal form of the function, and k is
the spectrum of the Zhegalkin polynomial of the function, then k = A(n)α. In
the special case when α = k, the corresponding function is a polynomial-like
Boolean function [6]. As A(0) = (1), so each of the two zero variable Boolean
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functions is polynomial-like. Now let u = u0u1 be the spectrum of the canoni-
cal disjunctive normal form of a Boolean function f of n + 1 variables, where
n is a nonnegative integer. Then

(1.8)

(
u0

u1

)
=

(
A(n) 0(n)

A(n) A(n)

)(
u0

u1

)

if and only if u0 = A(n)u0 and u1 = A(n)u0+A(n)u1 = u0+A(n)u1, that is f is
polynomial-like if and only if u0 =

(
A(n) + I(n)

)
u1, where u1 is the spectrum

of the canonical disjunctive normal form of an arbitrary Boolean function of
n variables. As a consequence we get that the number of the n + 1 variable
polynomial-like Boolean functions is equal to 22

n

. It is easy to see, too, that
the spectra of the canonical disjunctive normal forms of the polynomial-like
Boolean functions of n+1 variables make up a 2n-dimensional subspace of the
2n+1-dimensional linear space of the spectra of the canonical disjunctive normal
forms of all of the n+ 1 variable Boolean functions. This space is spanned by
the columns of the following matrix:

(1.9)

(
A(n) + I(n)

I(n)

)
.

1.3. Symmetric functions and symmetric polynomials

Let n ∈ N, let X and Y be sets, f : Xn → Y and π an arbitrary el-
ement of the symmetric group Sn. The function f is symmetric, if for any
(u0, · · · , ui, · · · , un−1) ∈ Xn

(1.10) f (u0, · · · , ui, · · · , un−1) = f
(
uπ(0), · · · , uπ(i), · · · , uπ(n−1)

)
.

If K is a field, and p ∈ K [x0, · · · , xi, · · · , xn−1], then p is a symmetric polyno-
mial over K, if

(1.11) p = p ◦
(
xπ(0), · · · , xπ(i), · · · , xπ(n−1)

)
,

where ◦ denotes the composition.

Now the Boolean function f is symmetric if and only if its Zhegalkin-
polynomial is symmetric.

The polynomial function for a symmetric polynomial is a symmetric func-
tion, but the converse is not necessarily true. There are infinitely many poly-
nomials with the same polynomial function over a finite field, most of which are
not symmetric even when the corresponding polynomial function is symmet-
ric. For example, the polynomial function for the polynomials p(1) = x0x

2
1 and

p(2) = x0x1 over the field of two elements is the symmetric function p̂ = x0x1

, but p(1) is not a symmetric polynomial, since p(1) = x0x
2
1 �= x2

0x1 = p(3).
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It is worth to mention that if k is a nonnegative integer and k ≤ n ∈ N,
then the k-degree homogeneous symmetric Zhegalkin-polynomial in n indeter-
minates is the k-degree elementary symmetric polynomial in n indeterminates
over F2 (see Theorem 1.2. in [8]).

By this result we can determine a homogeneous symmetric Zhegalkin-poly-
nomial by fixing the number of the indeterminates and the degree of the poly-
nomial, that is by the ordered pair of (n; k) where n is the number of the
indeterminates and k is the degree of the monomials occuring in the polyno-
mial. Similarly, if A is a set of nonnegative integers not greater than n then
(n;A) determines a symmetric Zhegalkin-polynomial containing the k-degree
monomial if and only if k ∈ A.

Let n be a nonnegative integer, n ≥ k ∈ N and A is a subset of the non-
negative integers not greater than n. Then p(n;k) is the k-degree homogeneous
symmetric Zhegalkin-polynomial in n indeterminates and p(n;A) =

∑
k∈A p(n;k).

As 2a = 0 for any a ∈ F2, so p(n;A1)+p(n;A2) = p(n;A1∆A2), where ∆ denotes
the symmetric difference, that is, A1∆A2 = (A1 ∩ Ā2) ∪ (Ā1 ∩A2).

If p(n;k) is polynomial-like, then the Boolean-function f belonging to that
polynomial is the logical sum of the minterms containing exactly n−k negated
variables, as the spectra of the function and the polynomial are identical.

It is easy to see that for any n ∈ N the n-variable AND-function is poly-
nomial-like and symmetric, so for any n ∈ N there is at least one symmetric
polynomial-like n-variable Boolean function.

For any n ∈ N the spectra of the symmetric polynomial-like Boolean func-
tions of n-variables form a linear space.

According to Corollary 2.1. and Theorem 2.4. in [8] for any 3 ≤ n ∈ N
the collection of the symmetric polynomial-like Boolean functions is a proper
subspace of the space of the polynomial-like Boolean functions.

2. Homogeneous symmetric polynomial-like Boolean functions

This section is based on the results contained in [9].

In the following, unless we say otherwise, polynomial means a polynomial
over F2 of degree at most one in every indeterminate, and if p is the Zhegalkin
polynomial of a polynomial-like Boolean function then also the polynomial itself
is called as polynomial-like. The zero polynomial has no degree.

The next two statements are straightforward so we omit the proofs.

Theorem 2.1. Let n be a nonnegative integer. The degree of the Zhegalkin
polynomial of an n-variable f �= 0 Boolean function is at most n.
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Theorem 2.2. For every nonnegative integer n the Boolean function belonging
to the homogeneous Zhegalkin polynomial of degree n in n indeterminates is
polynomial-like.

Theorem 2.3. Let k be a nonnegative integer and let k ≤ n ∈ N. If the
Boolean function of a homogeneous symmetric Zhegalkin-polynomial of degree
k in n indeterminates is not polynomial-like then the Boolean function of a ho-
mogeneous symmetric Zhegalkin-polynomial of degree k in n+1 indeterminates
is not polynomial-like, either.

Proof. If the polynomial 0 �= p = p(0) + xnp
(1) in n+1 indeterminates, where

p(0) and p(1) are polynomials of the indeterminates x0, . . . , xn−1, is

� a polynomial of degree n ≥ k, then p(0) is a polynomial of degree at
most k, as every term of p and then every term of p(0), too, is of degree
maximum k;

� homogeneous, then also p(0) is homogeneous, because p(0) and xnp
(1) have

no common terms;

� symmetric, then p(0) is symmetric, too, since for any permutation of the
indeterminates x0, · · · , xn−1 there is no common term in p(0) and xnp

(1);

� the Zhegalkin polynomial of an n + 1-variable polynomial-like Boolean
function, then p(0) is the Zhegalkin polynomial of an n-variable polynomial-

like Boolean function. Indeed, if the spectrum of p is u =

(
u(0)

u(1)

)
, where

u(0) is the vector composed of the first 2n components of u, then u(0) and
u(1) is the spectrum of p(0) and p(1), respectively. If p is polynomial-like,

then from

(
u(0)

u(1)

)
= u = A(n+1)u =

(
A(n) 0(n)

A(n) A(n)

)(
u(0)

u(1)

)
follows that

u(0) = A(n)u(0), so p(0) is polynomial-like.

Based on the above properties, if p is an n + 1 indeterminate k-degree ho-
mogeneous symmetric polynomial which is the Zhegalkin polynomial of an
n+ 1-variable polynomial-like Boolean function, then p(0) is a k-degree homo-
geneous symmetric polynomial in n indeterminates belonging to an n-variable
polynomial-like Boolean function. From this follows that the theorem holds. �

Corollary 2.1. If for an integer n not less than the nonnegative integer k the
Boolean function belonging to a k-degree homogeneous symmetric Zhegalkin-
polynomial in n indeterminates is not polynomial-like and n ≤ m is an inte-
ger then the Boolean function belonging to a k-degree homogeneous symmetric
Zhegalkin-polynomial in m indeterminates is not polynomial-like, either.
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Proof. It follows immediately from the previous theorem by induction onm. �

Definition 2.1. Let n ∈ N and 2n > i ∈ N. i can be written in a unique
way in the form i =

∑n−1
l=0 il2

i where for any nonnegative index l less then n

il ∈ {0, 1} and i0 · · · in−1 = i ∈ {0, 1}n. Then w (i) = w (i) =
∑n−1

l=0 il is the
weight of i and i covers the vector j0 · · · jn−1 = j ∈ {0, 1}n belonging to the

nonnegative integer 2n >
∑n−1

l=0 jl = j, if for each of the indices l il ≥ jl. The
fact that i covers j is denoted by i � j. In the case of i � j we also say that i
covers j.

Remark 2.1. If n ∈ N, 2n > i ∈ N, 2n > j ∈ N and i � j, then i ≥ j and
w (i) ≥ w (j), since under the given conditions i =

∑n−1
l=0 il2

l ≥
∑n−1

l=0 jl2
l = j

and w (i) =
∑n−1

l=0 il ≥
∑n−1

l=0 jl = w (j).

One of the main results of [9] is the following theorem.

Theorem 2.4. Let n be a nonnegative integer and let n ≥ k ∈ N. Then

p(n;k) is polynomial-like if and only if

(
w
k

)
is an even number for every integer

k < w ≤ n.

Proof. p(n;k) is polynomial-like if and only if u = Au, where u is the spectrum

of the polynomial, that is, if ui = vi = (Au)i =
∑2n−1

j=0 ai,juj =
∑i

j=0 ai,juj for
every nonnegative integer i less than 2n. The i-th component ui of u belonging
to p(n;k) is equal to 1 if and only if w (i) = k and ai,j = 1 exactly in the case
when i covers j (see the Corollary in [5]). By the Remark above i ≥ j if i � j.
Depending from the weight of i we have to distinguish three cases:

1. if wi = w (i) < k, then ui = 0, furthermore if uj = 1 then ai,j = 0, so in

that case ai,juj = 0 for every 0 ≤ j ≤ i, and then vi =
∑i

j=0 ai,juj = 0 = ui;

2. if wi = w (i) = k then there exists one and only one nonnegative integer
j not greater than i that uj = 1 and ai,j = 1, namely j = i, so now in the

sum
∑i

j=0 ai,juj there is exactly one nonzero member, ai,iui, therefor vi =

=
∑i

j=0 ai,juj = ai,iui = 1 = ui;

3. finally let i be such an integer that wi = w (i) > k. Then there are

(
wi

k

)

such index j, that i � j and wj = w (j) = k, and then vi =
∑i

j=0 ai,juj =

=
∑

i�j uj =
∑

i�j 1 = 0 = ui if and only if

(
wi

k

)
is an even number. �

Corollary 2.2. Let n be a nonnegative integer. Then

1. p(n;0) is polynomial-like if and only if n = 0;
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2. p(n;n) is polynomial-like for every nonnegative integer n;

3. p(n+1;n) is polynomial-like if and only if n is an odd number.

Proof. 1. wi = w (i) = 0 if and only if i = 0. Now there is no such i, that

w (i) < 0, and if n > 0, then for instance

(
n
0

)
= 1 is not an even number;

2. the weight of the index of a term of a Zhegalkin-polynomial is equal to
the number of the indeterminates occuring in that term so an n-indeterminate
Zhegalkin polynomial has no member with index 2n > i ∈ N such that wi =
= w (i) > n;

3. in this case it is only true for n + 1 that w(i) > n, and

(
n+ 1
n

)
=

=

(
n+ 1
1

)
= n+ 1 is even exactly in the case when n is odd. �

Another important result is the next theorem.

Theorem 2.5. Let l be a positive and t a nonnegative integer and let k =
= 2l (2t+ 1) − 1. Then p(n;k) is polynomial-like, if k ≤ n < k + 2l, and

p(k+2l;k) is not polynomial-like.

Proof. By the previous theorem the only thing to prove is that

(
w
k

)
is an

even number if k < w ≤ n < k + 2l but

(
k + 2l

k

)
is an odd number.

Let 2l ≥ r = 2u (2v + 1) be a positive integer. r uniquely determines the
nonnegative integers u and v. 2l ≥ 2u (2v + 1) and 2v+1 ≥ 1 imply that u ≤ l,
and u = l is equivalent to the case that r = 2l. If w = k + r then

(
w
k

)
=

(
k + r
k

)
=

(
k + r
r

)
=

=

∏r
i=1 (k + i)∏r

i=1 i
=

∏r−1
i=0 ((k + 1) + i)∏r

i=1 i
=

k + 1

r

r−1∏
i=1

(k + 1) + i

i
.

(2.1)

Let us write the positive integer i less than r in the form r = 2pi (2qi + 1). Now
l > pi ∈ N. Then

(2.2)
k + 1

r
= 2l−u 2t+ 1

2v + 1
,
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(k + 1) + i

i
=

2l (2t+ 1) + 2pi (2qi + 1)

2pi (2qi + 1)
=

=
2
(
2l−pi−1 (2t+ 1) + qi

)
+ 1

2qi + 1
=

2wi + 1

2qi + 1
,

(2.3)

so

(2.4)

(
w
k

)
= 2l−u 2t+ 1

2v + 1

r−1∏
i=1

2wi + 1

2qi + 1
= 2l−u (2t+ 1)

∏r−1
i=1 (2wi + 1)

(2v + 1)
∏r−1

i=1 (2qi + 1)
.

Both the numerator and the denominator of the fraction are products of odd
integers, so both the numerator and the denominator are odd integers. The
binomial coefficient is an integer and the denominator of the fraction is relative
prime to 2l−u, hence itself the fraction is an integer. From this follows that(
w
k

)
is odd for the given w and k if and only if u = l, that is, when r = 2l. �

Theorem 2.6. Let p be a Zhegalkin polynomial of x0, · · · , xn−1, xn and let
p = p(0) + xnp

(1) where p(0) and p(1) are Zhegalkin polynomials of the indeter-
minates x0, · · · , xn−1. Then p = p(n+1;k) if and only if k = 0, k = n + 1, or
0 < k ≤ n and p(0) = p(n;k) and p(1) = p(n;k−1).

Proof. With the cases k = 0 and k = n + 1 we dealt earlier. Let 0 < k ≤ n
and p = p(n+1;k). We know that in this case p(0) = p(n;k). Now p(n+1;k) is
the sum of the k-degree monomials of the n+ 1 indeterminates not containing
any other terms. These monomials either contain xn or not in a mutually
exclusive manner. The sum of the latter is the set of the k-degree monomials
of the indeterminates x0, · · · , xn−1, and their sum is p(n;k). Each of the other
monomials is the product of xn and one and only one monomial of degree k−1
of the other indeterminates and all of these monomials are in p, so their sum is
xnp

(n;k−1). Conversely, if p = p(n;k) + xnp
(n;k−1), then each member of p(n;k)

and xnp
(n;k−1) is a k-degree monomial of the n + 1 indeterminates, and each

of such monomial is a member of one of the two preceding polynomials, so
p = p(n+1;k). �

3. New results

The following theorem is a synthesis of some previous results.

Theorem 3.1. Let k be an even nonnegative integer and n be an arbitrary
natural number not less than k. Then p(n;k) is polynomial-like if and only if
n = k.

Proof. According to 2. in Corollary 2.2 p(k;k) is polynomial-like for each
natural number k. On the other hand, by 3. in the same Corollary, p(k+1;k)
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is polynomial-like if and only if k is odd. According to Theorem 2.3, if p(n;k)

is not polynomial-like, then p(n+1;k) is not polynomial-like either, and then for
every m ≥ n, according to Corollary 2.1, p(m;k) is not polynomial-like. �

According to the above theorem, for an even natural number k there is one
and only one natural number n, with which p(n;k) is polynomial-like.

Corollary 3.1. If p(n;k) is polynomial-like with the natural numbers k and n
greater than k, then k is odd.

Proof. If k is an even natural number and n is a natural number greater than
k, then p(n; k) cannot be polynomial-like by the former theorem. �

The following theorem is also a rewording of a previous result.

Theorem 3.2. Let k be an odd natural number such that 2l
∣∣ k + 1, but 2l+1 �

k+1. Then the number of the natural numbers n for which p(n;k) is polynomial-
like is 2l.

Proof. According to Theorem 2.5 p(n;k) is polynomial-like for k ≤ n < k +2l,

but p(k+2l;k) is not polynomial-like, so the number of the natural numbers n
for which p(n;k) is polynomial-like equal to the number of the integers in the
interval

[
k, k + 2l

[
. �

Theorem 3.3. Let n be odd and k ≤ n natural numbers. Then p(n+1;k) is
polynomial-like if and only if p(n;k) is polynomial-like.

Proof. If p(n;k) is not polynomial-like, then by Theorem 2.3 p(n+1;k) is not
polynomial-like either. Let’s look at the other case. If n is odd, n ≥ k and
p(n; k) is polynomial-like, then k is also odd: if n = k, then it is obvious, and
if n > k, then this is true according to Theorem 3.1. Then k can be written
in the form k = 2l(2v + 1) − 1, where l is a positive and v is a non-negative
integer. According to Theorem 2.5 p(n;k) is polynomial-like for k ≤ n < k +2l,

but p(k+2l;k) is not polynomial-like, and thus, based on previous results p(n;k)

is polynomial-like if and only if k ≤ n < k +2l. Now we assume that p(n;k) is
polynomial-like, so k ≤ n < k +2l. k is odd, 2l is even, since l > 0, so k +2l

is odd. But n < k + 2l and n are odd, so n + 1 is even, so even n + 1 is
smaller than k + 2l, and consequently p(n+1;k) is polynomial-like. �

Corollary 3.2. Let n be odd and k not greater than n natural numbers. Then
the number of the homogeneous symmetric polynomial-like Boolean functions
in n + 1 indeterminates is one greater than the number of the n-indeterminate
homogeneous symmetric polynomial-like Boolean functions.
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Proof. According to the above theorem, the set of the degrees of the homoge-
neous symmetric Zhegalkin polynomials of degree not greater than n belonging
to the n + 1 variable homogeneous symmetric polynomial-like Boolean func-
tions is equal to the set of the degrees of the homogeneous symmetric Zhegalkin
polynomials belonging to the n-variable Boolean functions. But in addition,
there is only one n + 1 indeterminate homogeneous Zhegalkin polynomial,
p(n+1;n+1), and this is symmetric and defines a polynomial-like Boolean func-
tion, so the number of the polynomials p(n+1;k) is indeed one greater than the
number of the n-indeterminate polynomials with this property. �

Theorem 3.4. Let l ∈ N+, t ∈ N, n = 2l (2t+ 1)− 1 and n+ 1 =
∑l+m

i=l ai2
i,

where m ∈ N, al+m = 1 and for all integers l < i < l + m, ai ∈ {0, 1}.
Then for k ∈ N p(n;k) is a polynomial-like Boolean function if and only if
k + 1 =

∑l+m
i=l+r ai2

i with an m ≥ r ∈ N such that al+r = 1.

Proof. n+1 = 2l (2t+ 1) and l ∈ N+, so al = 1. If k > n, then p(n;k) does not
exist, and due to n > 0, p(n;0) is not polynomial-like. Since n is odd, so even
for even k there is no polynomial-like p(n;k), so we can assume that 0 < k ≤ n
is odd. p(n;n) is polynomial-like, and then k + 1 = n + 1 =

∑l+m
i=l ai2

i =

=
∑l+m

i=l+0 ai2
i. But we have already seen that al+0 = al = 1, and m ≥ 0 ∈ N,

that is, for k = r = 0, p(n;k) is polynomial-like. Hereinafter, k < n. Then
k + 1 < n + 1, and in the binary expansions the leftmost bit in k where k
and n differ, 0, so k+1 =

∑l+r−1
i=l bi2

i+0 ·2l+r+
∑l+m

i=l+r+1 ai2
i with a positive

integer r not greater than m for which al+r = 1. We have previously seen
that if k = 2l

′
(2t′ + 1) − 1, then with n > k, p(n;k) is polynomial-like if and

only if n < k + 2l
′
. If b =

∑l+r−1
i=l bi2

i = 0, then l′ ≥ l + r + 1, and

(3.1) k + 1 + 2l
′
≥ k + 1 + 2l+r+1 >

l+r∑
i=l

ai2
i +

l+m∑
i=l+r+1

ai2
i = n+ 1,

that is, p(n;k) is polynomial-like. In the other case, b �= 0. Then 0 < l′ < l + r
(because k + 1 is even), b =

∑l+r−1
i=l′ bi2

i, and consequently

k + 1 + 2l
′
= b+

l+m∑
i=l+r+1

ai2
i + 2l

′
≤

l+r−1∑
i=l′

2i + 2l
′
+

l+m∑
i=l+r+1

ai2
i =(3.2)

= 2l+r +
l+m∑

i=l+r+1

ai2
i ≤

l+m∑
i=l

ai2
i = n+ 1

so now p(n;k) is not polynomial-like. �
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Theorem 3.5. Let n be an odd natural number. The number of the n-variable
nonzero homogeneous symmetric polynomial-like Boolean functions is w(n+1).

Proof. Let n = 2l (2t+ 1)−1, where l ∈ N+ and t ∈ N, and let w(n + 1) = q.
Then, by the previous theorem, the number of the n-variable nonzero homoge-
neous symmetric polynomial-like Boolean functions is equal to the number of
the one’s in n+ 1 =

∑l+m
i=l ai2

i. �

A direct consequence of the theorem is the following corollary.

Corollary 3.3. Let l be a positive integer. Then the number of the nonzero
n-indeterminate homogeneous symmetric polynomial-like Boolean functions is
equal to 1 if n = 2l − 1 and to l in the case when n = 2(l+1) − 3.

Proof. n + 1 = 2l = 10 . . . 0︸ ︷︷ ︸
l

and n + 1 = 2(l+1) − 2 = 1 . . . 1︸ ︷︷ ︸
l

0, so w(2l) = 1

and w(2(l+1) − 2) = l. �

Example 3.6. Now we consider some homogeneous symmetric polynomial-like
Boolean functions. First, we give such functions by Theorem 2.5 supposing that
n is odd.

1. If k = 1, 5, 9, 13 then p(n;k) is symmetric and polynomial-like if and only
if n = k, as now k = 21(2u+ 1)− 1;

2. if k = 3, 11 then p(n;k) is symmetric and polynomial-like if and only if
n = k or n = k + 2, as in this case k = 22(2u+ 1)− 1;

3. if k = 7 then k = 23(2·0+1)−1, so p(n;k) is symmetric and polynomial-like
if n = 7, 9, 11, 13 and not polynomial-like, when n > 13.

It follows from the previous list that for n = 7, 9, 13 p(7;7), p(9;7), p(9;9),
p(13;7), p(13;11) and p(13;13) are the homogeneous polynomial-like Boolean func-
tions.

The homogeneous symmetric polynomial-like Boolean functions for n =
7,9,13 are then determined using the results found in this paper.

1. Let n = 7. Then n + 1 = 8 = 23 = 1000(2), w(n + 1) = 1, and the only
nonzero homogeneous symmetric polynomial-like Boolean function in 7
indeterminates is p(7;7) =

∏6
i=0 xi (now k = 7 and k + 1 = 8 = 1000(2)).

2. Let n = 13. Then n+1 = 14 = 24−2 = 1110(2), w(n+1) = 3, and the 13-
indeterminate nonzero homogeneous symmetric polynomial-like Boolean
functions are
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� p(13;7) =
∑

I⊂A,|I|=7

∏
i∈I xi (now k + 1 = 8 = 1000(2));

� p(13;11) =
∑

I⊂A,|I|=11

∏
i∈I xi (k + 1 = 12 = 1100(2));

� p(13;13) =
∏12

i=0 xi (k + 1 = 14 = 1110(2));

where A is the set of the nonnegative integers less than 13.

3. Let n = 9. Then n + 1 = 10 = 1010(2), w(n + 1) = 2, and the 9-
indeterminate nonzero homogeneous symmetric polynomial-like Boolean
functions are

� p(9;7) =
∑

I⊂A,|I|=7

∏
i∈I xi (k + 1 = 8 = 1000(2));

� p(9;9) =
∑

I⊂A,|I|=9

∏
i∈I xi (k + 1 = 10 = 1010(2)).

where A is the set of the nonnegative integers less than 9.

As we can see, the sets of functions defined in the two ways are the same,
the two calculation methods led to the same result.

There are many interesting questions about symmetric polynomial-like Bool-
ean functions. For example, for a given n ∈ N, n-indeterminate homogeneous
symmetric polynomial-like Boolean functions generate a linear space. In this
article, we have considered these functions on their own, so it may be worth-
while to examine the space itself in the future.
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